为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

土木工程 建筑 外文翻译 外文文献 地铁地表沉降

2018-06-14 10页 doc 5MB 6阅读

用户头像 个人认证

Sinohydro Ⅱ

从事建筑工程行业,负责整个施工过程中的质量和计量工作,按照施工组织设计规定的质量要求,,做好自检、互检、专检的“三检”工作,隐蔽工程验收按规定会同设计单位及建筑单位和监理单位做好验收工作

举报
土木工程 建筑 外文翻译 外文文献 地铁地表沉降外文原文SurfacesettlementpredictionsforIstanbulMetrotunnelsexcavatedbyEPB-TBMS.G.Ercelebi•H.Copur•I.OcakAbstractInthisstudy,short-termsurfacesettlementsarepredictedfortwintunnels,whicharetobeexcavatedinthechainageof0?850to0?900mbetweentheEsenlerandKirazlıstati...
土木工程 建筑 外文翻译 外文文献  地铁地表沉降
外文原文SurfacesettlementpredictionsforIstanbulMetrotunnelsexcavatedbyEPB-TBMS.G.Ercelebi•H.Copur•I.OcakAbstractInthisstudy,short-termsurfacesettlementsarepredictedfortwintunnels,whicharetobeexcavatedinthechainageof0?850to0?900mbetweentheEsenlerandKirazlıstationsoftheIstanbulMetroline,whichis4kminlength.Thetotallengthoftheexcavationlineis21.2kmbetweenEsenlerandBasaksehir.Tunnelsareexcavatedbyemployingtwoearthpressurebalance(EPB)tunnelboringmachines(TBMs)thathavetwintubesof6.5mdiameterandwith14mdistancefromcentertocenter.TheTBMintherighttubefollowsabout100mbehindtheothertube.Segmentalliningof1.4mlengthiscurrentlyemployedasthefinalsupport.SettlementpredictionsareperformedwithfiniteelementmethodbyusingPlaxisfiniteelementprogram.Excavation,groundsupportandfacesupportstepsinFEManalysesaresimulatedasappliedinthefield.Predictionsareperformedforatypicalgeologicalzone,whichisconsideredascriticalintermsofsurfacesettlement.Geologyinthestudyareaiscomposedoffill,verystiffclay,densesand,verydensesandandhardclay,respectively,startingfromthesurface.Inadditiontofiniteelementmodeling,thesurfacesettlementsarealsopredictedbyusingsemi-theoretical(semi-empirical)andanalyticalmethods.TheresultsindicatethattheFEmodelpredictswelltheshort-termsurfacesettlementsforagivenvolumelossvalue.Theresultsofsemi-theoreticalandanalyticalmethodsarefoundtobeingoodagreementwiththeFEmodel.Theresultsofpredictionsarecomparedandverifiedbyfieldmeasurements.Itissuggestedthatgroutingoftheexcavationvoidshouldbeperformedasfastaspossibleafterexcavationofasectionasaprecautionagainstsurfacesettlementsduringexcavation.FacepressureoftheTBMsshouldbecloselymonitoredandadjustedfordifferentzones.KeywordsSurfacesettlementprediction_Finiteelementmethod_Analyticalmethod_Semi-theoreticalmethod_EPB-TBMtunneling_IstanbulMetroIntroductionIncreasingdemandoninfrastructuresincreasesattentiontoshallowsoftgroundtunnelingmethodsinurbanizedareas.Manysurfaceandsub-surfacestructuresmakeundergroundconstructionworksverydelicateduetotheinfluenceofgrounddeformation,whichshouldbedefinitelylimited/controlledtoacceptablelevels.Independentoftheexcavationmethod,theshort-andlong-termsurfaceandsub-surfacegrounddeformationsshouldbepredictedandremedialprecautionsagainstanydamagetoexistingstructuresplannedpriortoconstruction.Tunnelingcostsubstantiallyincreasesduetodamagestostructuresresultingfromsurfacesettlements,whichareabovetolerablelimits(Bilginetal.2009).Basicparametersaffectingthegrounddeformationsaregroundconditions,technical/environmentalparametersandtunnelingorconstructionmethods(O’ReillyandNew1982;Arioglu1992;KarakusandFowell2003;TanandRanjit2003;Minguezetal.2005;Ellis2005;SuwansawatandEinstein2006).Athoroughstudyofthegroundbysiteinvestigationsshouldbeperformedtofindoutthephysicalandmechanicalpropertiesofthegroundandexistenceofundergroundwater,aswellasdeformationcharacteristics,especiallythestiffness.Technicalparametersincludetunneldepthandgeometry,tunneldiameter–line–grade,singleordoubletracklinesandneighboringstructures.Theconstructionmethod,whichshouldleadtoasafeandeconomicproject,isselectedbasedonsitecharacteristicsandtechnicalprojectconstraintsandshouldbeplannedsothatthegroundmovementsarelimitedtoanacceptablelevel.Excavationmethod,facesupportpressure,advance(excavation)rate,stiffnessofsupportsystem,excavationsequenceandgroundtreatment/improvementhavedramaticeffectsonthegrounddeformationsoccurringduetotunnelingoperations.Theprimaryreasonforgroundmovementsabovethetunnel,alsoknownassurfacesettlements,isconvergenceofthegroundintothetunnelafterexcavation,whichchangestheinsitustressstateofthegroundandresultsinstressrelief.Convergenceofthegroundisalsoknownasgroundlossorvolumeloss.Thevolumeofthesettlementonthesurfaceisusuallyassumedtobeequaltotheground(volume)lossinsidethetunnel(O’ReillyandNew1982).Groundlosscanbeclassifiedasradiallossaroundthetunnelperipheryandaxial(face)lossattheexcavationface(Attewelletal.1986;Schmidt1974).Theexactratioofradialandaxialvolumelossesisnotfullydemonstratedorgeneralizedinanystudy.However,itispossibletodiminishorminimizethefacelossinfull-facemechanizedexcavationsbyapplyingafacepressureasaslurryofbentonite–watermixtureorfoam-processedmuck.Thegroundlossisusuallymoreingranularsoilsthanincohesivesoilsforsimilarconstructionconditions.Thewidthofthesettlementtroughonbothsidesofthetunnelaxisiswiderinthecaseofcohesivesoils,whichmeanslowermaximumsettlementforthesameamountofgroundloss.Timedependencyofgroundbehaviorandexistenceofundergroundwaterdistinguishshort-andlong-termsettlements(Attewelletal.1986).Short-termsettlementsoccurduringorafterafewdays(mostlyafewweeks)ofexcavation,assumingthatundrainedsoilconditionsaredominant.Long-termsettlementsaremostlyduetocreep,stressredistributionandconsolidationofsoilafterdrainageoftheundergroundwaterandeliminationofporewaterpressureinsidethesoil,anditmaytakeafewmonthstoafewyearstoreachastabilizedlevel.Indrysoilconditions,thelong-termsettlementsmaybeconsideredasverylimited.Therearemainlythreesettlementpredictionapproachesformechanizedtunnelexcavations:(1)numericalanalysissuchasfiniteelementmethod,(2)analyticalmethodand(3)semi-theoretical(semi-empirical)method.Amongthem,thenumericalapproachesarethemostreliableones.However,theresultsofallmethodsshouldbeusedcarefullybyanexperiencedfieldengineerindesigningthestageofanexcavationproject.Inthisstudy,allthreepredictionmethodsareemployedforacriticalzonetopredicttheshort-termmaximumsurfacesettlementsabovethetwintunnelsofthechainagebetween0?850and0?900mbetweenEsenlerandKirazlıstationsofIstanbulMetroline,whichis4kminlength.Plaxisfiniteelementmodelingprogramisusedfornumericalmodeling;themethodsuggestedbyLoganathanandPoulos(1998)isusedfortheanalyticalsolution.Afewdifferentsemi-theoreticalmodelsarealsousedforpredictions.Theresultsarecomparedandvalidatedbyfieldmeasurements.Descriptionoftheproject,siteandconstructionmethodThefirstconstructionphaseofIstanbulMetrolinewasstartedin1992andopenedtopublicin2000.Thislineisbeingextendedgradually,aswellasnewlinesarebeingconstructedinotherlocations.OneofthesemetrolinesisthetwinlinebetweenEsenlerandBasaksehir,whichis21.2km.TheexcavationofthissectionhasbeenstartedinMay2006.Currently,around1,400mofexcavationhasalreadybeencompleted.Theregionishighlypopulatedincludingseveralstorybuildings,industrialzonesandheavytraffic.AlignmentandstationsofthemetrolinebetweenEsenlerandBasaksehirispresentedinFig.1.Totallyfourearthpressurebalance(EPB)tunnelboringmachines(TBM)areusedforexcavationofthetunnels.ThemetrolinesinthestudyareaareexcavatedbyaHerrenknechtEPB-TBMintherighttubeandaLovatEPB-TBMinthelefttube.Righttubeexcavationfollowsaround100mbehindthelefttube.SomeofthetechnicalfeaturesofthemachinesaresummarizedinTable1.Excavatedmaterialisremovedbyauger(screwconveyor)throughthemachinetoabeltconveyorandthanloadedtorailcarsfortransportingtotheportal.Sincetheexcavatedgroundbearswaterandincludesstabilityproblems,theexcavationchamberispressurizedby300kPaandconditionedbyapplyingwater,foam,bentoniteandpolymersthroughtheinjectionports.Chamberpressureiscontinuouslymonitoredbypressuresensorsinsidethechamberandauger.Installationofasegmentringwith1.4-mlength(innerdiameterof5.7mandouterdiameterof6.3m)and30-cmthicknessisrealizedbyawing-typevacuumerector.Theringisconfiguredasfivesegmentsplusakeysegment.Afterinstallationofthering,theexcavationrestartsandthevoidbetweenthesegmentouterperimeterandexcavatedtunnelperimeterisgroutedby300kPaofpressurethroughthegroutcannelsinthetrailingshield.Thismethodofconstructionhasbeenproventominimizethesurfacesettlements.Thestudyareaincludesthetwintunnelsofthechainagebetween0+850and0+900m,betweenEsenlerandKirazlıstations.GungorenFormationoftheMiosenageisfoundinthestudyarea.Laboratoryandinsitutestsareappliedtodefinethegeotechnicalfeaturesoftheformationsthatthetunnelspassthrough.Thename,thicknessandsomeofthegeotechnicalpropertiesofthelayersaresummarizedinTable2(Ayson2005).Filllayerof2.5-mthickconsistsofsand,clay,gravelandsomepiecesofmasonry.Theverystiffclaylayerof4misgrayishgreenincolor,consistingofgravelandsand.Thedensesandlayerof5misbrownattheupperlevelsandgreenishyellowatthelowerlevels,consistingofclay,siltandmica.Densesandof3misgreenishyellowandconsistsofmica.Thebaselayerofthetunnelishardclay,whichisdarkgreen,consistingofshell.Theundergroundwatertablestartsat4.5mbelowthesurface.Thetunnelaxisis14.5mbelowthesurface,closetothecontactbetweenverydensesandandhardclay.Thisdepthisquiteuniforminthechainagebetween0+850and0+900m.SurfacesettlementpredictionwithfiniteelementmodelingPlaxisfiniteelementcodeforsoilandrockanalysisisusedtopredictthesurfacesettlement.First,therighttubeisconstructed,andthenthelefttube100mbehindtherighttubeisexcavated.Thisisbasedontheassumptionthatgrounddeformationscausedbytheexcavationoftherighttubearestabilizedbeforetheexcavationofthelefttube.ThefiniteelementmeshisshowninFig.2using15stresspointtriangularelements.TheFEMmodelconsistsof1,838elementsand15,121nodes.InFEmodeling,theMohr–Coulombfailurecriterionisapplied.StagedconstructionisusedintheFEmodel.Excavationofthesoilandtheconstructionofthetunnelliningarecarriedoutindifferentphases.Inthefirstphase,thesoilinfrontofTBMisexcavated,andasupportpressureof300kPaisappliedatthetunnelfacetopreventfailureattheface.Inthefirstphase,TBMismodeledasshellelements.Inthesecondphase,thetunnelliningisconstructedusingprefabricatedconcreteringsegments,whichareboltedtogetherwithinthetunnelboringmachine.Duringtheerectionofthelining,TBMremainsstationary.Oncealiningringhasbeenbolted,excavationisresumeduntilsufficientsoilexcavationiscarriedoutforthenextlining.Thetunnelliningismodeledusingvolumeelements.Inthesecondphase,theliningisactivatedandTBMshellelementsaredeactivated.Whenapplyingfiniteelementmodels,volumelossvaluesareusuallyassumedpriortoexcavation.Inthisstudy,theFEMmodelisrunwiththeassumptionof0.5,0.75,1and1.5%volumelosscausedbytheconvergenceofthegroundintothetunnelafterexcavation.Figures3and4showtotalandverticaldeformationsafterbothtubesareconstructed.TheverticalgroundsettlementprofileaftertherighttubeconstructionisgiveninFig.5,whichisintheshapeofaGaussiancurve,andthatafterconstructionofbothtubesisgiveninFig.6.Figure7showsthetotaldeformationvectors.ThemaximumgrounddeformationsunderdifferentvolumelossassumptionsaresummarizedinTable3.Surfacesettlementpredictionwithsemi-theoreticalandanalyticalmethodsSemi-theoreticalpredictionsforshort-termmaximumsettlementareperformedusingtheGaussiancurveapproach,whichisaclassicalandconventionalmethod.Thesettlementparametersusedinsemi-theoreticalestimationsandnotationsarepresentedinFig.8.Thetheoreticalsettlement(Gaussian)curveispresentedasinEq.1(O’ReillyandNew1982):(1)where,Sisthetheoreticalsettlement(Gausserrorfunction,normalprobabilitycurve),Smaxisthemaximumshort-term(initial,undrained)settlementatthetunnelcenterline(m),xisthetransversehorizontaldistancefromthetunnelcenterline(m),andiisthepointofinflexion(m).Todeterminetheshapeofasettlementcurve,itisnecessarytopredictiandSmaxvalues.Thereareseveralsuggestedmethodsforpredictionofthepointofinflexion(i).EstimationofivalueinthisstudyisbasedonaveragesofsomeempiricalapproachesgiveninEqs.2–6:where,Z0isthetunnelaxisdepth(m),14.5minthisstudy,andRistheradiusoftunnel,3.25minthisstudy.Equation3wassuggestedbyGlossop(O’ReillyandNew1982)formostlycohesivegrounds;Eq.4wassuggestedbyO’ReillyandNew(1982)forexcavationofcohesivegroundsbyshieldedmachines;Eq.5wassuggestedbySchmidt(1969)forexcavationofclaysbyshieldedmachines;Eq.6wassuggestedbyArioglu(1992)forexcavationofalltypesofsoilsbyshieldedmachines.Asaresult,theaverageivalueisestimatedtobe6.6minthisstudy.Thereareseveralsuggestedempiricalmethodsforthepredictionofthemaximumsurfacesettlement(Smax).SchmidtsuggestedamodelfortheestimationofSmaxvalueforasingletunnelin1969asgiveninEq.7(throughArioglu1992):where,Kisthevolumeloss(%).Arioglu(1992),basedonfielddata,foundagoodrelationshipbetweenKandN(stabilityratio)forface-pressurizedTBMcasesasinEq.8:wherecnisthenaturalunitweightofthesoil(kN/m3),theweightedaveragesforallthelayers,whichis19kN/m3inthisstudy;rSisthetotalsurchargepressure(kPa),assumedtobe20kPainthisstudy;rTisTBMfacepressure(kPa),whichis300kPainthisstudy;andCUistheundrainedcohesionofthesoil(kPa),theweightedaveragesforallthelayers,whichis50kPainthisstudyassumingthatCUisequaltoSU(undrainedshearstrengthofthesoil).Allaveragesareestimateduptoverydensesand,excludinghardclay,sincethetunnelaxispassesaroundthecontactbetweenverydensesandandhardclay.Themodelyields17.1mmofinitialmaximumsurfacesettlement.HerzogsuggestedamodelfortheestimationofSmaxvaluein1985asgiveninEq.9forasingletunnelandEq.10fortwintunnels(throughArioglu1992):where,Eistheelasticitymodulusofformation(kPa),theweightedaveragesforallthelayers,whichis30,000kPainthisstudy,andaisthedistancebetweenthetunnelaxes,whichis14minthisstudy.Themodelyields49.9and58.7mmofinitialmaximumsurfacesettlementsfortherightandthelefttubetunnel,whichis100mmbehindtherighttube,respectively.Thereareseveralanalyticalmodelsforthepredictionofshort-termmaximumsurfacesettlementsforshieldedtunnelingoperations(Leeetal.1992;LoganathanandPoulos1998;Chietal.2001;ChouandBobet2002;Park2004).ThemethodsuggestedbyLoganathanandPoulos(1998)isusedinthisstudy.Inthismethod,atheoreticalgapparameter(g)isdefinedbasedonphysicalgapinthevoid,facelossesandworkmanshipvalue,andthenthegapparameterisincorporatedtoaclosedformsolutiontopredictelastoplasticgrounddeformations.Theundrainedgapparameter(g)isestimatedbyEq.12:whereGpisthephysicalgaprepresentingthegeometricclearancebetweentheouterskinoftheshieldandtheliner,isthethicknessofthetailshield,distheclearancerequiredforerectionoftheliner,U*3Distheequivalent3Delastoplasticdeformationatthetunnelface,andwisavaluethattakesintoaccountthequalityofworkmanship.Maximumshort-termsurfacesettlementispredictedbytheoreticalEq.13(LoganathanandPoulos1998):where,tisundrainedPoisson’sratio,assumedtobeofmaximum0.5;gisthegapparameter(m),whichisestimatedtobe0.0128minthisstudy;andxistransversedistancefromthetunnelcenterline(m)anditisassumedtobe0mforthemaximumsurfacesettlement.Themodelyields23.0mmofundrainedmaximumsurfacesettlement.Otherparametersofsettlementsuchasmaximumslope,maximumcurvatureandsoonarenotmentionedinthisstudy.VerificationofpredictionsbyfieldmeasurementsanddiscussionTheresultsofmeasurementsperformedonthesurfacemonitoringpoints,byIstanbulMetropolitanMunicipality,arepresentedinTable4fortheleftandrighttubes.Asseen,theaveragemaximumsurfacesettlementsarearound9.6mmfortherighttubeand14.4mmforthelefttube,whichexcavates100mbehindtherighttube.Themaximumsurfacesettlementsmeasuredaround15.2mmfortherighttubeand26.3mmforthelefttube.HighersettlementsareexpectedinthelefttubesincethepreviousTBMexcavationactivitiesontherighttubeoverlapsthepreviousdeformation.TheeffectofthelefttubeexcavationondeformationsoftherighttubeispresentedinFig.9.Asseen,afterLovatTBMintherighttubeexcavatesnearbythesurfacemonitoringpoint25,maximumsurfacesettlementreachesataround9mm;however,whileHerrenknechtTBMinthelefttubepassesthesamepoint,maximumsurfacesettlementreachesataround29mm(Fig.10).Iftheconstructionmethodappliedtothesiteisconsidered,long-term(consolidation)settlementsareexpectedtobelow,sincethetailvoidisgroutedimmediatelyafterexcavation.TheresultsofpredictionsmentionedaboveandobservedmaximumsurfacesettlementsaresummarizedinTable5.ThemethodssuggestedbyLoganathanandPoulos(1998)andSchmidt(1969)connectedwithArioglu’ssuggestion(1992)canpredictthemaximumshort-termsurfacesettlementsonlyforasingletunnel.PlaxisfiniteelementandHerzog(1985)modelscanpredictdeformationsfortwintubes.Herzog’smodel(1985)yieldshighermaximumsurfacesettlementsthantheobservedones.ThereasonforthatisthatthedatabaseofthemodelincludesbothshieldedtunnelsandNATM(NewAustrianTunnelingMethod)tunnels,ofwhichsurfacesettlementsareusuallyhighercomparedtoshieldedtunnels.Schmidt(1969),alongwithArioglu’ssuggestion(1992),yieldspredictionsclosetoobserved.Plaxisfiniteelementmodelinggivesthemostrealisticresults,providedthereiscorrectassumptionofvolumelossparameter,whichisusuallydifficulttopredict.Themodelprovidessimulationofexcavation,lining,groutingandfacepressureinarealisticmannertopredictsurfaceandsub-surfacesettlements.Thevolumelossparameterisusuallyassumedtobe\1%forexcavationwithfacepressure-balancedtunnelboringmachines.Therealizedvolumelossinthesiteisaround1%forthisstudy.Currently,thereisdifficultyyetinmodelingthedeformationbehavioroftwintunnels.OneofthemostimpressivestudiesonthisissuewasperformedbyChapmanetal.(2004).However,Chapman’ssemi-theoreticalmethodstillrequiresenlargementofthedatabasetoimprovethesuggestedmodelinhispaper.ConclusionsInthisstudy,threesurfacesettlementpredictionmethodsformechanizedtwintunnelexcavationsbetweenEsenlerandKirazlıstationsofIstanbulMetroLineareapplied.Tunnelsof6.5-mdiameterswith14-mdistancebetweentheircentersareexcavatedbyEPMtunnelboringmachines.Thegeologicstructureoftheareacanbeclassifiedassoftground.SettlementpredictionsareperformedbyusingFEmodeling,andsemi-theoretical(semi-empirical)andanalyticalmethods.Themeasuredresultsaftertunnelingarecomparedtopredictedresults.TheseindicatethattheFEmodelpredictswelltheshorttimesurfacesettlementsforagivenvolumelossvalue.Theresultsofsomesemi-theoreticalandanalyticalmethodsarefoundtobeingoodagreementwiththeFEmodel,whereassomemethodsoverestimatethemeasuredsettlements.TheFEmodelpredictedthemaximumsurfacesettlementas15.89mm(1%volumeloss)fortherighttube,whilethemeasuredmaximumsettlementwas15.20mm.Forthelefttube(openedaftertheright),FEpredictionwas24.34mm,whilemeasuredmaximumsettlementwas26.30mm. 中文翻译基于盾构法的Istanbul地铁施工引起的地面沉降预测摘要在这项研究中,研究的是双线隧道的短期地面沉降,选取线路里程总长为4km的Istanbul地铁从Esenler站到Kirazl站方向850到900m区间为研究对象。Esenler到Basaksehir站掘进线路总长为21.2km。使用两台刀盘直径为6.5m土压平衡盾构机进行双线掘进,两隧道中心距14m。左隧道先于有隧道100m掘进。使用宽1.4m的管片作为支护。使用Plaxis软件进行沉降的有限元。该软件能模拟地下隧道的掘进、支护和掌子面支护等。针对典型的地质特征进行预测,这些特征是决定地面沉降量的关键因素。研究区域的地质构造从地面向下分别为素填土、硬粘土、密实砂、高密砂和硬质粘土。本文不仅使用有限元分析地面沉降,也使用半理论(半经验)和解析模型进行预测。结果表明该FE模型对给定流失值的短期地面沉降预测效果较好。半理论和解析模型得到结果与FE模型得到的结果一致。将预测结果和实际测量值进行对比分析,得到在掘进过程中,灌浆应在管片支护安装到位后尽快进行。刀盘压力应严密监控并及时调整适应不同地质。Keywords:地面沉降预测;有限元模型;解析方法;半理论方法;土压平衡盾构机;Istanbul地铁介绍随着对基础设施需要的增长,人们对在市区中通过浅埋暗挖修建隧道产生了浓厚兴趣。一些地表和次地表岩土结构的变形使地下工程十分脆弱,这些变形应根据可接受级别得到限制和控制。不论什么掘进方式,短期和长期的地表和次地表层变形都应得到预测,在开挖前要对现有的可能受到破坏的结构采取加固措施。隧道建设成本大量增加主要由于其引起的地面沉降超过了允许值(Bilginetal.2009)。反应地层沉降的基本参数有地质条件、技术/环境参数和隧道掘进或构造方法(O’ReillyandNew1982;Arioglu1992;KarakusandFowell2003;TanandRanjit2003;Minguezetal.2005;Ellis2005;SuwansawatandEinstein2006)。应该以勘探方式进行详细地质调查,弄清地层的物理和机械性质、地下水分布、地层的变形特征,特别是岩层的刚度。技术参数包括:隧道深度、几何形状、隧道直径、单线还是双线隧道和邻近建筑物情况。施工方法应该是安全经济的,其选择应考虑地质条件、技术条件,同时也要考虑将地层移动控制在可接受的范围内。掘进方式、刀盘面压力、推进速度、支护系统刚性、掘进后处理和土体处理/改善在掘进过程中对岩土结构的沉降有很大影响。隧道上方土体移动(地面沉降)的主要原因是在挖掘后土体收敛靠近隧道,由于掘进改变了原来土体的压力平衡状态,导致压力重新分布。土体流失和土体体积流失都认为是土体收敛。地表沉降体积一般假设等于隧道内挖走的土体量(O’ReillyandNew1982)。土体流失可分为围绕隧道外围径向流失和在掘进面的中心轴面流失(Attewelletal.1986;Schmidt1974)。现在实际的径向和轴向体积流失率还不能被完全解释和泛化。但是,能做到的是通过调整刀盘面压力,消除和减少在全断面机械掘进中的掘进面土体损失,如在压力仓加入膨润土与水的混合泥浆或发泡处理的填充物,使其达到平衡等。在相同的施工条件下,颗粒土的土体损失一般大于粘性土。隧道两侧的沉降槽宽度在粘性土案例中较宽,这对于相同量的土体流失,粘性土的沉降最大值较小。基于时变的土体行为和地下水的存在可辨别短期和长期沉降(Attewelletal.1986)。假设土体为不排水,短期沉降发生在挖掘后的几天(最多几周)内。长期沉降主要原因是蠕变,在地下水排出和土内孔隙水压消失后,土体才压力重分布和固结,这个过程也许要经历几个月或几年时间才能达到稳定。在干土条件下,认为长期沉降很有限。对于机械隧道掘进主要有三种沉降预测方法:(1)数值分析,如有限元方法;(2)解析方法和(3)半理论(半经验)方法。其中,数值分析是最可靠的。但是对于一个有经验的岩土工程师来说,在掘进项目阶段,所有方法分析的结果要认真对待。在这项研究中,这三个方法都将被使用来预测研究区域的短期最大地表沉降,这个研究区域在4km长的Istanbul地铁从Esenler站到Kirazl站方向850到900m区间的双线掘进隧道的正上方地面。Plaxis有限元建模程序用于数字建模;这个方法由Loganathan和Poulos(1998)提出用作解析解。一些不同的半理论模型也用作预测。结果与实际测量值进行比较,并得到验证。项目、站点和施工方式概况Istanbul地铁的一期工程开始于1992年,2000建成向公众开放。该线路一直被延长,同时修建了其他多条新线,其中之一就是总长21.2km的Esenler到Basaksehir站的双线隧道。该线掘进施工始于2006年5月。现在大约完成了1400m隧道挖掘。隧道施工区域上方人口稠密,古建筑多,有工业区而且交通量大。该先的线路和车站如图1所示。图一隧道掘进使用四台土压平衡盾构机。研究区域的隧道右线使用Herrenknecht土压平衡盾构机,左线使用Lovat土压平衡盾构机。左隧道掘进面在右隧道后100m。相关机械技术参数如表1所示。表1土压平衡盾构机的参数HerrenkenchtLovat掘进直径6.500m6.564m盾壳外径6.45m6.52m前部盾体7.68m9.30m盾构机长度80m65m总重量578t534t刀盘转速0-2.50-6.0组驱动功率963KW1.622KW钻土类型混合地层混合地层钻头功率630KW900KW最大扭矩435tm445tm最大推力32.000KN54.000KN开挖掉的土体使用钻孔机(螺旋传送机)穿过机器运送到传送带,然后将土体装入出土车运送到竖井。考虑到开挖后土体承受的水压和稳定性问,压力舱轴向压力
/
本文档为【土木工程 建筑 外文翻译 外文文献 地铁地表沉降】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索