为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

植物RNA的提取及其电泳鉴定.doc

2018-02-23 23页 doc 49KB 99阅读

用户头像

is_105949

暂无简介

举报
植物RNA的提取及其电泳鉴定.doc植物RNA的提取及其电泳鉴定.doc 实验四 植物RNA的提取及其电泳鉴定 一、原理 植物细胞内含有细胞质RNA、细胞核RNA和细胞器RNA。细胞质RNA包括mRNA、rRNA、tRNA。细胞核RNA主要有细胞质RNA的前体及小分子细胞核RNA(snRNA)、染色质RNA(chRNA)等。细胞器RNA主要指线粒体RNA及叶绿体RNA。这些RNA统称细胞总RNA,其中大量的是rRNA,占80,左右。基因转录产物mRNA在总RNA中只占1,,5,。不同的mRNA在分子大小、核苷酸序列,以及在细胞内转录水平等方面各不相同,但真核...
植物RNA的提取及其电泳鉴定.doc
植物RNA的提取及其电泳鉴定.doc 实验四 植物RNA的提取及其电泳鉴定 一、原理 植物细胞内含有细胞质RNA、细胞核RNA和细胞器RNA。细胞质RNA包括mRNA、rRNA、tRNA。细胞核RNA主要有细胞质RNA的前体及小分子细胞核RNA(snRNA)、染色质RNA(chRNA)等。细胞器RNA主要指线粒体RNA及叶绿体RNA。这些RNA统称细胞总RNA,其中大量的是rRNA,占80,左右。基因转录产物mRNA在总RNA中只占1,,5,。不同的mRNA在分子大小、核苷酸序列,以及在细胞内转录水平等方面各不相同,但真核细胞mRNA 3ˊ末端都具有20,200个不等的多聚腺苷酸的尾,称为poly(A)结构。利用poly(A)结构可以把mRNA从总RNA中分离出来。对于Northern杂交可以使用植物细胞总RNA,也可以使用由总RNA中分离出的mRNA。 植物细胞RNA提取中的主要问题是防止RNA酶的降解作用。RNA酶是一类水解核糖核酸的内切酶,它与一般作用于核酸的酶类有着显著的不同,不仅生物活性十分稳定,耐热、耐酸、耐碱,作用时不需要任何辅助因子,而且它的存在非常广泛,除细胞内含有丰富的RNA酶外,在实验环境中,如各种器皿、试剂、人的皮肤、汗液、甚至灰尘中都有RNA酶的存在。因而,生物体内源、外源RNA酶的降解作用是导致RNA提取失败的致命因素。 内源RNA酶来源于材料的组织细胞,提取自始至终都应对RNase活性进行有效抑制。RNA提取过程中将蛋白质变性剂与RNase抑制剂联合使用效果较理想。蛋白质变性剂包括酚、氯仿、SDS、Sarkosyl(十二烷酰肌氨酸钠)、DOC(脱氧胆酸钠)、盐酸胍、异硫氰酸胍、4—氨基水杨酸钠、三异丙基萘磺酸钠等;RNA酶抑制剂有RNasin(RNase阻抑蛋白)、氧钒核糖核苷复合物等。 外源RNA酶的抑制主要是使用DEPC(焦碳酸二乙酯CHs-O-CO-O-CO-O-CxH),它能与25RNase分子中的必需基团组氨酸残基上的咪唑环结合而抑制酶活性,用于水、试剂及器皿的RNase灭活。DEPC与肝素合用效果增强,值得注意的是DEPC在Tris溶液中很不稳定,很快分解成CO 2及CHOH,因而不能用于Tirs溶液的RNase灭活。水及其它溶液的灭活一般使用0.05,,0.1,25 DEPC,37?处理过夜,也有人采用磁搅0.5小时以上的做法。DEPC处理后的溶液还需高压灭菌,以去除残存的DEPC。若DEPC去除不净,会破坏mRNA活性。不能高压灭菌的试剂要使用经过DEPC处理的灭菌蒸馏水配制,然后用0.22μm 滤膜过滤。含有Tris的试剂用经DEPC处理过的水配制,再经高压消毒。玻璃器皿可以在180?烘烤8小时以上,不能烘烤的器皿用0.1,的DEPC水处理过夜后再高压灭菌。 提取全过程必须在清洁无尘的环境中进行。操作人员要使用一次性的手套拿取物品,尽可能避免一切污染机会。提取时使用的器皿应经过硅烷化处理,以防止RNA被吸附在器皿壁上,造成损失。RNA电泳使用的电泳槽需用去污剂洗涤,水冲洗,乙醇干燥。再浸入3, H0溶液中,22室温下放置10分钟以上,再用DEPC溶液处理过的水冲洗干净。总之,实验中所用的试剂、器皿都要经过RNase灭活处理。 尽管如此,有时还会出现在提取的后期RNA被降解的问题。这是因为RNase活性的抑制只 是一个暂时的现象,一旦抑制剂浓度下降RNase就有可能恢复活性。对于RNA提取来说,这是一个潜伏的危险。在提取的前阶段,提取液中无疑是有足够的抑制剂,但到了提取后期,抑制成分逐渐减少,残存的RNase就会复活而引起RNA降解。另外,提取后期发生的RNase污染,那怕是极轻微的,也会使到手的产品降解,因而提取后期要更加小心。 影响植物RNA提取的另一个问题是水溶性的细胞代谢物如酚、多糖等易与RNA结合成胶冻状的不溶物或有色的复合物,它们能影响RNA的质量及产量。人们采用了多种处理来解决这个问题,如对组织提取液进行高速离心去除多糖;采用低pH值的提取缓冲液抑制酚的解离及氧化;或用β—巯基乙醇、PVP来抑制酚类的干扰等。 (一)总RNA的提取 用于研究基因达的总RNA提取时首先要考虑的问题是材料的选取及预处理。由于基因表达与生理状态密切相关,因而取材时必须考虑材料的生理状态,必要时还要对材料进行预处理,即施加某种因素,诱导目的基因表达,如进行光照、暗处理、或加入诱导物等。 材料的破碎与植物细胞总DNA的提取相同,采用液氮冷冻及在液氮中研磨。预处理过的材料要尽早地投入到液氮中,投入前要尽可能保持材料完整及新鲜,不要让材料压碎及破损。因为植物材料在破损时会引起多酚类物质的积累及氧化,使组织变褐而影响RNA分离。细胞膜裂解也与DNA提取相同,主要使用SDS或Sakosyl、酚等。 由于细胞内RNA主要以核蛋白体形式存在,所以总RNA提取的路线是细胞破碎,使核蛋白体从细胞内释放;采用使蛋白质变性的做法,令核蛋白体解析,RNA迅速与蛋白质分离,大量地释放到溶液中;然后用酚、氯仿有机溶剂抽提,去除蛋白质杂质,使核酸进入水相;再选择性沉淀RNA,使之与DNA分离;所得RNA再进行必要的纯化,最后用乙醇或异丙醇沉淀RNA。 至于植物细胞总RNA的提取方法,同植物总DNA提取一样,没有一种固定的通用方法。文献中报导的植物细胞总RNA的提取方法很多,但综合起来看,分离的主要依据不外乎如下几点:? 用酚及去污剂SDS或Sakosyl破碎细胞膜并去除蛋白质;? 酚、氯仿反复抽提纯化核酸;? LiCl选择性沉淀去除DNA及其它不纯物;? 3mol,L乙酸钠(pH6)沉淀RNA,DNA在上清液中;? CsCl密度梯度离心,去除多糖等杂质,纯化RNA。 目前用于Northern 杂交植物总RNA提取方法根据主要试剂可分为苯酚法、异硫氰酸胍(或CTAB)法及氯化锂沉淀法: 1、苯酚法 该法利用苯酚协助破碎细胞;酚,氯仿变性蛋白质并反复抽提核酸;3mol,L乙酸钠选择沉淀RNA;提取液中使用4—氨基水杨酸及三异丙基萘磺酸盐抑制RNase活性。该方法操作简单、经济,可用于从植物叶、茎、根及萌发幼苗中提取总RNA或核RNA。 2、异硫氰酸胍法 异硫氰酸根及胍离子都是很强的蛋白质变性剂。异硫氰酸胍与十二烷基肌氨酸钠合用可使核蛋白体迅速解体;与还原剂β—巯基乙醇合用能强烈抑制RNase 活力,因而是制备RNA的一种 常用试剂。 传统的异硫氰酸胍法需利用CsCl离心分离RNA(沉到管底)。这种做法操作时间长、设备要求高。经改进,目前使用的方法使操作大大地简化,并可同时提取多个样品。做法是将异硫氰酸胍、β—巯基乙醇、十二烷基肌氨酸钠三者合用,强有力抑制了RNA降解,增加了核蛋白体的解离,将大量的RNA释放到溶液中,然后用酸性酚进行抽提,既可保证RNA稳定,又可抑制DNA解离,使DNA与蛋白质一起沉淀,RNA被抽提进入水相,用异丙醇沉淀RNA后,经酚,氯仿再次抽提进行纯化。该方法提取的RNA 用于Northern 杂交可以得到满意结果。 3、氯化锂沉淀法 该方法的主要原理是在一定的pH条件下,Li+使RNA发生特异性沉淀,通过多级沉淀可提高RNA的纯净度。利用氯化锂选择性沉淀时,因提取缓冲体系不同有多种不尽相同的氯化锂法,有的使用硼酸缓冲液,加入还原剂二硫苏糖醇抑制RNase活性,用SDS变性核蛋白;有的使用Tris—HCl缓冲体系,用苯酚及蛋白酶K处理蛋白;还有的使用高浓度尿素变性蛋白质同时抑制 +RNase。氯化锂沉淀法虽也有效,但沉淀过程较为繁琐,并存在着Li的污染问题。 (二)mRNA的分离 从总RNA中分离mRNA主要是利用亲和层析的原理。植物mRNA的3ˊ—端具有poly(A)结构,可用oligo(dT)—纤维素(寡聚(dT)—纤维素)或Poly(U)—Sepharse(多聚(U)—琼脂糖)亲和层析技术来纯化mRNA。总RNA在流经寡聚(dT)—纤维素层析柱时,在高盐缓冲液作用下,mRNA 3,—端多聚(A)残基与连接在纤维素柱上的寡聚(dT)残基间配对,形成氢键,使mRNA被吸附在柱上。不具poly(A)结构的RNA,不能发生特异性结合而从柱中流出。结合在柱上的mRNA可以用低盐缓冲液或蒸馏水洗脱。因为在高盐溶液中碱基间的氢键稳定,在低盐状态下易解离,水打破poly(A)与(dT)间的氢键,使mRNA洗脱。 层析中涉及到的缓冲液有两种,一是上样缓冲液,也有人称结合缓冲液。各文献报道的结合缓冲液都由Tris?C1、EDTA、氯化物盐类及去污剂组成。不同之处是有的使用0.5mol/L的NaCl、有的使用0.5mol,L的LiCl。不管使用哪种盐,都为高浓度,以促进poly(A)与寡聚(dT)结合。第二种是洗脱缓冲液,除Tris、去污剂的浓度减半外(也有Tris 量不减半的),最大的变化是不含氯化物或含低浓度的LiCl。其作用是解除Poly(A)与寡聚(dT)的结合,使mRNA洗脱下来。 在没有特制的层析柱时,可以用无菌硅化的巴斯德吸管或lml的注射器做层析柱,出口端用无菌硅烷化过的玻璃纤维填充。寡聚(dT)纤维素用上样缓冲液悬浮后装柱。柱体积在0.25ml左右。装柱后用0.1mol/L 的NaOH 洗柱,上样缓冲液平衡。RNA的样品量一般在2~5mg,体积为lml左右。上样前样品要经过变性处理,置沸水浴中加热数分钟后立即置冰浴中。上样后就要立即收集流出液,这时流出液中可能含有一些未能与纤维素结合的mRNA。将流出液加热至65?维持6~7分钟,然后快速冷却再重新上样,如此反复多次,以使mRNA充分被吸附在纤维素柱上,用5~10倍体积的结合缓冲液洗柱,这时rRNA、tRNA 等逐渐被冼脱,而mRNA挂在柱上。洗脱至流出液的OD260值几乎为零,换用低盐的洗脱缓冲液洗脱mRNA,部分收集器收集,测定每管中 的mRNA浓度,合并含mRNA的洗脱液,用乙醇沉淀mRNA,于-70?保存。 (三)RNA样品质量检测 用于Northern杂交的RNA样品应是纯净的,无明显的DNA、蛋白质污染,无小分子有机物复合,无提取试剂的污染。分子完整,无严重降解。同DNA样品质量检测相同,主要有紫外吸收法及琼脂糖凝胶电泳法两种。 1、紫外吸收法 ? 纯度检测:在分光光度计上分别测定样品在230nm、260nm、280nm的吸收值,计算A260/A280及A260,A230的比值。纯净的RNA样品A260/A280的比值应在1.7~2.0之间,若小于1.7则表明样品中有蛋白质或酚试剂污染。此时,可用等体积的酚,氯仿重新抽提去除蛋白质;用氯 60,)。A260/A230的比值应大于2.0,如仿、乙醚抽提去除残酚。在抽提过程中RNA损失较大(约 小于2.0则表明RNA被异硫氰酸胍污染。这时可以通过乙醇或异丙醇重新沉淀(可反复几次)来去除。关于DNA杂质的存在与否紫外分光光度法不能予以明确说明。 ? 浓度测定:纯净的RNA样品(无DNA及核苷酸杂质)260nm的光吸收值等于1.0时,RNA的含量为37 µg/m1。根据此吸收值与浓度的关系可求出任一RNA样品的浓度。 RNA含量(μg,m1),A × 稀释倍数× 37 μg,m1 当对含量要求不十分精确时,可近似认为A=1.0 时的RNA浓度为40µg/m1。测定时如果260 按如下做法可使计算简化:取4µl RNA样品,加蒸馏水至lml,以蒸馏水或TE为空白测定A260值,该数值× 10 即为样品RNA浓度(µg/µl)。 2、琼脂糖凝胶电泳法 由于RNA分子结构与DNA不同,因而RNA电泳时有着与DNA电泳的不同之处。因RNA为单链分子,链内配对碱基很易通过氢键结合而形成二级以至三级结构。不同的RNA分子空间结构不同,因而RNA分子在未变性的条件下分子量与泳动率无严格的相关性。在变性条件下电泳,破坏RNA的空间结构,才能使RNA的泳动距离与其分子量对数值成正比。变性后的RNA泳动速度比天然RNA小1/2左右。在不需要测定RNA分子量时,使用浓度1.0,~1.4,的非变性琼脂糖凝胶也可将不同的RNA分子分离。当需要对所提取的RNA样品进行快速检测时可使用非变性胶。 总RNA样品中的主要成分是28S的rRNA、18S的rRNA及5SrRNA。电泳后在胶板上呈现三条明显的条带。在上样量小时,5SrRNA的条带有时显示不清。若在变性胶上,这三条带的迁移率分别与5.1kb、2.0kb 及0.12kb 的标准RNA的迁移率相近。从量上看,溴化乙锭染色后28SrRNA条带的亮度应为18SrRNA的两倍。如果28SrRNA的亮度不如18SrRNA条带,表明样品中RNA有降解。发生降解的原因主要是RNase灭活不好,或操作中温度过高。防止的方法是操作全过程在4?低温条件下或冰上进行。操作中一次性手套要经常更换,尽量避免RNase污染。 二、植物总RNA的提取方法 主要有苯酚、异硫氰酸胍、CTAB、LiCl密度梯度、Trizol等方法。 (一)CTAB法 1、材料:植物幼嫩组织器官或种子萌发的幼苗。 2、器材:研钵、液氮、带盖离心管、 移液器,涡旋震荡器,高速冷冻离心机,台式离心机, 水浴锅。 3、试剂: ? DEPC’d ddHO 2 每1000ml水加入1ml DEPC,搅拌完全溶解后37?暗处理12小时,高温灭菌。 ? 1 M Tris(pH8.0) 1L 2L DEPC’d ddHO 800 ml 1600 ml 2 Tris 碱 121.1g 242.2g 用HCl(约42ml)调节 pH8.0,DEPC’d ddHO定容后,高温灭菌 2 ? 10%SDS 称取10g SDS,加入DEPC’d ddHO溶解。 2 ? 5 M EDTA(pH8.0) 1L 100ml EDTA•Na 181.6 g 18.2 g 2 ddHO ~900 ml ~90 ml 2 NaOH 20 g 2 g 调pH至8.0,定容。加DEPC(0.1%)混匀,灭菌。 ? CTAB RNA extraction buffer(100ml) CTAB 2g 0.5M EDTA(pH8.0) 5ml NaCl 11.8g 定容至90ml,高温灭菌后加入 PVP(polyvinylpyrrolidinon K30) 2g 1M Tris-HCl (pH8.0) 10ml β-mercaptoethanol 0.2ml(用前加) ? SSTE buffer(100ml): NaCl 5.9g 0.5M EDTA(pH8.0) 0.2ml 定容至94ml,高温灭菌后,加入 10%SDS 5ml 1M Tris-HCl (pH8.0) 1ml 注意事项: ?玻璃移液管、烧杯、量筒、三角瓶、搅拌子、研钵均要在180?烘烤10 小时 以上,?实验所用的塑料离心管要用0.1% DEPC浸泡12-24小时后灭菌~国产的eppendorf tube 以及枪头~也要进行以上处理。 4、操作步骤 ? 离心管中加15ml CTAB提取缓冲液,于65?加热。 ? 液氮研磨2~3克样品,加入上离心管中,迅速涡旋30秒,65?短时间加热(5分钟 加入15ml 氯仿/异戊醇,混匀。 ? 10000rpm,15分钟(室温),上清转移另一离心管,加入等体积的氯仿/异戊醇再抽 提一次。 ? 水相转移,加8M LiCl 使终浓度为2M(约为水相的三分之一),4?,过夜。 ? 15000rpm,3 0分钟,4?,沉淀RNA,弃上清。沉淀先用500ul 70%乙醇洗,再用 500ul无水乙醇洗。 ? 加入500ul SSTE溶解沉淀,转移至1.5ml离心管中,加等体积的氯仿/异戊醇抽提一 次(13000rpm,10分钟,室温)。 ? 上清转移,加2倍体积的无水乙醇,-70?至少30min或-20?放置2hr沉淀RNA。 ? 4?,13000rpm离心20min。沉淀用400ul 70%乙醇洗,再用400ul无水乙醇洗,干燥 后加50ul DEPC水溶解。取适量电泳检测。 注意:实验过程中要勤换手套~尽量避免手上和唾液中RNase的污染。 (二)异硫氰酸胍—LiCl—酸性酚法 1、材料:植物幼嫩组织器官或种子萌发的幼苗。 2、器材:研钵、液氮、带盖离心管、移液器、涡旋震荡器、高速冷冻离心机、台式离心机、 水浴锅。 3、试剂: ? 异硫氰酸胍提取液溶液: 4mol/L 异硫氰酸胍 25mmol/L柠檬酸钠(pH7.0) 0.5%十二烷基肌氨酸钠 0.1mol/L巯基乙醇 ? 2mol/L NaA(pH4.0)和3mol/L NaAc(pH5.2):DEPC’HO水配制,灭菌。 C2 ? 4 mol/L LiCl:配制4 mol/L LiCl,加DEPC处理,灭菌。 ? 水饱和酸性酚(分析
30µg RNA,通常用10-20μg细胞总RNA进行Northern杂交,可以检测高丰度mRNA(占mRNA总量的0.1%以上)。许多批号的试剂级甲醛溶液已足够纯,不需经过任何预处理即可直接使用。但如果甲醛溶液呈黄色,需在溶液中加入Dowex XG8混合床树脂置磁力搅拌器上搅拌1小时,再用Whatman1号滤纸过滤2次,进行去离子甲醛应分装成小份,充氮保存于-70?。 4、加2μl灭菌的并经用DEPC处理的甲醛凝胶加样缓冲液。 甲醛凝胶加样缓冲液 50% 甘油 1mM EDTA(pH8.0) 0.25% 溴酚蓝 0.25% 二甲苯青FF 5、加样前,将凝胶预电泳5分钟,电压降为5V/cm,随后将样品加至凝胶加样孔。可用已知大小的RNA作为分子量标准参照物,如用18S和28SrRNA或者9S兔β-珠蛋白mRNA,这些RNA的长度分别为6333、2366和710个核苷酸。也可以从BRL购置已知大小的RNA的混合物作为分子量标准参照物。通常分子量标准参照物的泳道位于凝胶边缘,便于电泳后将其切去进行溴化乙锭染色,可能的话在分子量标准参照物以及欲转移至硝酸纤维素滤膜或尼龙膜的样品之间留一个空白泳道。 6、将凝胶浸入1×甲醛凝胶加样缓冲液中,3-4V/cm电压降进行电泳。电泳缓冲液不需进行持续循环,电泳1-2小时后,收集并混合两个液槽的缓冲液,再加入电泳槽中,即可继续电泳。 7、电泳结束后(溴酚蓝迁移出约8cm),切下分子量标准参照物的凝胶,浸入溴化乙锭溶液(0.5μg/ml,用0.1M乙酸铵配制)中染色30-45分钟。在凝胶旁放置一透明尺,在紫外灯下照像。测量照片上每个RNA条带至加样孔的距离,以RNA片段大小的1g对数值对RNA条带的迁移距离作图,用所得曲线计算从凝胶转移到固相支持物后通过杂交所检出的RNA分子的大小。 小心:溴化乙锭是一种强烈的诱变剂并有中度毒性~使用含有这种染料的溶剂时应戴手套~用后应进行净化处理。紫外线照射有危害~对眼睛尤甚。为尽量避免受到照射~应适当遮蔽紫外光源。操作时应戴防护镜或能有效阻挡紫外线的全副安全面罩。 四、常见问题分析 1、得率低。可能的原因是: ? 样品裂解或匀浆处理不彻底 ? RNA沉淀未完全溶解 2、A260/A280<1.65。可能的原因是: ? 检测吸光度时,RNA样品没有溶于水,而溶于了TE中。低离子浓度和低pH 值条件下A280值偏高 ? 样品匀浆时加的试剂量太少 ? 匀浆样品时未在室温放置5分钟 ? 吸取水相时混入了有机相 ? RNA沉淀未完全溶解 3、RNA降解。可能的原因是: ? 组织取出后没有马上处理或冷冻 ? 待提取RNA的样品没有保存于-60至-70?,而保存在了-5至-20? ? 细胞在用胰酶处理时过度 ? 溶液或离心管未经RNase去除处理 ? 电泳时使用的甲醛pH值低于了3.5 4、DNA污染。可能的原因是: ? 样品匀浆时加的试剂量太少 ? 样品中含有有机溶剂(如乙醇,DMSO等),强缓冲液或碱性溶液 五、植物RNA提取过程中难点的相应对策 (一)酚类化合物的干扰及对策: 许多植物组织特别是植物的果实(如苹果、樱桃、李子、葡萄等)和树木类植物中富含酚类化合物。酚类物质的含量会随着植物的生长而增加。因而从幼嫩的植物材料中更容易提取RNA。此外,针叶类植物的针叶中多酚的含量比在落叶植物的叶子中要高得多。在植物材料匀浆时,酚类物质会释放出来,氧化后使匀浆液变为褐色,并随氧化程度的增加而加深,这一现象被称为褐化效应(browning effect)。被氧化的酚类化合物(如醌类)能与RNA稳定地结合,从而影响RNA的分离纯化。但Newbury等发现RNA提取的难易程度与材料中酚类物质的总量之间并无相关性,因此认为不是所有的酚类化合物都影响RNA的提取。但一般认为所谓的“缩合鞣质”即聚合多羟基黄酮醇类物质(如原花色素类物质)是影响RNA提取的一类化合物。目前去除酚类化合物的一般途径是在提取的初始阶段防止其被氧化,然后再将其与RNA分开。 1、防止酚类化合物被氧化的方法: ? 还原剂法:一般在提取缓冲液中加入(-巯基乙醇、二硫苏糖醇(DTT)或半胱氨酸来防止酚类物质被氧化,有时提取液中(-巯基乙醇的浓度可高达2,。(-巯基乙醇等还可以打断多酚氧化酶的二硫键而使之失活。Su等认为在过夜沉淀RNA时加入(-巯基乙醇(终浓度1,)可以防止在此过程中酚类化合物的氧化。硼氢化钠(NaBH4)是一种可还原醌的还原剂,用它处理后提取缓冲液的褐色可被消减,醌类化合物可被还原成多酚化合物。 ? 螯合剂法:螯合剂聚乙烯吡咯烷酮(PVP)和聚乙烯聚吡咯烷酮(PVPP)中的CO,N,基有很强的结合多酚化合物的能力,其结合能力随着多酚化合物中芳环羟基数量的增加而加强。原花色素类物质中含有许多芳环上的羟基,因而可以与PVP或不溶性的PVPP形成稳定的复合物,使原花色素类物质不能成为多酚氧化酶的底物而被氧化,并可以在以后的抽提步骤中被除去。用PVP去除多酚时pH值是一个重要的影响因素,在pH8.0以上时PVP结合多酚的能力会迅速降低〔11〕。当原花色素类物质量较大时,单独使用PVPP无法去除所有的这类化合物,因而需要与其它方法结合使用。 ? Tris-硼酸法:如果提取缓冲液中含有Tris-硼酸(pH7.5),其中的硼酸可以与酚类化合物依*氢键形成复合物,从而抑制了酚类物质的氧化及其与RNA的结合。这一方法十分有效,所以 Lбpez-Gбmez等在提取缓冲液中不再加入其它还原剂。但如果Tris-硼酸浓度过高(,0.2M)则会影响RNA的回收率。 ? 牛血清白蛋白(BSA)法:原花色素类物质与BSA间可产生类似于抗原,抗体间的相互作用,形成可溶性的或不溶性的复合物,减小了原花色素类物质与RNA结合的机会,因此提高了RNA的产量。BSA与PVPP结合使用提取效果会更好。由于BSA中往往含有RNase,因而在使用时要加入肝素以抑制RNase的活性。 ? 丙酮法:Schneiderbauer等用-70?的丙酮抽提冷冻研磨后的植物材料,可以有效地从云杉、松树、山毛榉等富含酚类化合物的植物材料中分离到高质量的RNA。 2、酚类化合物的去除: 通过Li+或Ca2+沉淀RNA的方法可以将未被氧化的酚类化合物去除。与PVP、不溶性PVPP或BSA结合的多酚,可以直接通过离心去除掉,或在苯酚、氯仿抽提时除去。Manning利用高浓度的2-丁氧乙醇(50,)来沉淀RNA,而多酚溶解于2-丁氧乙醇中而被除去。然后用含50, 2-丁氧乙醇的缓冲液洗涤RNA沉淀以去除残留的多酚。他认为即使多酚被氧化,其氧化产物仍可以溶解 来处理。 在高浓度2-丁氧乙醇溶液中而被去除,无需再用NaBH4 (二)多糖的干扰及对策: 多糖的污染是提取植物RNA时常遇到的另一个棘手的问题。植物组织中往往富含多糖,而多糖的许多理化性质与RNA很相似,因此很难将它们分开。在去除多糖的同时RNA也被裹携走了,造成RNA产量的减少;而在沉淀RNA时,也产生多糖的凝胶状沉淀,这种含有多糖的RNA沉淀难溶于水,或溶解后产生粘稠状的溶液。由于多糖可以抑制许多酶的活性,因此污染了多糖的RNA样品无法用于进一步的分子生物学研究。在常规的方法中,通过SDS-盐酸胍处理可以部分去除一些多糖;在高浓度Na+或K+离子存在条件下,通过苯酚、氯仿抽提可以除去一些多糖;通过LiCl沉淀RNA也可以将部分多糖留在上清液中。但即使通过这些步骤仍会发现有相当多的多糖与RNA混杂在一起,所以还需要用更有效的方法来解决植物RNA分离纯化时多糖污染的问题。 用低浓度乙醇沉淀多糖是一个去除多糖效果较好的方法。在RNA提取液或溶液中缓慢加入无水乙醇至终浓度10,,30,,可以使多糖沉淀下来,而RNA仍保留于溶液中。一般都是在植物材料的匀浆液中加入乙醇,如Lewinsohn等在从裸子植物的木质茎中提取RNA时,在匀浆上清液中加入乙醇至终浓度10,以沉淀多糖。但Tesniere等在从葡萄浆果组织中提取RNA时,是在用CsCl超离心,乙醇沉淀之后的RNA溶液中加入终浓度30,乙醇来沉淀多糖的,进一步纯化了RNA样品。 另一个常用的方法是醋酸钾沉淀多糖法。Bahloul等在提取云杉组织的RNA时在匀浆上清液中加入1/3体积的5M醋酸钾(pH4.8)溶液以沉淀多糖;Ainsworth在提取酸模植物花组织的RNA时加入的是1/5体积的5M醋酸钾(pH4.8)溶液。Hughes等在提取棉花叶和花粉的RNA时是加1/3体积的8.5M醋酸钾(pH6.5)溶液到匀浆液中以除去多糖等杂质。在提取某些植物材料的RNA时,是将上述两种方法结合使用。如Lбpez-Gбmez等在提取芒果中果皮的RNA时,是在匀浆液中加 入0.25体积的无水乙醇和0.11体积的5M醋酸钾溶液以去除多糖杂质。Su等在去除褐藻的多糖时,单独使用乙醇或醋酸钾都无效,只有两者结合使用效果最佳。 Fang等认为缓冲液中含有高浓度的NaCl有助于去除多糖。Chang等在提取松树RNA时,缓冲液中NaCl的浓度为2.0M和1.0M,通过氯仿抽提和乙醇沉淀RNA将RNA与多糖分离。Manning是将胡萝卜种子等材料苯酚提取后的上清液稀释,调节Na+离子浓度至80mM,然后加入0.4体积的2-丁氧乙醇来沉淀去除多糖。 (三)蛋白杂质的影响及对策: 蛋白质是污染RNA样品的又一个重要因素。由于RNase和多酚氧化酶亦属于蛋白质,因而要获得完整的、高质量的RNA就必须有效地去除蛋白杂质。常规的方法是在冷冻的条件下研磨植物材料以抑制RNase等的活性;提取缓冲液中含有蛋白质变性剂,如苯酚、胍、SDS、十六烷基三甲基溴化铵(CTAB)等,这样在匀浆时可以使蛋白质变性,凝聚;有的方法是利用蛋白酶K来降解蛋白杂质。进一步可以用苯酚、氯仿抽提去除蛋白质。 Wilcockson利用蛋白质与RNA在高氯酸钠溶液中的溶解度不同将它们分离。在70,高氯酸钠溶液中,RNA的溶解度大于蛋白质的溶解度,因而将大部分蛋白质沉淀下来。接着在离心上清液中加入两倍体积的无水乙醇,这时RNA能沉淀下来而能溶于70,高氯酸钠溶液中的残留蛋白质仍然留在上清液中。这样可以除去绝大部分的蛋白质。 (四)次级代谢产物的影响及对策: 从植物组织中提取高质量RNA的另一个难点是许多高等植物组织尤其是成熟组织能产生某些水溶性的次级代谢产物,这些次级代谢产物很容易与RNA结合并与RNA共同被抽提出来而阻碍具有生物活性的RNA的分离。因不能确定这些次级产物具体是什么物质,所以,目前还没有什么特殊的方法来解决这个问题。Baker等综合Hughes等的选择性沉淀法、Chirgwin的氯化铯梯度离心法和Iversen等的RNA回收方法纯化了松树种子、成熟松树针叶等植物组织的RNA。 由于植物组织特别是高等植物组织细胞内外组成成分的复杂多样性,使得植物组织RNA的提取相对于其它生物材料来说要困难的多。实践中经常会发现,即使同一种植物的不同组织其RNA提取方法会有很大的不同;含有某种干扰因素的不同植物材料,其适用的RNA提取方法可能不同;即使是同一种植物同一种组织材料,但来源于不同基因型植株,其RNA提取方法也可能不一样。所以,对于某一植物或其组织来说,其相应的RNA提取方法必需经过摸索和实践才能确立。 随着植物分子生物学研究领域的拓宽,可以肯定地说,在作为其研究基础的植物材料RNA提取过程中还会出现新的难点,但随着不断地探索和经验的积累,科学工作者们一定会迅速地解决这些难点,为植物分子生物学的发展铺平道路。 思 1、RNA纯化过程中如何避免RNA酶的污染, 2、如何检测已纯化RNA的质量,
/
本文档为【植物RNA的提取及其电泳鉴定&#46;doc】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索