为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

二极管符号大全

2017-08-31 16页 doc 125KB 202阅读

用户头像

is_633808

暂无简介

举报
二极管符号大全二极管符号大全 二极管符号大全【图】 二极管符号参数 二极管符号意义 上网时间 : 2010-09-06 二极管符号大全【图】 二极管符号参数 二极管符号意义 CT---势垒电容 Cj---结(极间)电容,表示在二极管两端加规定偏压下,锗检波二极管的总电容 Cjv---偏压结电容 Co---零偏压电容 Cjo---零偏压结电容 Cjo/Cjn---结电容变化 Cs---管壳电容或封装电容 Ct---总电容 CTV---电压温度系数。在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比 CTC--...
二极管符号大全
二极管符号大全 二极管符号大全【图】 二极管符号参数 二极管符号意义 上网时间 : 2010-09-06 二极管符号大全【图】 二极管符号参数 二极管符号意义 CT---势垒电容 Cj---结(极间)电容,表示在二极管两端加规定偏压下,锗检波二极管的总电容 Cjv---偏压结电容 Co---零偏压电容 Cjo---零偏压结电容 Cjo/Cjn---结电容变化 Cs---管壳电容或封装电容 Ct---总电容 CTV---电压温度系数。在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比 CTC---电容温度系数 Cvn---标称电容 IF---正向直流电流(正向测试电流)。锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管。硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流 IF(AV)---正向平均电流 IFM(IM)---正向峰值电流(正向最大电流)。在额定功率下,允许通过二极管的最大正向脉冲电流。发光二极管极限电流。 IH---恒定电流。维持电流。 Ii---发光二极管起辉电流 IFRM---正向重复峰值电流 IFSM---正向不重复峰值电流(浪涌电流) Io---整流电流。在特定线路中规定频率和规定电压条件下所通过的工作电流 IF(ov)---正向过载电流 IL---光电流或稳流二极管极限电流 ID---暗电流 IB2---单结晶体管中的基极调制电流 IEM---发射极峰值电流 IEB10---双基极单结晶体管中发射极与第一基极间反向电流 IEB20---双基极单结晶体管中发射极向电流 ICM---最大输出平均电流 IFMP---正向脉冲电流 IP---峰点电流 IV---谷点电流 IGT---晶闸管控制极触发电流 IGD---晶闸管控制极不触发电流 IGFM---控制极正向峰值电流 IR(AV)---反向平均电流 IR(In)---反向直流电流(反向漏电流)。在测反向特性时,给定的反向电流;硅堆在正弦半波电阻性负载电路中,加反向电压规定值时,所通过的电流;硅开关二极管两端加反向工作电压VR时所通过的电流;稳压二极管在反向电压下,产生的漏电流;整流管在正弦半波最高反向工作电压下的漏电流。 IRM---反向峰值电流 IRR---晶闸管反向重复平均电流 IDR---晶闸管断态平均重复电流 IRRM---反向重复峰值电流 IRSM---反向不重复峰值电流(反向浪涌电流) Irp---反向恢复电流 Iz---稳定电压电流(反向测试电流)。测试反向电参数时,给定的反向电流 Izk---稳压管膝点电流 IOM---最大正向(整流)电流。在规定条件下,能承受的正向最大瞬时电流;在电阻性负荷的正弦半波整流电路中允许连续通过锗检波二极管的最大工作电流 IZSM---稳压二极管浪涌电流 IZM---最大稳压电流。在最大耗散功率下稳压二极管允许通过的电流 iF---正向总瞬时电流 iR---反向总瞬时电流 ir---反向恢复电流 Iop---工作电流 Is---稳流二极管稳定电流 f---频率 n---电容变化指数;电容比 Q---优值(品质因素) δvz---稳压管电压漂移 di/dt---通态电流临界上升率 dv/dt---通态电压临界上升率 PB---承受脉冲烧毁功率 PFT(AV)---正向导通平均耗散功率 PFTM---正向峰值耗散功率 PFT---正向导通总瞬时耗散功率 Pd---耗散功率 PG---门极平均功率 PGM---门极峰值功率 PC---控制极平均功率或集电极耗散功率 Pi---输入功率 PK---最大开关功率 PM---额定功率。硅二极管结温不高于150度所能承受的最大功率 PMP---最大漏过脉冲功率 PMS---最大承受脉冲功率 Po---输出功率 PR---反向浪涌功率 Ptot---总耗散功率 Pomax---最大输出功率 Psc---连续输出功率 PSM---不重复浪涌功率 PZM---最大耗散功率。在给定使用条件下,稳压二极管允许承受 的最大功率 RF(r)---正向微分电阻。在正向导通时,电流随电压指数的增加, 呈现明显的非线性特性。在某一正向电压下,电压增加微小量? V,正向电流相应增加?I,则?V/?I称微分电阻 RBB---双基极晶体管的基极间电阻 RE---射频电阻 RL---负载电阻 Rs(rs)----串联电阻 Rth----热阻 R(th)ja----结到环境的热阻 Rz(ru)---动态电阻 R(th)jc---结到壳的热阻 rδ---衰减电阻 r(th)---瞬态电阻 Ta---环境温度 Tc---壳温 td---延迟时间 tf---下降时间 tfr---正向恢复时间 tg---电路换向关断时间 tgt---门极控制极开通时间 Tj---结温 Tjm---最高结温 ton---开通时间 toff---关断时间 tr---上升时间 trr---反向恢复时间 ts---存储时间 tstg---温度补偿二极管的贮成温度 a---温度系数 λp---发光峰值波长 ?λ---光谱半宽度 η---单结晶体管分压比或效率 VB---反向峰值击穿电压 Vc---整流输入电压 VB2B1---基极间电压 VBE10---发射极与第一基极反向电压 VEB---饱和压降 VFM---最大正向压降(正向峰值电压) VF---正向压降(正向直流电压) ?VF---正向压降差 VDRM---断态重复峰值电压 VGT---门极触发电压 VGD---门极不触发电压 VGFM---门极正向峰值电压 VGRM---门极反向峰值电压 VF(AV)---正向平均电压 Vo---交流输入电压 VOM---最大输出平均电压 Vop---工作电压 Vn---中心电压 Vp---峰点电压 VR---反向工作电压(反向直流电压) VRM---反向峰值电压(最高测试电压) V(BR)---击穿电压 Vth---阀电压(门限电压) VRRM---反向重复峰值电压(反向浪涌电压) VRWM---反向工作峰值电压 Vv---谷点电压 Vz---稳定电压 ?Vz---稳压范围电压增量 Vs---通向电压(信号电压)或稳流管稳定电流电压 av---电压温度系数 Vk---膝点电压(稳流二极管) VL---极限电压CT---势垒电容 Cj---结(极间)电容,表示在二极管两端加规定偏压下,锗检波二极 管的总电容 Cjv---偏压结电容 Co---零偏压电容 Cjo---零偏压结电容 Cjo/Cjn---结电容变化 Cs---管壳电容或封装电容 Ct---总电容 CTV---电压温度系数。在测试电流下,稳定电压的相对变化与环 境温度的绝对变化之比 CTC---电容温度系数 Cvn---标称电容 IF---正向直流电流(正向测试电流)。锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管。硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流 IF(AV)---正向平均电流 IFM(IM)---正向峰值电流(正向最大电流)。在额定功率下,允许通过二极管的最大正向脉冲电流。发光二极管极限电流。 IH---恒定电流。维持电流。 Ii---发光二极管起辉电流 IFRM---正向重复峰值电流 IFSM---正向不重复峰值电流(浪涌电流) Io---整流电流。在特定线路中规定频率和规定电压条件下所通过的工作电流 IF(ov)---正向过载电流 IL---光电流或稳流二极管极限电流 ID---暗电流 IB2---单结晶体管中的基极调制电流 IEM---发射极峰值电流 IEB10---双基极单结晶体管中发射极与第一基极间反向电流 IEB20---双基极单结晶体管中发射极向电流 ICM---最大输出平均电流 IFMP---正向脉冲电流 IP---峰点电流 IV---谷点电流 IGT---晶闸管控制极触发电流 IGD---晶闸管控制极不触发电流 IGFM---控制极正向峰值电流 IR(AV)---反向平均电流 IR(In)---反向直流电流(反向漏电流)。在测反向特性时,给定的反向电流;硅堆在正弦半波电阻性负载电路中,加反向电压规定值时,所通过的电流;硅开关二极管两端加反向工作电压VR时所通过的电流;稳压二极管在反向电压下,产生的漏电流;整流管在正弦半波最高反向工作电压下的漏电流。 IRM---反向峰值电流 IRR---晶闸管反向重复平均电流 IDR---晶闸管断态平均重复电流 IRRM---反向重复峰值电流 IRSM---反向不重复峰值电流(反向浪涌电流) Irp---反向恢复电流 Iz---稳定电压电流(反向测试电流)。测试反向电参数时,给定的反向电流 Izk---稳压管膝点电流 IOM---最大正向(整流)电流。在规定条件下,能承受的正向最大瞬时电流;在电阻性负荷的正弦半波整流电路中允许连续通过锗检波二极管的最大工作电流 IZSM---稳压二极管浪涌电流 IZM---最大稳压电流。在最大耗散功率下稳压二极管允许通过的电流 iF---正向总瞬时电流 iR---反向总瞬时电流 ir---反向恢复电流 Iop---工作电流 Is---稳流二极管稳定电流 f---频率 n---电容变化指数;电容比 Q---优值(品质因素) δvz---稳压管电压漂移 di/dt---通态电流临界上升率 dv/dt---通态电压临界上升率 二极管是什么,二极管的作用是什么, 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流 I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。面接触型二极管的“PN结”面积较大,允许通过较大的电 流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的作用是什么, 二极管在电路中的应用是必不可少的,无论是做整流电路还是钳位作用还是其他的一些作用,都会用到它. 二极管可分为发光二极管(LED),整流二极管,稳压二极管,开关二极管等等.这里只介绍前面说的几种. 发光二极管相信大家都见过,一般作为指示灯用,例如电脑的硬盘灯一闪一闪的表示你的硬盘正在工作(如果不闪,则很可能是你的机器忙不过来或者是处在待机状态),还有就是一些随身听上的指示灯,以及充电器的指示灯.发光二极管相对其他二极管正向导通电压较大,一般在1.6V到1.8V间.二其他二极管一般在 0.2-0.3V(鍺管),0.6-0.8V (硅管)。 整流二极管,也是很常见的,利用的是二极管的单向导通特性,从而可以将负极性电信号滤掉---半波整流,也可以进行其它的整流----例如全波整流。 二极管还具有稳压作用,这是因为二极管反向接通时,在二极管被击穿的情况下,其电流将瞬间增大,这样在外电压增大时,由于二极管被击穿后增加的电流会通过二极管而不会经过与二极管并联的负载上,从而可以保护与其并联的器件。常见的有保护场效应管,即在场效应管栅极反向并接一个二极管。二极管击穿电压一般在 4V-7V. 钳位作用:钳位作用就是利用二极管的正向导通电压在导通后维持在0.2-0.4V(鍺管),0.6-0.8V(硅管),从而使与其连接的器件两端电压维持在一个范围内,最简单就是三极管的BE结电压在导通时可保持在钳位电压,这点常用于三极管的静态分析。一般无特别说明硅管取0.7V,鍺管取0.3V。 开关二极管常见型号有1N4148,1N4150,1N4448,利用的是二极管的高速转换特性。限于水平,暂不作详细介绍。 其它二极管还有肖特基二极管,隧道二极管,双向出发二极管,微功耗基准电压二极管等,由于其制作工艺不同而具有不同的功能。 二极管的 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层, 并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建 电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场 的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电 场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流 I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流 子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的应用 什么是二极管 二极管是半导体设备中的一种最常见的器件,大多数半导体最是由搀杂半导体材料制成(原子和其它 物质)发光二极管导体材料通常都是铝砷化稼,在纯铝砷化稼中,所有的原子都完美的与它们的邻居结 合,没有留下自由电子连接电流。在搀杂物质中,额外的原子改变电平衡,不是增加自由电子就是创 造电子可以通过的空穴。这两样额外的条件都使得材料更具传导性。带额外电子的半导体叫做N型半 导体,由于它带有额外负电粒子,所以在N型半导体材料中,自由电子是从负电区域向正电区域流动。 带额外“电子空穴”的半导体叫做P型半导体,由于带有正电粒子。电子可以从另一个电子空穴跳向 另一个电子空穴,从从负电区域向正电区域流动。 因此,电子空穴本身就显示出是从正电区域流向负电区域。二极管是由N型半导体物质与P型半导体物 质结合,每端都带电子。这样排列使电流只能从一个方向流动。当没有电压通过二极管时,电子就沿 着过渡层之间的汇合处从N型半导体流向P型半导体,从而形成一个损耗区。在损耗区中,半导体物质 会回复到它原来的绝缘状态--所有的这些“电子空穴”都会被填满,所有就没有自由电子或电子真空区 和电流不能流动。 为了除掉损耗区就必须使N型向P型移动和空穴应反向移动。为了达到目的,连接二极管N型一方到电 流的负极和P型就连接到电流的正极。这时在N型物质的自由电子会被负极电子排斥和吸引到正极电子。 在P型物质中的电子空穴就移向另一方向。当电压在电子之间足够高的时候,在损耗区的电子将会在它 的电子空穴中和再次开始自由移动。损耗区消失,电流流通过二极管。 如果尝试使电流向其它方向流动,P型端就边接到电流负极和N型连接到正极,这时电流将不会流动。 N型物质的负极电子被吸引到正极电子。P型物质的正极电子空穴被吸引到负极电子。因为电子空穴 和电子都向错误的方向移动所以就没有电流流通过汇合处,损耗区增加。 为什么二极管会发光 光是能量的一种形式,一种可以被原子释放出来。是由许多有能量和动力但没质量的微小粒子似的 小捆组成的。这些粒子被叫做光子,是光的最基本单位。光子是因为电子移动才释放出来。在原子 中,电子在原子的四周围以轨道形式移动。电子在不同的轨函数有着不同等的能量。通常来说,有 着更大能量的电子以轨道移动远离了核子。当电子从一个更低的轨道跳到一个更高的轨道,能量水 平就增高,反过来,当从更高轨函数跌落到更低的轨函数里时电子就会释放能量。能量是以光子形 式释放出来的。更高能量下降释放更高能量的光子,它的特点在于它的高频率。 自由电子从P型层通过二极管落入空的电子空穴。这包含从传导带跌落到一个更低的轨函数,所以 电子就是以光子形式释放能量。这在任何二极管里都会发生的,当二极管是由某种物质组成的时候, 你只是可以看见光子。在标准硅二极管的原子,比如说,当电子跌落到相对短距离原子是以这样的 方式排列。结果,由于电子频率这么低的情况下人的眼睛是无法看得到的。 可见光发光二极管,比如用在数字显示式时钟的,间隙的大小决定了光子的频率,换句话说就是决 定了光的色彩。当所有二极管都发出光时,大多数都不是很有效的。在普通二极管里,半导体材料 本身吸引大量的光能而结束。发光二极管是由一个塑性灯泡覆盖集中灯光在一个特定方向。 发光二极管比传统的白炽灯有几个优点。第一个是发光二极管没有灯丝会烧坏,所以寿命就更长。 此外,发光二极管的小小塑性灯泡使得发光二极管更持久耐用。还可以更加容易适合现在的电子电 路。传统白炽灯的发光过程包含了产生大量热量。这是完全是浪费能源。除非你把灯当做发热器用, 因为绝大部分有效电流并不是直接产生可见光的。发光二极管所发出的热非常少,相对来说,越多 电能直接发光就是越大程度上减少对电能的需求。 直到现在,因为是用先进半导体材料制造所以发光二极管在大多数照明应用上还过于昂贵。半导体 器件的价格在过去10年里大幅度地降低,然而,使得发光二极管在更广的应用下的一个更划算照明 选择,在不远的将来,发光二极管将会在世界技术上扮演更加大的角色。
/
本文档为【二极管符号大全】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索