为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

尾翼的作用

2018-01-11 28页 doc 73KB 84阅读

用户头像

is_447713

暂无简介

举报
尾翼的作用尾翼的作用 飞机尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的主要功能是操纵飞机升降和偏转,并保证飞机平稳飞行。 水平尾翼后缘的升降舵用来实现飞机升降。驾驶杆通过传动机构,使升降舵向下或向上偏转,升降舵偏转产生的附加空气动力和力矩打破了原来的平衡。升降舵向下偏转,正面气流自下吹向升降舵产生一个向上的附加力,这个力作用点位于重心后面,产生一个使飞机机尾上升的力矩,飞机实现下俯。 水平尾翼的固定面是保证纵向稳定的基本部件,其主要功能是保持飞机的稳定性...
尾翼的作用
尾翼的作用 飞机尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的主要功能是操纵飞机升降和偏转,并保证飞机平稳飞行。 水平尾翼后缘的升降舵用来实现飞机升降。驾驶杆通过传动机构,使升降舵向下或向上偏转,升降舵偏转产生的附加空气动力和力矩打破了原来的平衡。升降舵向下偏转,正面气流自下吹向升降舵产生一个向上的附加力,这个力作用点位于重心后面,产生一个使飞机机尾上升的力矩,飞机实现下俯。 水平尾翼的固定面是保证纵向稳定的基本部件,其主要功能是保持飞机的稳定性和实现飞行的纵向力矩平衡,因而又叫作水平安定面。当外力使机头抬起时,机翼和尾翼的迎角增大,尾翼可产生很大的、与机头抬起的力矩相反的低头力矩。飞机在这个过程中会经历短时间上下摇摆,但很快能恢复原来的水平状态。 垂直尾翼后缘的方向舵用于实现左右偏转。当方向舵向左偏转时,正面吹来的气流使方向舵产生一个附加的力,方向指向右,这个力与重心共同作用产生使飞机向左偏航的力矩,使飞机飞行方向向左偏转。垂直尾翼的固定面主要用于保证飞机水平方向上的稳定性。其工作原理与水平安定面相似。 一、飞行的主要组成部分及功用 **到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成 1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。 2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。 3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。 4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支掌飞机。 5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。 *飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪、通讯设备、领航设备、安全设备等其他设备。 二、飞机的升力和阻力 **飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理 流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。 **连续性定理阐述了流体在流动中流速和管道切面之间的关系。流体在流动中,不仅流速和管道切面 相互联系,而且流速和压力之间也相互联系。伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。 伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力大。 **飞机的升力绝大部分是由机翼产生,尾翼通常产生负升力,飞机其他部分产生的升力很小,一般不考虑。从上图我们可以看到:空气流到机翼前缘,分成上、下两股气流,分别沿机翼上、下表面流过,在机翼后缘重新汇合向后流去。机翼上表面比较凸出,流管较细,说明流速加快,压力降低。而机翼下表面,气流受阻挡作用,流管变粗,流速减慢,压力增大。这里我们就引用到了上述两个定理。于是机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和就是机翼的升力。这样重于空气的飞机借助机翼上获得的升力克服自身因地球引力形成的重力,从而翱翔在蓝天上了。 * 机翼升力的产生主要靠上表面吸力的作用,而不是靠下表面正压力的作用,一般机翼上表面形成的吸力占总升力的60-80%左右,下表面的正压形成的升力只占总升力的20-40%左右。 **飞机飞行在空气中会有各种阻力,阻力是与飞机运动方向相反的空气动力,它阻碍飞机的前进,这里我们也需要对它有所了解。按阻力产生的原因可分为摩擦阻力、压差阻力、诱导阻力和干扰阻力。 1.摩擦阻力——空气的物理特性之一就是粘性。当空气流过飞机表面时,由于粘性,空气同飞机表面发生摩擦,产生一个阻止飞机前进的力,这个力就是摩擦阻力。摩擦阻力的大小,决定于空气的粘性,飞机的表面状况,以及同空气相接触的飞机表面积。空气粘性越大、飞机表面越粗糙、飞机表面积越大,摩擦阻力就越大。 2.压差阻力——人在逆风中行走,会感到阻力的作用,这就是一种压差阻力。这种由前后压力差形成的阻力叫压差阻力。飞机的机身、尾翼等部件都会产生压差阻力。 3.诱导阻力——升力产生的同时还对飞机附加了一种阻力。这种因产生升力而诱导出来的阻力称为诱导阻力,是飞机为产生升力而付出的一种“代价”。其产生的过程较复杂这里就不在详诉。 4.干扰阻力——它是飞机各部分之间因气流相互干扰而产生的一种额外阻力。这种阻力容易产生在机身和机翼、机身和尾翼、机翼和发动机短舱、机翼和副油箱之间。 *以上四种阻力是对低速飞机而言,至于高速飞机,除了也有这些阻力外,还会产生波阻等其他阻力。 三、影响升力和阻力的因素 **升力和阻力是飞机在空气之间的相对运动中(相对气流)中产生的。影响升力和阻力的基本因素有:机翼在气流中的相对位置(迎角)、气流的速度和空气密度以及飞机本身的特点(飞机表面质量、机翼形状、机翼面积、是否使用襟翼和前缘翼缝是否张开等)。 1.迎角对升力和阻力的影响——相对气流方向与翼弦所夹的角度叫迎角。在飞行速度等其它条件相同的情况下,得到最大升力的迎角,叫做临界迎角。在小于临界迎角范围内增大迎角,升力增大:超过临界临界迎角后,再增大迎角,升力反而减小。迎角增大,阻力也越大,迎角越大,阻力增加越多:超过临界迎角,阻力急剧增大。 2.飞行速度和空气密度对升力阻力的影响——飞行速度越大升力、阻力越大。升力、阻力与飞行速度的平方成正比例,即速度增大到原来的两倍,升力和阻力增大到原来的四倍:速度增大到原来的三倍,胜利和阻力也会增大到原来的九倍。空气密度大,空气动力大,升力和阻力自然也大。空气密度增大为原来的两倍,升力和阻力也增大为原来的两倍,即升力和阻力与空气密度成正比例。 3,机翼面积,形状和表面质量对升力、阻力的影响——机翼面积大,升力大,阻力也大。升力和阻力都与机翼面积的大小成正比例。机翼形状对升力、阻力有很大影响,从机翼切面形状的相对厚度、最大厚度位置、机翼平面形状、襟翼和前缘翼缝的位置到机翼结冰都对升力、阻力影响较大。还有飞机表面光滑与否对摩擦阻力也会有影响,飞机表面相对光滑,阻力相对也会较小,反之则大。 1( 直升机与普通飞机有哪些区别: 直升机和飞机有些共同点,都是利用空气动力的飞行器,但直升机有很多独有特性。 (1)直升机飞行原理和结构与其他飞机不同飞行特点是飞机靠它的固定机翼产生升力,而直升机是靠 它头上的桨叶(螺旋桨)旋转产生升力。 (2)直升机的结构和飞机不同,主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。根据 螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。 (3)单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼产生的反作用力矩和控制 直升机的转弯。 (4)直升机头上窄长的大刀式的旋翼,一般由2,5片桨叶组成一副,由1,2台发动机带动,其主要 作用:通过高速的旋转对大气施加向下的巨大的力,然后利用大气的反作用力(相当与直升飞机受到大气 向上的力)使飞机能够平稳的悬在空中。 2( 直升飞机的平衡: (1)直升飞机的大螺旋桨旋转产生升力平衡重力。 普通飞机是靠翅膀产生升力起飞的,而直升飞机是靠螺旋桨转动,拨动空气产生升力的。直升飞机起 飞时,螺旋桨越转越快,产生的升力也越来越大,当升力比飞机的重量还大时,飞机就起飞了。在飞行中 飞行员通过改变大螺旋桨旋转的速度就可以调节高度了。 (2)直升飞机的横向稳定。 直升飞机如果只有大螺旋桨旋,那么根据动量守衡,机身就也会旋转,因此直升飞机就必须要一个能 够阻止机身旋转的装置。而飞机尾部侧面的小型螺旋桨就是起到这个作用,飞机的左转、右转或保持稳定 航向都是靠它来完成的。同时为了不使尾桨碰到旋翼,就必须把直升飞机的机身加长,所以,直升飞机有 一个像蜻蜓式的长尾巴。 3( 直升飞机能量方式: 根据能量守恒定律知道:能量从一种形式转化成为另一种形式。在低速流动的空气中,参与转换的能 量只有压力能和动能。一定质量的空气具有一定的压力,能推动物体做功;压力越大,压力能也越大;流 动的空气具有动能,流速越大,动能也越大 Abstract A foldable tail assembly for an aircraft includes a stabilizer and a pair of right and left fins mounted with respect to the stabilizer so that the fins may lay flat over the stabilizer during periods when the aircraft is not flight-ready, and so that the fins may be erected above the stabilizer to form a triangular configuration when the aircraft is ready to fly. Claims 1. A foldable tail assembly for an aircraft comprising: a stabilizer; a pair of right and left fins mounted with respect to the stabilizer so that the fins lay flat over the stabilizer during periods when the aircraft is not flight-ready, and so that the fins are erected above the stabilizer to form a triangular configuration when the aircraft is ready to fly; and the ends of the fins that are remote from where the fins are mounted with respect to the stabilizer including a cooperative joint structure for joining together the ends when the fins are erected to the ready-to-fly orientation. 2. The foldable tail assembly of claim 1 wherein the aircraft has wings that are selectively positionable in either a retracted position when the aircraft is not flight-ready or an extended position when the aircraft is ready to fly, and wherein the foldable tail assembly is positionable in either its lay-flat or erected position to correspond to the flight-ready positioning of the wings. 3. The foldable tail assembly of claim 2 wherein the foldable tail assembly flat and erect positions. may be moved manually between its lay- 4. The foldable tail assembly of claim 2 wherein the foldable tail assembly may be automatically moved between its lay-flat and erect positions. 5. The foldable tail assembly of claim 4 including a mechanism providing automatic movement of the foldable tail assembly between its lay-flat and erect positions, said mechanism comprising rotary actuators at the fin roots and a remote actuated pin at the ends of the fins. 6. The foldable tail assembly of claim 1 wherein the stabilizer is substantially horizontally oriented and the left and right fins are hingedly mounted to the stabilizer. . The foldable tail assembly of claim 6 wherein the fins when erected form a triangle having the portion of the stabilizer between the fin-mounting hinges as the base of the triangle, and the fins as the sides of the triangle. 8. The foldable tail assembly of claim 7 wherein the triangle is an isosceles triangle, with the fins serving as the equal sides of the isosceles triangle. 9. The foldable tail assembly of claim 7 wherein the cooperative joint structure for joining together the remote ends of the fins comprises a quick-connect pin or bolt. 10. The foldable tail assembly of claim 6 wherein the stabilizer is supported by a boom structure. 11. The foldable tail assembly of claim 6 including an elevator hingedly connected to the stabilizer and a rudder hingedly connected to each fin. 12. The foldable tail assembly of claim 1 including an elevator hingedly connected to the stabilizer and a rudder hingedly connected to each fin. 13. The foldable tail assembly of claim 2 wherein the aircraft has flexible folding wings. 14. The foldable tail assembly of claim 2 wherein the aircraft has rigid wings. 15. A foldable tail assembly for an aircraft comprising: a horizontal stabilizer; a pair of right and left fins hingedly mounted to the stabilizer so that the fins lay flat over the stabilizer during periods when the aircraft is not flight-ready, and so that the fins are erected above the stabilizer to form a triangular configuration when the aircraft is ready to fly; the ends of the fins that are remote from where the fins are hingedly mounted to the stabilizer including a cooperative joint structure for joining together the ends when the fins are erected to the ready-to-fly orientation, whereby the fins when erected form a triangle having the portion of the stabilizer between the fin-mounting hinges as the base of the triangle and the fins as the sides of the triangle; an elevator hingedly connected to the stabilizer; and a rudder hingedly connected to each fin. 16. The foldable tail assembly of claim 15 wherein the aircraft has wings that are selectively positionable in either a retracted position when the aircraft is not flight-ready or an extended position when the aircraft is ready to fly, and wherein the foldable tail assembly is positionable in either its lay-flat or erected position to correspond to the flight-ready positioning of the wings. 17. An aircraft comprising a fuselage, wings, a tail support structure, and a tail assembly, said aircraft comprising: a stabilizer supported by said tail support structure; a pair of right and left fins mounted with respect to the stabilizer so that the fins lay flat over the stabilizer during periods when the aircraft is not flight-ready, and so that the fins are erected above the stabilizer form a triangular configuration when the aircraft is ready to fly; and to the ends of the fins that are remote from where the fins are mounted with respect to the stabilizer including a cooperative joint structure for joining together the ends when the fins are erected to the ready-to-fly orientation. 18. The aircraft of claim 17 wherein the wings are selectively positionable in either a retracted position when the aircraft is not flight-ready or an extended position when the aircraft is ready to fly, and wherein the foldable tail assembly is positionable in either its lay-flat or erected position to correspond to the flight-ready positioning of the wings. Description FIELD OF THE INVENTION The invention relates to aircraft and, particularly, to tail assemblies for aircraft. In certain embodiments, the invention relates to aircraft having a tail assembly that folds flat when the aircraft is being trailered for transportation, and thereafter can be erected into an operable tail of triangular configuration for flight. BACKGROUND OF THE INVENTION Recent years have seen the proliferation of aircraft that can be transported from a storage site to an airport, lake or other location for flight. It is desirable that these aircraft be configured into a compact package for transport. More particularly, it is desirable that the aircraft, when transported, especially when transported by road trailering, be immune from large wind gusts from passing traffic or strong crosswinds encountered on the road. One particular problem has been that the fixed fins of various tail assemblies have presented substantial exposed panels that cause the trailered aircraft to be buffeted by winds during trailering. Thus, there is a need for a more compact package for aircraft that are being transported, especially with respect to the tail assemblies. These compact packages, particularly ones that reduce tail height, have the added benefit of reducing storage space for the aircraft between flights. SUMMARY OF THE INVENTION The present invention provides a simple, lightweight tail assembly design that folds to a compact configuration when the aircraft is not flight ready, for example, during storage and road trailering. The tail assembly can be readily erected for flight. In one aspect, the present invention may be defined as a foldable tail assembly for an aircraft including a stabilizer, and a pair of right and left fins mounted with respect to the stabilizer so that the fins may lay flat over the stabilizer during periods when the aircraft is not flight-ready, and so that the fins may be erected above the stabilizer to form a triangular configuration when the aircraft is ready to fly. This foldable tail assembly most preferably is used in connection with an aircraft having wings that are selectively positionable in either a retracted position when the aircraft is not flight-ready or an extended position when the aircraft is ready to fly, and wherein the foldable tail assembly is positionable in either its lay-flat or erected position to correspond to the flight-ready positioning of the wings. The foldable tail assembly may be moved from its lay-flat to erect positions either manually or automatically. In certain embodiments, the foldable tail assembly includes a horizontal stabilizer with the fins hingedly mounted to the stabilizer. The fins, when erected, may form an isosceles triangle having the portion of the stabilizer between the fin-mounting hinges as the base of the isosceles triangle, and the fins as the equal sides of the isosceles triangle. The foldable tail assembly includes an elevator hingedly connected to the stabilizer and a rudder hingedly connected to each fin. In another aspect, the present invention may be described as a foldable tail assembly for an aircraft that includes a horizontal stabilizer, and a pair of right and left fins hingedly mounted with respect to the stabilizer so that the fins may lay flat over the stabilizer during periods when the aircraft is not flight-ready, and so that the fins may be erected above the stabilizer to form a triangular configuration when the aircraft is ready to fly. An elevator is hingedly connected to the stabilizer and a rudder is hingedly connected to each fin. DETAILED DESCRIPTION OF THE DRAWINGS Some of the features of the invention having been stated, other features will appear as the description proceeds, when taken in connection with the accompanying drawings, in which FIG. 1 is a pictorial view of an aircraft in its fully folded configuration for road transportation. Various components of the aircraft are not shown to facilitate illustration. FIG. 2 is a view similar to FIG. 1 showing the aircraft with the wings partially open and the tail fins erected. FIG. 3 is a view similar to FIGS. 1 and 2 showing the aircraft in a ready-to-fly configuration with the wings fully opened and the triangular tail assembly fully erected. FIG. 4 is an enlarged rear view of the foldable tail assembly in the fully folded configuration shown in FIG. 1. The elevator and rudders are not shown to facilitate illustration. FIG. 5 is a view, similar to FIG. 4, showing the tail assembly partially erected. FIG. 6 is a view, similar to FIGS. 4 and 5, showing both right and left fin/rudder assemblies in a raised position and pinned together to form a fully erected triangular tail assembly that is ready for flight. FIGS. 7, 8 and 9 are views of another foldable tail assembly, similar to the views of FIGS. 4, 5 and 6, but showing an alternative hinge structure for one of the fins. DETAILED DESCRIPTION OF THE INVENTION While the present invention will be described more fully hereinafter with reference to the accompanying drawings, in which aspects of the preferred manner of practicing the present invention are shown, it is to be understood at the outset of the description which follows that persons of skill in the appropriate arts may modify the invention herein described while still achieving the favorable results of this invention. Accordingly, the description which follows is to be understood as being a broad, teaching disclosure directed to persons of skill in the appropriate arts, and not as limiting upon the present invention. Referring to the drawings, there is shown an aircraft 20 of the type that is easy to trailer for road transportation in its fully folded configuration (FIG. 1). After trailering, the wings and tail assembly can -fly configuration (FIG. 3). The aircraft be easily opened to a ready-to may be powered or unpowered. Aircraft 20, in the form illustrated in FIGS. 1-3, is a "floatplane" designed for short flights on lakes by recreational pilots, and the present invention will be primarily described herein in connection with this aircraft. It will be appreciated, however, that the invention may be utilized with other forms of aircraft, for example, a land-based aircraft with a normal landing gear, which could be trailered to a convenient airport. Aircraft 20 includes a fuselage 24. The hull bottom of fuselage 24 preferably is formed of fiberglass-covered Styrofoam. Sufficient Styrofoam is provided to insure floatation in the event of an overturn. The hull may be flat-bottomed, or may have other configurations, such as inverted V shape. The motor, propellor and cockpit are not shown to facilitate illustration. Aircraft 20 includes suitable folding flexible airfoil wings 30, 32 that furl into compact packages in a folded configuration (FIG. 1) so that no large wing panels are exposed to the battering of wind gusts from passing traffic during trailering. Any suitable foldable wing structure may be employed. In preferred embodiments, the folding flexible airfoil wings take the form of the flex-wings described in applicant's U.S. Pat. No. 3,614,032, the contents of which are incorporated herein by reference in their entirety. The wings, generally constructed in accordance with the teachings of U.S. Pat. No. 3,614,032, are steel cable-reinforced flexible wings that used streamlined sailboat masts for the leading edge spars and high-strength Dacron fabric for the wing covering. Steel overlay cables retain the airfoil shape in the covering, while hinged compression struts maintain the wing contour. The cables are adjusted by small turn buckles (not shown) at the root. Preferably, the wing tips have small, water-ski type bottoms (not shown) to prevent tip dig-in, in case a tip touches the water. Aircraft 20 includes a pair of front-to-rear extending booms 36, 38 that are structurally connected to fuselage 24 and extend rearwardly to support the tail assembly. Booms 36, 38 are supported, in part, by support members 42, 44 (FIG. 3). While booms 36, 38 are shown as a preferred structure for supporting the tail assembly, other structures may be used, for example, a single boom of larger diameter, or a standard aircraft fuselage frame. Referring to FIGS. 3-6, tail assembly 50 includes a horizontal stabilizer that is secured to booms 36, 38. Stabilizer 52 is operatively connected 52 to an elevator 56 (FIG. 3) by a conventional hinge mechanism 58. A pair of right and left fin/rudder assemblies, 60A and 60B, respectively, are mounted on horizontal stabilizer 52. Fin/rudder assemblies 60A, 60B, when fully erected for flight, form a triangle atop the stabilizer-elevator assembly. When prepared for road trailering, the fin/rudder assemblies 60A, 60B lie flat, one over the other, to reduce the side forces from side gusts due to passing large vehicles. The lay-flat configuration also reduces the side forces from strong crosswinds on the road. A more detailed description of the structure and operation of fin/rudder assemblies 60A, 60B will now be given with primary reference to FIGS. 4-6. Right fin/rudder assembly 60A includes a right fin 66A that is hingedly connected to stabilizer 52 at hinge 68A. Right fin 66A is hingedly connected in conventional manner to a rearward rudder 70A (not shown in FIGS. 4-6, but shown in FIG. 3). Right fin 66A and its connected rudder 70A may lie flat against stabilizer 52 for road trailering (FIG. 1) and may move to the erect position shown in FIGS. 3 and 6 for flight, in a manner described below. Left fin/rudder assembly 60B includes a left fin 66B that is hingedly connected to stabilizer 52 at hinge 68B. In the embodiment illustrated in FIGS. 4-6, hinge 68B includes a hinge point that is raised above stabilizer 52 by a distance "D" (FIG. 4) that permits left fin 66B to overlay right fin 66A in such a manner that both lay flat when folded for road trailering (FIGS. 1 and 4). Left fin 66B is hingedly connected to a rudder 70B (FIG. 4). Left fin 66B and its connected rudder 70B may lie flat above left fin 66A for road trailering (FIG. 1) and may move to the erect position shown in FIGS. 3 and 6 for flight. Fins 66A and 66B include means enabling the fins to be held in place when erected to the ready-to-fly configuration of FIGS. 3 and 6. The means for holding fins 66A, 66B in place may include a cooperative joint structure on the upper ends 76A, 76B of the fins, for example, as shown in FIG. 6, a pinned joint 80 formed by mating openings at fin ends 76A, 76B and an interconnecting quick-latching pin or bolt 82. Other joint structures may be employed, for example, other forms of quick-latching mechanisms where the top ends of the fins join. In this regard, it will be appreciated that the erection of the tail assembly may be manual operation, or it may be performed by an automatic erecting mechanism that lifts the fins and locks them in place. An automatic erecting mechanism may take the form of rotary actuators, e.g., small electric or hydraulic motors, at the fin roots (hinges 68A, 68B), coupled with a remote actuated pin at the top of the assembly, such as a spring-loaded locking pin. The sizing, configuration and control of the stabilizer/elevator and fins/rudders may be readily established by decades-old design criteria that are well known to those skilled in the art, and need not be set forth herein. FIGS. 7, 8 and 9 illustrate an alternative structure for hinging the left fin 66B so that it may lie flat over right fin 66A. In this embodiment, the hinged end of left fin 66B includes an L-shaped offset "L" above its hinge 68B to accommodate the thickness of the fin it overlays. This, and other alternative hinging structures, may be employed. While the drawings show fins of equal length that create an isosceles triangle when erected, it will be appreciated that the fins may have different lengths in order to reduce slipstream effects, or to offset propellor torque in flight. Also, while a right-handed configuration is shown, a left-handed configuration may be employed for the mechanical, or folding, sequence. It will be appreciated that the term "triangle" or "triangular configuration", when used in conjunction with the tail assemblies of the invention, refers to the triangle formed by a portion of the horizontal stabilizer 52 and the two fin/rudder assemblies 60A, 60B when erected for flight (FIGS. 3 and 6). The stabilizer and fins so forming the "triangle" or "triangular configuration" typically are joined in a conventional hinged manner to the elevator and left/right rudders as described above. Operation of the elevators and rudders are by conventional stick and rudder controls well known in the art. It will be appreciated that the tail assembly of the present invention provides an easy to erect and exceedingly lightweight structure. For example, if the foldable fins are erected to vertical orientation and unjoined at their tops, the fin roots would need to be able to carry moments due to airloads. This would add significantly to the structural weight of the tail assembly, and would require considerably more precision in the joints. It will also be appreciated that the joined tops of the fins of the invention may have some aerodynamic interference, but unjoined fins (e.g., vertical fins) would have tip losses, so that the effects are a trade off. While the present invention has been described in connection with certain illustrated embodiments, it will be appreciated that modifications may be made without departing from the true spirit and scope of the invention。 抽象 一种折叠式尾翼的飞机包括稳定剂和左,右鳍对安装方面的稳定,使鳍可平躺在稳定时期,在飞 机飞行是不是准备好了,这样的鳍可能是上面架设稳定,形成一个三角形的配置,当飞机准备飞。 索赔 1。一种飞机组成的一个可折叠尾翼: 一个稳定剂; 一左,右鳍对安装方面的稳定,使鳍平躺在稳定时期,在飞机没有飞行准备,以便在上面的稳定 鳍竖起,形成一个三角形配置时飞机准备飞;及 对鳍是远离结束那里的鳍方面的合作,包括共同加入时结束的鳍竖立了现成的稳定飞行方向的联 合结构安装。 2。其中的索赔1可折叠尾翼的飞机有翅膀有选择性positionable在任一位置时,收回的飞机不飞行准备或扩展的位置当飞机准备飞翔,其中折叠式尾翼是在positionable无论其停工持平或竖立的位置,以对应的机翼飞行准备定位。 3。其中的索赔2的折叠式尾翼可折叠尾翼,可手动移动之间的避单位和直立的位置。 4。其中的索赔2的折叠式尾翼可折叠尾翼可能会被自动转移至其停工单位和直立的位置。 5。该索赔包括4个可折叠尾翼提供了一种机制之间的停车位置竖立单位和折叠式尾翼自动机芯,说机制,其中有在鳍根旋转器和一个遥控器驱动在两端的鳍脚。 6。其中的索赔1可折叠尾翼的稳定大大水平方向和左,右鳍hingedly安装在稳定剂。 。其中的索赔6可折叠尾翼的鳍竖起时形成一个三角形具有之间的鳍,安装铰链为基础的三角形稳定的部分,并作为双方的三角形的鳍。 8。其中的索赔7三角形的折叠式尾翼是一个等腰三角形与作为等腰双方平等服务鳍,三角形。 9。该索赔7加入其中一起合作的鳍远程完联合折叠式尾翼结构包括一个快速连接端子或螺栓。 10。其中的索赔6折叠式尾翼稳定器的支持,一个繁荣的结构。 11。该索赔包括6个折叠式尾翼稳定hingedly连接到一个电梯和方向舵hingedly连接到每个鳍。 12。该索赔包括1可折叠尾翼稳定hingedly连接到一个电梯和方向舵hingedly连接到每个鳍。 13。其中的索赔2飞机的折叠式尾翼具有灵活折叠的翅膀。 14。其中的索赔2的飞机机翼折叠式尾翼刚性。 15。一种飞机组成的一个可折叠尾翼: 一个稳定的水平; 一左,右鳍对hingedly安装在稳定剂,使鳍平躺在稳定时期,在飞机没有飞行准备,以便在上面的稳定鳍竖起,形成一个三角形的配置当飞机准备飞; 对鳍是远离结束那里的鳍hingedly安装在包括合作共同加入时结束的鳍竖立的现成的飞行方向,结构稳定,使联合的鳍竖起时形成一个三角形具有之间的鳍,安装铰链为基础的三角形和三角形的两边的鳍稳定的部分; 电梯hingedly连接到稳定;及 一舵hingedly连接到每个鳍。 16。其中15日的索赔可折叠尾翼的飞机有翅膀是有选择性positionable在任一位置时,收回的飞机不飞行准备或扩展的位置当飞机准备飞翔,其中折叠式尾翼是在positionable无论其停工持平或竖立的位置,以对应的翅膀飞行准备定位。 17。一架飞机由一个机身,机翼,尾部支撑结构,以及尾翼,说飞机包括: 支持一个稳定说尾巴支撑结构; 一左,右鳍对安装方面的稳定,使鳍平躺在稳定时期,在飞机没有飞行准备,以便在上面的稳定鳍竖起,形成一个三角形配置时飞机准备飞;及 对鳍是远离结束那里的鳍方面的合作,包括共同加入时结束的鳍竖立了现成的稳定飞行方向的联合结构安装。 18。其中的索赔17架飞机的机翼有选择性positionable在任一位置时,收回的飞机不飞行准备或扩展的位置当飞机准备飞翔,其中折叠式尾翼是positionable在任其停工平或竖立的位置,以对应的翅膀飞行准备定位。 描述 领域的发明 本发明涉及飞机,特别是为飞机的尾部组件。在某些体现,涉及飞机的发明有尾巴大会,折叠单位当飞机正在运输trailered,以后可以变成一个可操作的尾巴竖立三角配置为飞行。 背景发明 最近几年,飞机可以从储存地点运飞行到机场,湖泊或其他位置的扩散。这是可取的,这些飞机将成为一个紧凑的封装运输配置。尤其是,它是可取的,这架飞机,在运输,特别是通过公路运输时trailering,从大型风力阵风不受来往车辆或强侧风的道路上遇到的问题。一个特殊问题是,各种固定鳍尾集会所提交的大量暴露面板,导致trailered飞机是由季风吹拂在trailering。 因此,有一个为正在运送飞机,更紧凑的封装,特别是对需要的机尾。这些小型封装,特别是那些减少尾部高度,有减少的存储空间之间的航班飞机额外的好处。 概要发明 本发明提供了一种简单,轻巧的尾翼设计,折叠到一个结构紧凑,当飞机飞行不准备,例如在存储和道路trailering。尾部装配可随时设置飞行。 一方面,本发明可以被定义为一个稳定的,包括一个可折叠尾翼的飞机,以及左,右鳍配对方面的稳定,使可能的鳍式单位奠定了稳定的时期时,在飞机飞行是不是准备好了,这样的鳍可能高于稳定竖立,形成一个三角形的配置,当飞机准备飞。可折叠尾翼,这是最最好用同一个有翅膀有选择性positionable在任一位置时,收回的飞机不飞行准备或扩展的位置当飞机准备飞翔,其 中折叠式尾翼飞机连接无论是在其positionable裁员单位或竖立的位置,以对应的翅膀飞行准备定位。 折叠式尾翼可迁移至其裁员单位竖立位置手动或自动。 在某些化身,折叠式尾翼包括水平安定与鳍hingedly安装在稳定剂。鳍时竖立,可以形成一个等腰三角形具有之间的鳍式安装铰链为基础的稳定部分等腰三角,并作为双方的平等等腰三角鳍。 折叠式尾翼包括hingedly连接到稳定的电梯和方向舵hingedly连接到每个鳍。 在另一个方面,本发明可称得上是一个飞机,包括水平尾翼,以及左,右鳍一双可折叠尾翼hingedly方面的稳定,使可能的鳍式单位奠定了稳定剂在期间,当飞机飞行是不是准备好了,这样的鳍可能高于稳定竖立,形成一个三角形的配置,当飞机准备飞。电梯是hingedly连接到稳定和方向舵是hingedly连接到每个鳍。 图纸的详细说明 对发明的一些功能已被指出,其他功能将显示为描述的收益,如果同,伴随方面所采取的图纸中 国际体联。 1是在其完全折叠的道路交通布局飞机图案的看法。飞机的各种部件都不会显示,以方便说明。 国际体联。二是认为类似国际体联。 1显示的是局部开放的翅膀和尾翼的飞机建造。 国际体联。三是观点相似的无花果。 1和2显示的是一个现成的飞翼的配置完全开放和充分竖立三角尾翼的飞机。 国际体联。四是扩大的折叠式尾翼后方查看完全折叠如图配置。 1。电梯和方向舵不会显示,以方便说明。 国际体联。五是视图,类似国际体联。 4,显示了尾翼部分建造。 国际体联。六是视图,类似无花果。 4和5,都显示左,右翅/在一个上升的位置舵集会和固定在一起,形成一个完全竖立三角尾翼是飞行准备就绪。 无花果。 7,8和9的另一个可折叠尾翼,类似无花果的意见看法。 4,第5和6,但显示出另一种为铰链结构的鳍之一。 发明的详细说明 虽然本发明将较详细的说明参考所附的图纸,其中,执业本发明的首选方式方面都表现出以下简称,它是要在一开始就明白这说明如下技能的人适当的艺术可以修改本网站所介绍的同时还实现本发明的良好成果的发明。因此,说明这是主要被理解为是一个广泛,公开向教学在适当的艺术 技巧的人,而不是根据本发明的限制。 指的是图纸,有表现出的类型,是很容易的道路运输拖车在其完全折叠结构(图1)飞机20。经过trailering,机翼和尾翼可以很容易地开了一个现成的即时配置(图3)。这架飞机可能是动力或无动力。 飞机20日在无花果所示的。 1-3,是“水上飞机”对湖泊休闲短航班飞行员设计,本发明将主要介绍了与这架飞机连接此处。这将是赞赏,但是,该发明可能与其他形式的飞机,例如,利用,与正常的起落架,可trailered到一个方便的机场陆基飞机。 包括飞机机身20 24。 24最好的机身外壳的底部形成了玻璃纤维覆盖的发泡胶。提供足够的发泡胶,以保证在发生倾覆事件浮选。船体可能是平底,或可能有其他的配置,如倒V形。马达,螺旋桨和座舱不会显示,以方便说明。 包括适当的飞机20翼型机翼折叠灵活30日,32个包卷起成一个紧凑的折叠结构(图1),因此没有大的机翼板暴露在大风中经过时殴打trailering交通。任何合适的折叠式机翼结构可能被雇用。在首选方式,折叠机翼翼型采取灵活的弹性在人的美国专利中描述的翅膀形式。 3614032号,其是在其全部纳入参考此处内容。的翅膀,一般建造,按照美国的帕特的教诲。号3614032,是钢铁电缆强化了用于前沿棒材和机翼面积高强度涤纶织物桅帆船精简灵活的翅膀。钢电缆覆盖面积保持在翼型形状,而铰链压缩支柱保持机翼轮廓。调整后的电缆是由小转扣(未显示)的根。最好的翼尖有小,滑水型底(未显示),以防止尖端挖掘中,在案件举报涉及的水。 飞机20包括一个前端到后方延伸臂36,38个连接到机身的结构和扩展rearwardly 24支持尾翼对。繁荣36,38人支持的一部分,由42个成员的支持,44(图3)。虽然繁荣36,38列,作为优先支持的尾翼结构,其他结构可用于例如,一个直径较大,或的飞机机身结构单一的热潮。 在谈到无花果。 3-6,尾翼包括水平安定50 52是固定在吊臂36,38。稳定是手术52连接到电梯56(图3)由传统的铰链机制58。阿左,右翅一对/舵集会,60A和第60B条,分别是52式横向稳定。鳍/舵集会60A条,第60B条,飞行时完全竖立,形成了稳定之上,电梯装配三角形。当道路trailering,鳍/舵集会60A条编制,第60B平躺,在其他一,以减少副作用的侧向力阵风由于大型车辆通过。该裁员单位配置还可以减少在路上强侧风的侧向力。 对结构和操作的详细说明鳍/舵集会60A条,第60B现在得到的主要参考无花果。 4-6。右翅/舵大会第60A条的权利,包括鱼翅是hingedly连接铰链68A条,以稳定在52 66A条。右翅66A条是hingedly常规方式连接一个向后舵第70A(未在图所示。4-6,但在如图。3)。右翅66A条及其关连舵70A条可能在于对稳定剂trailering道路52平(图1)和可移动到竖立在图所示的位置。 3和6个航班,在下述的方式进行。 左鳍/舵大会第60B包括左翅是hingedly连接铰链68B条,以稳定在52 66B。在无花果所示的体现。 4-6,铰链铰链68B条包括一个稳定点,52个以上的距离所提出的“D”(图4),允许左翅66B以这样的方式覆盖在右翅66A条,无论平躺时trailering道路折叠(图1和4)。左鳍66B是hingedly连接到舵70B条(图4)。左鳍66B及70B条连接舵可能平躺高于trailering道路左 鳍66A条(图1)和可移动到竖立在图所示的位置。 3和6个航班。 66,66 A及66B鳍手段使包括将在地方举行时竖立的现成的飞行无花果配置鳍。 3和6。举行的手段鳍66A条,在地方66B可包括合作的上端76A,76B的鳍例如,联合结构,如图。 6,固定联合80交配开口形成于鳍完76A,76B和互连快速锁定销或螺栓82。其他联合机构可受聘,例如,快速闭锁机制如顶部鳍参加完其他形式。在这方面,要认识到,在竖立的尾翼,可手动操作,也可能是由一个自动升降机架设机制的鳍和锁定在这些地方进行。架设的自动机制,可采取旋转驱动器的形式,如小型电动或液压马达,在翅根(取决于68A条,68B条),与远程驱动在大会顶部如加上一针弹簧加载锁销。 浆纱,配置和稳定控制/电梯和鳍/可以随时通过几十年的设计,是众所周知的标准建立方向舵那些在艺术技能,而无须本规定。 无花果。 7,第8和第9说明了添砖加瓦左鳍66B,以便它可能存在另一种结构单位在右翅66A条。在此体现,左翅66B结束包括铰链的L形抵消的“L”上面的铰链68B条,以适应它的翅片厚度覆盖。这和其他替代添砖加瓦结构,可受聘。 虽然图纸等长鳍表明,创造一个等腰三角形时竖立,这将是明白的鳍可能有不同的长度,以减少气流的影响,或在飞行中螺旋桨来抵消扭矩。另外,虽然右手配置显示,一左手配置可受聘为机械,或折叠,序列。 这将是明白,所谓“三角”或“三角配置”,如果同该发明的机尾配合使用,是指由52个部分的水平安定面形成的三角形和两个鳍/舵集第60A条,第60B飞行时竖立(图3和6)。稳定剂和鳍等形成的“三角”或“三角配置”通常是在一个传统的铰链的方式加入到了电梯和左/右舵如上所述。电梯和方向舵的常规操作杆和方向舵的控制以及在艺术闻名。 这将是赞赏的是,本发明提供了一种简单的尾翼竖立和非常轻便的结构。例如,如果折叠鳍竖立在垂直方向和其顶部未连接,鳍根将需要能够携带的时刻,由于airloads。这将大大增加了尾翼结构重量,将需要相当多的关节精度。 它也将明白,对发明的鳍的顶部加入,可能有一些空气动力学的干扰,但鳍未连接(例如,垂直鳍)将尖端的损失,这样的影响是一个权衡。 虽然本发明已在某些方面体现说明所述,要认识到,如果没有修改,可真正的精神和发明的范围出发的。
/
本文档为【尾翼的作用】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索