为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > CT、核磁、X光、B超有什么不同

CT、核磁、X光、B超有什么不同

2018-01-09 10页 doc 122KB 34阅读

用户头像

is_729658

暂无简介

举报
CT、核磁、X光、B超有什么不同CT、核磁、X光、B超有什么不同 应该了解CT、核磁、X光、B超,有什么不同, 2014-03-27 创造未来 去医院看病,“CT”、“核磁”、“X光”、“B超”等这些医学检查名词对于人们来说并不陌生,但是这些长相差不多的医学影像设备,却经常让人“傻傻分不清”。为什么有的时候用“CT”,有时就用“核磁”,是因为病情加重了吗,其实,它们的工作原理不同,各有分工。如何做到正确、恰当的检查,不浪费检查费用是人们关心的话题。 到了医院,患者往往不知道医生开各种检查的目的,从而让许多患者产生误解,以为自己多花了钱;有时医生可能...
CT、核磁、X光、B超有什么不同
CT、核磁、X光、B超有什么不同 应该了解CT、核磁、X光、B超,有什么不同, 2014-03-27 创造未来 去医院看病,“CT”、“核磁”、“X光”、“B超”等这些医学检查名词对于人们来说并不陌生,但是这些长相差不多的医学影像设备,却经常让人“傻傻分不清”。为什么有的时候用“CT”,有时就用“核磁”,是因为病情加重了吗,其实,它们的工作原理不同,各有分工。如何做到正确、恰当的检查,不浪费检查费用是人们关心的话题。 到了医院,患者往往不知道医生开各种检查的目的,从而让许多患者产生误解,以为自己多花了钱;有时医生可能缺乏经验、或者懒于为患者查体,直接为患者开最贵的检查项目,所以初步了解这些检查的特点、优势和适用范围,有利于患者检查时间和费用的节省。 原理不同,优势各异 1 据了解,CT(Computed Tomography)意为X线计算机断层摄影,是用X线束对人体某部进行断层扫描,获得人体被检部的断面或立体图像。CT可以提供人体被检查部位的完整三维信息,可使器官和结构清楚显影,清楚地显示病变。 X光是穿透性很强的射线,能够穿透人体,使用X线对人体内部进行透视或摄影的检查,其原理是利用了X线的穿透作用。在穿透人体时,被含钙的成分(骨)、水分(血液等)、软组织(肌肉)等吸收而减弱,因此可以呈现出所检查部位的基本形态。 与CT、X线不同,B超检查是利用超声波产生回声的原理来检查的。北京协和医院妇科主任医师孙晓光解释说,超声能向一定方向上传播,而且可以穿透物体,如果碰到障碍,就会产生回声,人们通过仪器将这种回声收集并显示在屏幕上,可以用来了解物体的内部结构,辅助诊断。B超是2个维度的超声信息,构成平面图形,反映人体结构。 随着彩色-多普勒超声技术的产生,出现了彩超(彩色B超),即在黑白B超的基础上加上彩色多普勒,彩超同时又提供了血流动力学的丰富信息,实际应用受到了广泛的重视和欢迎,彩超在目前临床上经常被使用。 MR、MRI(nuclear magnetic resonance imaging),即磁共振。MR是一种生 2 物磁自旋成像技术,利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,并转换成图像。 与CT、X线不同,MR最大的优点是对人体不产生损害,没有电离辐射损伤。相比CT的断层扫描,MR能获得多方位的原生三维断面成像,比如脑和脊髓的立体图像。对于骨、关节、脊髓、盆腔脏器、前列腺、膀胱、子宫、卵巢、心脏大血管病变及心肌梗塞的诊断尤为准确。 而对于肺部的检查,选择X线或是CT要优于MR,对肝脏、胰腺、肾上腺、前列腺的检查,MR不比CT优越,费用反而高昂。(此论断已经跟不上时代发展,参见文末小编点评。) 此外,体内有金属物、怀孕3个月以内、带有心脏起搏器或是危重病人都不宜做MR检查。 胸部检查用X线或CT 3 胸部X线可以检查心、肺、纵隔以及肋骨、胸膜、主动脉,比如肺纹理增多、肺部钙化点、主动脉结钙化等。 相比X线,胸部CT检查显示出的结构清晰度更明显,对胸部病变的检出敏感性和显示病变的准确性均优于常规X线胸片。胸部CT检查有利于检出轻微病变和隐蔽部位病变,显示病变特征,特别是对于早期肺癌的确诊有决定性意义。然而,CT检查的辐射剂量显著高于X线。 此外,X线是临床骨科的重要检查手段之一,其效果在于检查骨、脊柱、关节等有无器质性病变,明确病变的部位、大小、程度及与周围软组织的关系,为治疗提供参考。而CT可以诊断骨质本身病变、骨折或脱位、骨关节及软组织病变等。 4 胆囊疾病查B超 据专家介绍,B超在胆囊疾病的诊断上,比如胆囊结石,有高度准确性,一般准确率在95%以上,而CT诊断符合率较低。 “由于CT每1,5秒钟扫描一次,对心脏等器官的检查不易获得准确的信息,”北京大学第一医院超声诊断中心孟圆峰解释道,“正常人平静时呼吸至少3秒钟一次,受呼吸影响的腹腔器官,如肝、脾,做CT检查时要病人暂停呼吸,幼小者、精神失常者、肺功能不全者就不能配合,也就无法检查,做B超则无这种限制。” B超检查是临床上检查胆道疾病最常用的方法,可确诊胆囊结石、胆囊炎症、 5 肿瘤等,而且,B超对肝硬化、脂肪肝、脾肿大、肝癌、肠道病变准确率也较高。 此外,孕期做B超检查的目的是判断胎儿生长是否符合孕周,判断胎儿有否畸形,了解胎儿在子宫内是否安全。 肿瘤诊断多用CT 据了解,CT对肿瘤分辨率高于B超,对于1,2厘米的小肿块,CT显示率为88%,B超是48%;对于肾癌的诊断率,CT准确率为90%,B超是44%。CT对显示肾癌、肾盂癌相当准确,可确定肿瘤的大小、浸润的范围、邻近和远处淋巴结转移。 对于肝脏和胰腺来说,CT可以诊断肝癌、肝血管瘤、脂肪肝、胰腺癌、急性 6 胰腺炎、慢性胰腺炎等,而MR适合检查原发性肝癌等疾病。(不全面,参见文末小编点评。) CT对肾脏、肾上腺、膀胱和前列腺疾病的诊断优于超声,CT不仅能显示肾盂、肾盏及膀胱内腔,还能显示肾实质和膀胱壁,可诊断肾上腺肿瘤、肾包膜下出血等。 软组织疾病选MR MR可以检查肌肉和软组织。MR采用和X线完全不同的成像原理,对软组织的分辨率远非CT和X线能比,主要用来观察神经、脊髓等椎管内软组织,因此可以用来检测和诊断中枢神经系统疾病、腰椎间盘后突。 7 【小编絮语】:随着磁共振扫描技术和诊断技术的迅猛发展,除了肌肉和软组织、神经系统,MR对于肝胆胰脾肾、膀胱、前列腺、胃肠道等脏器疾病尤其肿瘤的检出,其效果已明显超过CT,所以其检查费用虽然超过CT,但确实多数情况下是物有所值,CT不好下诊断的软组织、脏器疾病,CT诊断医师往往会建议进行磁共振的进一步检查。但是对于肺部疾患的诊断,CT目前还是保有其优越性,因为肺部是含大量气体的脏器,气体的存在不利于磁共振图像的获得。对于细小肺纹理、肺结节、以及骨骼骨小梁的精细结构,还有骨皮质、牙齿、小结石等不含水的结构,CT的显示能力要大大超过磁共振。以上文章应该是多年以前的科普文章,没有反映磁共振在近几年的最新发展 (本文来自网络,感谢原文作者) 8 PET/CT示踪剂 18F-FDG(氟代脱氧葡萄糖) 氟代脱氧葡萄糖 氟代脱氧葡萄糖是2-脱氧葡萄糖的氟代衍生物。其完整的化学名称为2-氟-2-脱氧-D- 9 葡萄糖,通常简称为18F-FDG或FDG。FDG最常用于正电子发射断层扫描(PET)类的医学成像设备:FDG分子之中的氟选用的是属于正电子发射型放射性同位素的氟-18(fluorine-18,F-18,18F,18氟),从而成为18F-FDG(氟-[18F]脱氧葡糖)。在向病人(患者,病患)体内注射FDG之后,PET扫描仪可以构建出反映FDG体内分布情况的图像。接着,核医学医师或放射医师对这些图像加以评估,从而作出关于各种医学健康状况的诊断。 历史 二十世纪70年代,美国布鲁克海文国家实验室(Brookhaven National Laboratory)的Tatsuo Ido首先完成了18F-FDG的合成。1976年8月,宾夕法尼亚大学的Abass Alavi首次将这种化合物施用于两名正常的人类志愿者。其采用普通核素扫描仪(非PET扫描仪)所获得的脑部图像,明了FDG在脑部的浓聚(参见下文所示的历史参考文献)。 作用机理与代谢命运 作为一种葡萄糖类似物,FDG将为葡萄糖高利用率细胞(high-glucose-using cells)所摄取,如脑、肾脏以及癌细胞。在此类细胞内,磷酸化过程将会阻止葡萄糖以原有的完整形式从细胞之中释放出来。葡萄糖之中的2位氧乃是后续糖酵解所必需的;因而,FDG与2-脱氧-D-葡萄糖相同,在细胞内无法继续代谢;这样,在放射性衰变之前,所形成的FDG-6-磷酸将不会发生糖酵解。结果,18F-FDG 的分布情况就会很好地反映体内细胞对葡萄糖的摄取和磷酸化的分布情况。 在FDG发生衰变之前,FDG的代谢分解或利用会因为其分子之中2'位上的氟而受到抑制。不过,FDG发生放射性衰变之后,其中的氟将转变为18O;而且,在从环境当中获取一个H+之后,FDG的衰变产物就变成了葡萄糖-6-磷酸,而其2'位上的标记则变为无害的非放射性“重氧”(heavy oxygen,oxygen-18);这样,该衰变产物通常就可以按照普通葡萄糖的方式进行代谢。 临床应用 在PET成像方面,18F-FDG可用于评估心脏、肺脏以及脑部的葡萄糖代谢状况。同时,18F-FDG还在肿瘤学方面用于肿瘤成像。在被细胞摄取之后,18F-FDG将由己糖激酶(在快速生长型恶性肿瘤之中,线粒体型己糖激酶显著升高)),加以磷酸化,并为代谢活跃的组织所滞留,如大多数类型的恶性肿瘤。因此,FDG-PET可用于癌症的诊断、分期(staging)和治疗监测(treatment monitoring),尤其是对于霍奇金氏病(Hodgkin's disease,淋巴肉芽肿病,何杰金病)、非霍奇金氏淋巴瘤(non-Hodgkin's lymphoma,非何杰金氏淋巴瘤)、结直肠癌(colorectal cancer)、乳腺癌、黑色素瘤以及肺癌。另外,FDG-PET还已经用于阿耳茨海默氏病(Alzheimer's disease,早老性痴呆)的诊断。 在旨在查找肿瘤或转移性疾病(metastatic disease)的体部扫描应用当中,通常是将一剂FDG溶液(通常为5至10毫居里,或者说200至400兆贝克勒尔)迅速注射到正在向病人静脉之中滴注生理盐水的管路当中。此前,病人已经持续禁食至少6小时,且血糖水平适当较低(对于某些糖尿病病人来说,这是个问题;当血糖水平高于180 mg/dL = 10 mmol/L时,PET扫描中心通常不会为病人施用该放射性药物;对于此类病人,必须重新安排PET检查)。在给予FDG之后,病人必须等候大约1个小时,以便FDG在体内 10 充分分布,为那些利用葡萄糖的器官和组织所摄取;在此期间,病人必须尽可能减少身体活动,以便尽量减少肌肉对于这种放射性葡萄糖的摄取(当我们所感兴趣的器官位于身体内部之时,这种摄取会造成不必要的伪影(artifacts,人工假象))。接着,就会将病人置于PET扫描仪当中,进行一系列的扫描(一次或多次);这些扫描可能要花费20分钟直至1个小时的时间(每次PET检查,往往只会对大约体长的四分之一进行成像)。 生产与配送手段 医用回旋加速器(medical cyclotron)之中用于产生18F的高能粒子轰击条件(bombardment conditions)会破坏像脱氧葡萄糖(deoxyglucose,脱氧葡糖)或葡萄糖之类的有机物分子,因此必须首先在回旋加速器之中制备出氟化物形式的放射性18F。这可以通过采用氘核(deuterons,重氢核)轰击氖-20来完成;但在通常情况下,18F的制备是这样完成的:采用质子轰击富18O水(18O-enriched water,重氧水),导致18O之中发生(p,n)核反应(中子脱出,或者说散裂(spallation)),从而产生出具有放射性核素标记的氢氟酸(hydrofluoric acid,HF)形式的18F。接着,将这种不断快速衰变的18F -(18-氟化物,18-fluoride)收集起来,并立即在“热室(hot cell)(放射性同位素化学制备室)”之中,借助于一系列自动的化学反应(亲核取代反应或亲电取代反应),将其连接到脱氧葡萄糖之上。之后,采取尽可能最快的方式,将经过放射性核素标记的FDG化合物(18F的衰变限定其半衰期仅为109.8分钟)迅速运送到使用地点。为了将PET扫描检查项目的地区覆盖范围拓展到那些距离生产这种放射性同位素标记化合物的回旋加速器数百公里之遥的医学分子影像中心,其中可能还会使用飞机空运服务。 最近,用于制备FDG,备有自屏蔽(integral shielding,一体化屏蔽,一体化防护)以及便携式化学工作站(portable chemistry stations)的现场式回旋加速器(on-site cyclotrons),已经伴随PET扫描仪落户到了偏远医院。这种技术在未来具有一定的前景,有望避免因为要将FDG从生产地点运送到使用地点而造成的忙乱。 11
/
本文档为【CT、核磁、X光、B超有什么不同】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索