为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

音响术语大全

2019-04-19 50页 doc 403KB 23阅读

用户头像

is_260251

暂无简介

举报
音响术语大全音响术语大全 1、音响技术的发展历史。 音响技术的发展历史可以分为电子管、晶体管、集成电路、场效应管四个阶段。 1906年美国人德福雷斯特发明了真空三极管,开创了人类电声技术的先河。1927年贝尔实验室发明了负反馈技术后,使音响技术的发展进入了一个崭新的时代,比较有代表性的如"威廉逊"放大器,较成功地运用了负反馈技术,使放大器的失真度大大降低,至50年代电子管放大器的发展达到了一个高潮时期,各种电子管放大器层出不穷。由于电子管放大器音色甜美、圆润,至今仍为发烧友所偏爱。 60年代晶体管的出现,使广大音响爱好者进入了一个更为广...
音响术语大全
音响术语大全 1、音响技术的发展历史。 音响技术的发展历史可以分为电子管、晶体管、集成电路、场效应管四个阶段。 1906年美国人德福雷斯特发明了真空三极管,开创了人类电声技术的先河。1927年贝尔实验室发明了负反馈技术后,使音响技术的发展进入了一个崭新的时代,比较有代表性的如"威廉逊"放大器,较成功地运用了负反馈技术,使放大器的失真度大大降低,至50年代电子管放大器的发展达到了一个高潮时期,各种电子管放大器层出不穷。由于电子管放大器音色甜美、圆润,至今仍为发烧友所偏爱。 60年代晶体管的出现,使广大音响爱好者进入了一个更为广阔的音响天地。晶体管放大器具有细腻动人的音色、较低的失真、较宽的频响及动态范围等特点。 在60年代初,美国首先推出音响技术中的新成员--集成电路,到了70年代初,集成电路以其质优价廉、体积小、功能多等特点,逐步被音响界所认识。发展至今,厚膜音响集成电路、运算放大集成电路被广泛用于音响电路。 70年代的中期,日本生产出第一只场效应功率管。由于场效应功率管同时具有电子管纯厚、甜美的音色,以及动态范围达90dB、THD<0.01%(100kHz时)的特点,很快在音响界流行。现今的许多放大器中都采用了场效应管作为末级输出。 音响技术的发展经历了电子管、晶体管、场效应管的历史时期,在不同的历史时期都各有其特点。预计音响技术今后的发展主流为数字音响技术。 介绍一下dB的具体含义. 单位dB是一个在电子方面使用得非常广泛的,它是测量和比较一个系统的功率,电压和电流大小的相对单位.后来由于科技的进步,认识到人类对声音的响应是按对数规律变化的,于是有了一个单位就是贝尔(Bel)是电话的发明人的名字.其表达式是: Bel=lg(P/Po)P是被测量的功率Po是参考功率:Bel表示以10为底的对数.实际中发现Bel太大了,于是取其十分一作为一个新单位,就是分贝(dB)将Bel除以10就是dB表达式是:dB=10lg(P/Po),dB=20lg(E/Eo),dB=20lg(I/Io). 2.什么是Hi-Fi?什么样的音响器材才Hi-Fi? Hi-Fi是英语High-Fidelity的缩写,直译为"高保真",其定义是:与原来的声音高度相似的重放声音。那么什么样的音响器材的重放声音才是Hi-Fi呢?迄今为止仍难以作出确切的结论。音响界的专业人士借助于各类仪器,通过各种手段,检测出各种指标来决定器材Hi-Fi的程度,而音响发烧友则往往通过自己的耳朵去判断器材是否达到心目中的Hi-Fi。判别重放声音高保真程度的高低,不仅需要有性能优良的器材和软件,而且还要有良好的听音环境。因此,如何正确衡量音响器材的Hi-Fi程度,还存在着客观测试和主观评价的差别。 3.音响系统的主要技术指标。 音响系统整体技术指标性能的优劣,取决于每一个单元自身性能的好坏,如果系统中的每一个单元的技术指标都较高,那么系统整体的技术指标则很好。其技术指标主要有六项:频率响应、信噪比、动态范围、失真度、瞬态响应、立体声分离度、立体声平衡度。 一、频率响应:所谓频率响应是指音响设备重放时的频率范围以及声波的幅度随频率的变化关系。一般检测此项指标以1000Hz的频率幅度为参考,并用对数以分贝(dB)为单位表示频率的幅度。 音响系统的总体频率响应理论上要求为20~20000Hz。在实际使用中由于电路结构、元件的质量等原因,往往不能够达到该要求,但一般至少要达到32~18000Hz。 二、信噪比:所谓信噪比是指音响系统对音源软件的重放声与整个系统产生的新的噪声的比值,其噪声主要有热噪声、交流噪声、机械噪声等等。一般检测此项指标以重放信号的额定输出功率与无信号输入时系统噪声输出功率的对数比值分贝(dB)来表示。一般音响系统的信噪比需在85dB以上。 三、动态范围:动态范围是指音响系统重放时最大不失真输出功率与静态时系统噪声输出功率之比的对数值,单位为分贝(dB)。一般性能较好的音响系统的动态范围在100(dB)以上。 四、失真:失真是指音响系统对音源信号进行重放后,使原音源信号的某些部分(波形、频率等等)发生了变化。音响系统的失真主要有以下几种: 1.谐波失真:所谓谐波失真是指音响系统重放后的声音比原有信号源多出许多额外的谐波成分。此额外的谐波成分信号是信号源频率的倍频或分频,它是由负反馈网络或放大器的非线性特性引起的。高保真音响系统的谐波失真应小于1%。 2.互调失真:互调失真也是一种非线性失真,它是两个以上的频率分量按一定比例混合,各个频率信号之间互相调制,通过放音设备后产生新增加的非线性信号,该信号包括各个信号之间的和及差的信号。 3.瞬态失真:瞬态失真又称瞬态响应,它的产生主要是当较大的瞬态信号突然加到放大器时由于放大器的反映较慢,从而使信号产生失真。一般以输入方波信号通过放音设备后,观察放大器输出信号的包络波形是否输入的方波波形相似来表达放大器对瞬态信号的跟随能力。 五、立体声分离度:立体声分离度表示立体声音响系统中左、右两个声道之间的隔离度,它实际上反映了左、右两个声道相互串扰的程度。如果两个声道之间串扰较大,那么重放声音的立体感将减弱。 六、立体声平衡度:立体声平衡度表示立体放音系统中左、右声道增益的差别,如果不平衡度过大,重放的立体声的声像定位将产生偏移。一般高品质音响系统的立体声平衡度应小于1dB。 4.音响系统重放声音的音域及音频范围是如何划分的?各个频段对音乐的表现如何? 音响系统的重放声音的音域范围一般可以分为超低音、低音、中低音、中音、中高音、次高音、高音、特高音八个音域。音频频率范围一般可以分为四个频段,即低频段(30~150Hz);中你频段(150~500Hz);中高频段(500~5000Hz);高频段(5000~20000Hz)。 其中,30~150Hz频段:能够表现音乐的低频成分,使欣赏者感受到强劲有力的动感。 150~500Hz频段:能够表现单个打击乐器在音乐中的表现力,是低频中表达力度的部分。 500~5000Hz频段:主要表达演唱者语言的清晰度及弦乐的表现力。 5000~20000Hz频段:主要表达音乐的明亮度,但过多会使声音发破。 5.音响发烧友有哪些常用术语。 音响发烧友常用的术语较为抽象,常用的术语如下: 1.神经线:主要指输送低电平(毫伏、微伏级)、小电流的信号线。一般神经线为音频、视频两用,较高级的神经线两端的插头为镀金的RCA插头,并在导线的表面涂有防静电保护层。 2.发烧线:主要是指截面较大、股数较多的音箱信号传输线。品质较高的发烧线是采用无氧铜等材料制成的。 3.煲机:所谓煲机类似于机械类机器的摩合期,即将音响器材工作一定时间后,使机器内的温度与环境温度相同,使各级放大器的工作状态达到最佳点,此时重放的声音为最佳。 4.摩机:所谓摩机源于英文Modify,意为修正、修饰。发烧友对音响系统内的元器件或线路进行更换、改造,使其升级,称之为摩机。 5.爆棚:所谓爆棚是指音响器材在重放时,当乐曲进入高潮时所产生的震耳欲聋的气氛。 6.胆机:胆机是指采用电子管制作的放大器。电子管放大器温暖通透的音质让老一辈发烧友至今难以忘怀。 7.石机:所谓石机是指采用晶体管制作的放大器。 8.胆石机:即为电子管与晶体管混合制作的音响器材。一般将电子管作为前级放大器,晶体管作为后级放大器。 9.环牛:所谓环牛是指环形变压器,它与普通变压器相比漏磁较小。 10.大水塘:大水塘是指电源滤波电容,一般为10000μF以上的大容量电容。 11.靓声:指音响器材的重放声音质很好,达到了高保真的要求。 12.解析度:指音响器材的重放声具有一定的透明度,给人以"清澈见底"的感觉。 13.染色:所谓染色是指重放过程中由于声波的振动使其它物体或材料出现共振而产生的重放声中没有的声音。它对重放的效果是有害的。 14.咪头:指各种话筒。 15.补品:指对音响系统进行改造时所使用的质量较高的元件。 6.音箱应如何放置? 音箱位置的正确放置是获得良好放音效果的因素之一,在摆放时必须注意以下几个问题: 1.两只音箱之间的距离不小于1.5~2米,并保持同一水平。音箱的左右两边与墙壁的距离应该相同。音箱的前面不应有任何杂物。 2.音箱的高音单元与听音者的耳朵应保持同一水平线,听音者与两只音箱之间应为60度夹角,听音者的身后要留有一定的空间。 3.两个音箱两侧的墙壁在声学上应保持一致,即两侧的墙壁对声波的反射应相同。 4.如果音箱声波的方向性不宽,可将两只音箱略向内侧摆放。 5.对于小型音箱如果感觉低频不够,可将音箱靠近墙角摆放。 7.音响器材在连接时需注意哪些问题? 音响器材各级之间的配接较为重要。如果连接不当不仅会影响器材的重放效果,甚至会损坏器材。 1.器材连接的基本要求: (1)信号电平的匹配: 在连接音响器材时一定要注意各器材之间的输入、输出信号电平的差异。如果前级器材输入信号的电平过大,会产生非线性失真,反之则会降落氏重放系统的信噪比,甚至无法推动下一级器材的放大器,因此在配接时要注意器材之间的电平不应相差过大。如果在实际使用中出现信号电平不适配时,必须通过衰减电路使输入的信号电平降低,或通过放大电路使输入信号的电平提升。对于一般的动圈式话筒输出电压为几毫伏,因此需要设有一级放大电路将信号放大后送至前置放大电路。对于录音座、CD唱机及LD机,由于其输出信号的电平达0.755~1V以上,因此可以直接送入前置放大器。 (2)阻抗的匹配: 在Hi-Fi音响器材中,比如晶体管功率放大器的输出阻抗为低阻抗,而电子管功率放大器等器材的输出阻抗为高阻抗。如果它们与扬声器连接时阻抗不匹配,会使放大器的输出功率分配不均,或因阻尼过大使扬声器的瞬态特性变差。 阻抗匹配的连接一般有平衡式和不平衡式两种。所谓平衡式是指传输信号的两芯屏蔽线对地的阻抗相等。所谓不平衡式是指两芯屏蔽线中,其中有一根接地。当平衡输出与不平衡输入相连接时,必须通过加匹配变压器进行匹配。 2.接插件的连接: 在Hi-Fi音响器材中,器材的连接是依靠各种接插件来完成的,常用的接插件有以下几种,如图4所示。音P14。 (1)二芯插头:主要用来传输各种器材之间的信号以及作为话筒输入信号的输入插头。按其直径分为有2.5mm、3.5mm、6.5mm三种. (2) 莲花插头:主要用于在音频器材和视频器材之间作线路的输入和输出插头。 (3)卡侬插头(XLR):主要用于话筒与放大器之间的连接。 (4)五芯插座(DIN):主要用于卡式录音座与放大器之间的连接,它可以将立体声输入和输出信号集中在一个插座上。 (5)RCA插头:RCA插头主要用于器材中视频信号的传输。 (6)F、M插头:它主要用于视听器材中射频信号的输入输出。 8.什么是"OFC"发烧线?何为"6N"、"7N"的发烧线? "OFC"是英语"Oxygen Free Copper"的缩写,意为"无氧铜"。众所周知,金属中金、银的电阻率为最小,导电性能最好,但如果使用金、银作为发烧线的制作材料,其价格是非常昂贵的,不是大多数发烧友所能接受的。铜作为一种常用的金属材料,其导电性能较好,使用较为普遍,但由于铜含有较多的杂质,其中大部分是氧化物,因而影响了铜的导电能力。目前使用较多的是被称?quot;智能型发烧线"的"OFC"线,它是通过采用电化学法、PN结植入法、同位素辐照改性法等高科技方法,改变铜的金属结构,使铜线的表面产生特有的金属结构,使同一根铜导线的表面适合传输5000Hz以上的频率信号,而其中心只适合传输5000Hz以下的频率信号,从而使高、低频之间互相不干扰,有利于在传输大信号时,提高重放声的清晰度,改善重放声的音质。 "6N"、"7N"是发烧友用来表示使用无氧铜材料制作的发烧线纯度的高低。因为英语"9"的开头是字母"N",为了表达方便,故发烧友用"N"表示"9",在"N"前面的数字则表示有几个"9"。比如"99.9999%",就可以有"6N"表示,即说明其纯度是6个9,N前面的数字越大说明发烧线的纯度就越高。 功率放大器的阻抗匹配及防护措施 对于主要作用是向负载提供功率的放大电路通常称为功率放大电路,其主要特点如下:一是输出功率是指交变电压和交变电流的乘积,即交流功率;二是交流功率是在输入为正弦波、输出波形基本不失真时定义的;三是输出功率大,因而消耗在电路内的能量和电源提供的能量也大;四是晶体管常常工作在极限应用状态,由此要考虑必要的散热措施和过电流、过电压的保护措施。下面就功率放大器的阻抗匹配及防护措施作以扼要介绍。 一、功率放大器的阻抗匹配 在所有电子音像设备中,都有一个功率输出的最佳问题,即为了获得最大的功率输出而又不增加电路的投资经费,这就是功率放大器与扬声器系统的最佳组合。 功率放大器组合的目的是为了达到最小的设备投资而获得最大的功率输出,以图1互补型功率放大电路为例:和为功放朱级,工作于低偏置甲乙类互补状态。它的输出功率近似于乙类状态。 javascript:resizepic(this) border=0>   为了达到最大输出功率,所以负载的大小应该使功率管的电流输出和电压输出的乘积最大,这时的状态称为功率匹配状态。在音响设备的扬声器系统中音响的输出阻抗应为扬声器组合状态的总阻抗,这样音响的输出功率才是标明的额定功率,否则音响的输出功率就达不到要求。 例如:音响标准接头上标明是4Ω、100W,那么该接头上的阻抗就是两个8Q扬声器的并联,每个扬声器可得到50W,这样综合扬声器系统,就是4Ω、100W,否则不能实现100w的功率输出。 二、功率放大器的防护 功率管是功率放大电路中最容易受到损坏的器件,损坏的大部分原因是由于管子的实际耗散功率超过了额定数值。另外,若功率放大器与扬声器失配或扬声器使用中长期过载,也极易损坏扬声器(或音箱),因此,在音响设备中,防护的目的是保护昂贵的功放和扬声器,所以对电源、功放、音箱的过载和短路保护是完全必要的。 1.电源保护:图2是分立元件稳压电路,电路中Ri的是过载电流取样电阻,当其电压大于0.7V时,V13导通,集电极电位下降,调整管V11断开,限制电源输出电流。 javascript:resizepic(this) border=0>   图3是可调输出电压模块,功耗达70W,电流可达10A,电压调整率为20.8%,输出电压为1.25~15V,且有短路保护。 javascript:resizepic(this) border=0>   当使用开关电源时(例如芯片CWl225),则有专门的保护控制端第⑩脚,只要输入过电流或过电压信号,即可达到保护目的。 2.功放级晶体管保护:功率放大晶体管除在使用中必须注意环境温度及选用合适的散热器外,主要是考虑过电流和过电压保护问题,目前应用的集成电路都设有限流保护和热切断保护功能(如HAl350、HA2211、LM2879等),所以在自制功放时须注意过压保护,如图4所示。依靠R内(电源内阻)和Vl、V2的击穿,使过电压不能升高而保护Vl、V2。 javascript:resizepic(this) border=0>   3.音箱扬声器系统保护:音响系统的保护有两种意义:一种是音响扬声器的过载;另一种不是音频功率的过大、而是直流电位的偏移,导致无电容隔离的OCL或BTL电路扬声器烧毁。过载时,功放电路已经有保护无须另外考虑,这里仅介绍直流偏移组合音响保护电路。 图5为组合音响保护电路。从图中可以看出,当左、右声道送入音箱的声音信号,经过R1、R2被电容C2、C3旁路而无直流偏移时,整流桥无直流输出,V11截止,V12、V13导通,继电器K吸合,左、右声频信号经保险丝F输出;当存在直流偏移时,整流桥输出使V11导通,V12、V13截止,继电器K释放切断了音频信号,保护音箱。 javascript:resizepic(this) border=0>   电路中C2、C3是滤波电容,C4具有开关机时延时接通音箱功能,避免开机时的冲击噪声,V则具有短路K的断电反电动势作用,保护V12、V13晶体管。 如何辨别各个频段不同的音色和音感 音色,是一种描述乐器发音品质的术语,由于每种乐器都有自己的频谱分布特征,因而同一种乐器的发音在不同的音区内,起音感虽然不一定一致,但其音色大体一致。 表述音色特征的术语一般都与乐器的关系密切。音色术语一般要比音感丰富一些,其间的关联有以下几种情形: 沉闷:闷这种音感是同20赫兹左右的频率赋予的,而高于80赫兹时,音感就会偏厚,因此具有沉闷感的音响一般基频很低,而且很少有丰富的泛音成分,具有此音感特征的乐器音源一般都是低音乐器的低音区。 沉重:单纯从音感方面来看,沉重感是80赫兹频点处所特有的音感效果,而从音型特征上来看,短促的低音打击音型乐器具有更强烈的重感效果。 低沉:低沉常用于形容比沉闷稍丰厚的音响,他的基频可能与沉闷的音响一样,但其高次谐波大多都比沉闷的音响丰富一些。 深沉:这是一种带有感情味的形容词,常用于表述具有色彩性的“松荡”的低频响应,其基频比低沉的音响稍高一些。一般具有深沉感的乐器,最典型的就是大提琴和箫的低音区。 浑厚:这种音感是频谱较宽的音源所具有的特征,所以浑厚的音感一般都是形容基频较低,频谱较宽的音源。 淳厚:淳厚是指具有较高融合性的低频音响,具有淳厚感的典型音源,是钢片琴的低音区。 丰满:这是频率在100~250赫兹之间的音源所具有的音感特征,一般发音在此频段内的音源,都必然会有丰富的音感效果。 宽厚:丰满的音源如果频谱更宽一些,就会产生宽厚的音感效果。 饱满:这是一种叫强劲度的低频音响,,一般加置有“涡轮失真”效果的电贝司,此音感特征非常明显。 明亮:一般当乐音的基频高于500赫兹以上时,就会变的明快起来,甚至高到7500赫兹处时,我们也不能说它不明亮,所以音源的明亮感是一种比较通泛的形容词。明亮感在2800赫兹频点处最为明显。 响亮:常用于形容带颈度的高明度音响,并且当频谱高出4000赫兹以上时,音源就不具有此音感特征了。 宏亮:直待有一定融合性的高明亮音响。 圆润:指比较柔和的高明亮度音响。 柔和:与圆润相比,柔和感更偏于暗闷,是一种相对低明亮度的音响。 清脆:频谱集中在4000~8000盒子之间的音响一般都具有一定的清脆感效果。 高亢:指高穿透力的清脆音响,有此音感特征的典型乐器就是唢呐。 尖锐:频谱集中在6800赫兹左右的音响一般都尖锐刺耳的。 尖厉:尖锐的音响如果还带有类似失真的嘈杂感,即可产生尖厉的音感效果。 纤细:频谱在8000赫兹以上的音乐,一般都具有纤细的音感效果。 融合:一般不易突出的柔和音响,都具有一定的融合感。当然,所有的音源都可以用融合或或不融合的程度衡量。在乐器中,一般认为中提琴、大提琴的融合感最好。 干涩:这是融合感的反义词,一般和谐泛音缺乏、不和谐泛音突出的高频段音响,都具有某种程度的干涩,在乐器当中,他主要是由于极高音区缺乏共鸣所造成的。 坚实:600赫兹左右的窄频带音响,以及发音短促的音型,都具有某种检视的音感效果。 空洞:指带有“染色”效果的暗闷音响,此音感特征常常常常被人们用于形容大木鱼的音色。 温暖:这是一种形容乐音色彩性的词,他一般与音响的“染色度”成正比,如:排钟,就具有次种音感。 粗犷:低频音响如果带有类似过载失真的效果,即可形成粗犷的音感。 粗糙:粗糙感是一种略带沙音的粗犷音响,一般小号、圆号在吹奏低音区时,都有此音感特征。 沙哑:特制带有明显“气流沙音”的虚浮声响效果。 苍劲:这是一种带有感情味的形容词,一般是指较低频段内的沙哑音响,如大管的低音区等。 紧张:这是乐音内含有某些特别的不和谐泛音成分的结果。 力度感:力度感在低频段特指200~500盒子频段内的音响,如:大鼓、大胡的低音区,力度感就较好。在中、高频段,力度感是指高穿透力、高突出性的不柔和音响,一般高音铜管乐器的中、高音区,都具有良好的力度感效果。 穿透力:指高突出性、高明亮度的音响,穿透力在4500赫兹附近较为明显。 光彩性:指有一定突出感的高圆润度音响。 悲凉:悲凉与温暖互为反义,它也是一种带感情味的次。具有此音感特征的典型乐器音源,就是中音双簧管的中音区。 阴森:高紧张度的低频段音响,即可形成阴森的音感效果。 发扁:这是2500赫兹处所特有的音响效果。在此频点附近的音乐,一般都明显有“发扁”的感觉。如:板胡、二胡等,次种音感特征十分明显。 发暗:如果乐音中缺乏6000赫兹以上的频谱成分,一般都可以使起发音变“暗”。 发虚:这是乐器在发较高音阶时,杂音增多所引起的,这种杂音通常类似于气流沙声。 极高频: 16K-20K 色彩 提升有神秘感; 12K-16K 高频泛音,光彩; 10K-12K 高频泛音,光泽; 高频和高频低段: 8K-10K S音; 6K-8K 明亮度、透明度, 提升齿音重、降落 声音黯淡; 5K-6K 语言的清晰度,提升声音锋利、易疲劳; 中频上段: 4K-5K 乐器表面响度,提升乐器距离近、降落 乐器距离远; 4K 穿透力,提升 咳音; 2K-3K 对明亮度最敏感,提升声音硬,不自然 中频: 1K-2K 通透感、顺畅感,提升有跳跃感、降落 松散; 800 力度,提升喉音重; 500-1K 人声基音、声音轮廓,提升语音前凸、降落语音收缩感; 300-500 语音主要音区,提升语音单调、降落语音空洞; 中频低段: 150-300 声音力度、男声力度,提升声音硬、无特色,降落:软、飘; 低频: 100-150 丰满度,提升浑浊、降落单薄; 60-100 浑厚感,提升轰鸣(轰)、降落无力; 20-60 空间感,提升低频共振(嗡)、降落空虚; 低频上段80-160; 中低频40-80; 低频下段20-40; 超低频32-~。 什么是音响中的阻抗 阻抗是音响圈中最常看到的字眼了,但是它到底意所何指呢?许多人在看到喇叭标示的阻抗值是四或八欧姆的时候,会直觉地拿起三用电表往喇叭的二个接线端子一量,看看到底是不是正确,可惜的是绝大部份的人都失望了,因为用三用电表上的电阻档量出来的结果并没有和喇叭上面所标示的一致。原因呢?因为你误会了,你搞错了。 阻抗与电阻不是完全一致的东。在国中的物理课本上,我们第一次接触到有关电学方面的理论,其中提到了有关电压、电流、电阻以及电功率之间的原理和数学关系。绝大部份没有继续进修电学方面的课程或从事于电子专业的人士,其毕生的电学常识乃尽粹于斯,这还是当年上课没打瞌睡,经努力、认真、用功学习后才能拥有的辉煌成果,难怪你会把阻抗当成电阻了。 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。 一般音响器材常见被提到阻抗的地方有喇叭的阻抗,前后级扩大机的输入阻抗,前级的输出阻抗,(后级通常不称输出阻抗,而称输出内阻),信号导线的传输阻抗(或称特性阻抗)等。若说到器材内部电子线路及零件的各部份阻抗那就更琳琅满目复杂多多了,非三言两语可说明清楚。在此我们专只约略介绍有关音响器材标示的阻抗具有什么样的实质意义。 由于阻抗的单位仍是欧姆,也同样适用欧姆定律,因此一言以蔽之,在相同电压下,阻抗愈高将流过愈少的电流,阻抗愈低会流过愈多的电流。光是这么简单一句话,你可知道多少音响器材的搭配学问尽在其中吗? 先从喇叭的阻抗谈起。最常见到的喇叭阻抗的标示值是八欧姆,也有很多是四欧姆,这代表了什么呢?这代表了这对喇叭在工厂测试规则时,当输入1KHz的正弦波信号,它呈现的阻抗值是四或八欧姆;或是是在喇叭的工作频率响应范围内,一个平均的阻抗值。它可不是一个固定值,而是随着频率的不同而不同,甚至可能会起伏得很可怕,可能在某频率高到十几廿几欧姆,也可能在某频率低到一欧姆或以下(这种喇叭通常被视为后级的杀手,当年以Apogee最为着名)。好,让我们来脑力激荡一下;当后级输出一个固定电压给喇叭时,依照欧姆定律,四欧姆的喇叭会比八欧姆的喇叭多流过一倍的电流,因此如果你会计算功率的话,你就会明白为何坊间会传言一部八欧姆输出一百瓦的晶体后级,在接上四欧姆喇叭时会自动变为二百瓦的道理。 可是你先别高兴,以为占到了便宜,天下没有白吃的午餐,当喇叭的阻抗值一路下降时,后级输出一个固定电压,它流过的电流就会愈来愈大,你确定你的后级能输出这么大的电流吗?你知道喇叭阻抗一路下降的结果到后来就有点像是把喇叭线直接短路的意思,所以阻抗值有时会低至一欧姆的Apogee喇叭被称作后级杀手的原因,你明白了吧!所有的电晶体后级扩大机,其输出电流的能力均有其设计上的限制,超出此范围,机器就要烧掉了。这也就是为什么一般人常说的:后级的功率不用大,但输出电流要大的似是若非的道理(这个问题以后我们会详细讨论)。 同理,如果有一对喇叭的阻抗很高,像早期15的RogersLS 3/5A,那扩大机的输出功率岂不自动减半?没错!如果这对喇叭的效率又很低的话,你要它发出高音压来,能不动用高功率扩大机吗?江湖有传言:上扬唱片在台北市中山北路的门市有一对15的Rogers LS 3/5A,作为背景音乐之用。推它的扩大机是一部日本早期的Technics综合扩大机而已,但包括刘老总及赖主编在内,均盛赞它好声,你言如何?早期日本扩大机给人的印象就是功率标示很高,但输出电流能力则令人颇有微词,君不见小小一套床头音响组合动不动就是300W吗?可是KRELL的300W后级你想一个人扛是扛不动的。这种高电压低电流的日本扩大机一遇上现在满街都是的低阻抗喇叭,一下子就软脚了,但是如果碰上了高阻抗喇叭,例如……,会不会就成了名符其实的当哈利遇上莎莉呢?搭配之妙啊!岂可等闲视之。 如何保证音箱中晶体管配对的准确度 每次看到号称大电流的后级扩大机,并联十几、二十对功率晶体,都会暗暗吃惊:这些功率晶体都有配对吗?因为有无配对是一回事,配得是否「精确」又是一回事。 不论是美国还是日制晶体,先天上就有个缺点:NPN与PNP的hFE值大不相同,特别是功率晶体。若功率晶体只用一对,并不需要挑选配对,因为推挽动作会让它们彼此平衡。但若是采用多对并联,那NPN应先与NPN配对,PNP应先与PNP配对,然后NPN再与PNP配对。 因为依照上述所言去配对,则不论你并接多少对,它看起来就像只有一对。这种全配对有可能吗?很难,很难,真的很难。试想若是十对并联,岂不是20只晶体hFE都要完全相同?这不是普通的难,几乎是天方夜谭的难。 小讯号晶体的hFE值比功率晶体高出许多,所以数字上的误差可以容许比较大。举例说明,若两只小晶体的hFE经实测分别是180及190,相差是10,但误差率是5.5%。若两只功率晶体,hFE分别是50及60,虽然数字上相差也是10,但其误差率却是20%! 这里有三个重点提供给各网友做参考:一是NPN与PNP最好也能配对─虽然极度困难;二是功率晶体的配对要比小讯号晶体要求严苛,如此才能降低误差率,提高精确度;三是采用高hFE功率晶体。美国Motorola及日本Sanken的功率晶体曾是两大主流,其它厂牌只能零零散散的被选用,但其hFE偏低。后来Toshiba推出高hFE功率晶体,美国Motorola干脆直接向 Toshiba购买;时至2005年,Toshiba功率晶体反而成了主流。 要如何配对?可使用曲线描绘器,也可以用电流表+电压表。方法不困难,可是你手上要有很大的量才有可能做精确配对。故进口机一下子就采用十几对并接,其误差绝对不会低于10%!因为功率晶体配对误差高,采多对并接容易不稳定,于是又将射极电阻之阻值提高,甚至用到0.47Ω以上。 在特性规格上,美国及日本制造的功率晶体,有一个明显的不同,即漏电流Icbo,美制品比日制品高很多,以三用电表量,Motorola某些编号功率晶体颗颗都有轻微的漏电流,特别是2N3440/5415这对TO-5包装的小铁壳,绝对是Motorola晶体中的「漏电王」!你不相信?用指针式电表的电阻最高档(x10K)量C-E脚就知道了。 恒流二极管CRD及小讯号FET在挑选配对时,你会遇上「小数点后一位还是后两位」的问题。若是小数点后一位,如4.8mA及4.9mA,准备两、三百枚就够了。若是要求到小数点后两位,例如4.83mA及4.84mA,那至少要准备个上千枚才有可能。FET挑选,不但要求Idss准确,Vgs也要准确,保证一千只也挑不出几对! 目前音响用电子组件,误差最低的就是电阻,常用品是1%(+/-),也能买到0.5%以下的等级,完全不须花时间做挑选。但电容呢?小塑料电容有低至5%,大容量滤波用电容则不低于20%。所以电容是否要配对,也让人伤脑筋。若是采用电子分音系统,那分频用的RC组件,特别是电容,最好挑选过! 真空管,像300B、EL34、6550,都有人卖配对管,有的两管一对,有的四管一套。但像6922、5751这种双三级管有可能配对吗?它内部两组常有7%的误差!完全没办法解决,也让人伤脑筋。 箱体的Q值,箱体的Q值是什么意思 一,Qtc: 音箱全系统的总Q值, 二,箱体的损耗Q值: Ql-泄漏损耗Q值. 由箱体及单元密封不好造成泄漏产生的,通常这个对于倒相箱影响较大. 一般数值取在5-20, 这个值难以预知。5表示为密封非常良好! 通常预设值为10。 Qa-吸收损耗Q值, 由箱体对声波的吸收产生的,箱内的填充料会大大增强吸收。一个干燥光滑刚性箱体内壁通常约Qa=30-100,大量填充时,将达到3-5。 Qp-倒相管损耗, 由倒相管产生,由于空气通过时,管壁的摩擦,倒相管会有一些阻尼. 事实上,如果你将此Q值设得很小的话(意味着阻尼非常大),那倒相箱就会变成了密闭箱了,呵呵。 题外话,--- 关于Q值的理解:(Q值一般直译成品质因数,这个名称对菜鸟来说有些费解。。。) Q值是一个描绘谐振情形的数学量,它总是伴随阻尼概念(在谐振系统中)被介绍给大家,或者有人把它等同于阻尼值来介绍。对于一个谐振系统,阻尼越大,那么系统的谐振越被钳制,从而导致低Q值的谐振曲线。当阻尼小时,则情况相反,谐振剧烈,形成高Q的曲线。 一般来说,对于扬声器系统,合适的Q值在0.5-1.5之间。低于0.5时,阻尼太强了,此时已无谐振发生。所以,也有人称0.5Q值时,为临界阻尼,称再小的Q值,为过阻尼。 反之, Q大于1.5, 可以叫欠阻尼。 在谐振系统的频率-振幅曲线图上,我们可以直观地看到不同Q值所代表的曲线,以及不同Q值的意义。 喇叭的Q Qes 为喇叭的电Q值,它反映了单元在Fo时于电磁控制下的谐振能力,数值越低,阻尼越强,系统谐振越小。 Qms 为喇叭的机械Q值。它反映了单元在Fo时于机械结构方面的谐振能力,数值越低,阻尼越强,系统谐振越小。 Qts 为喇叭的总Q值(由Qms和Qes并联耦合而成)它反映了单元在Fo处的谐振能力,数值越低,阻尼越强。 系统的Q值 全系统指包括功放输出端、喇叭线、音箱。 这是一个工作时的实际Q值, 与箱体Q值Qtc相比, 这里加入了阻尼系数的因素。 阻尼系数的影响, 包括功放的输出阻尼系数、 喇叭线的阻尼系数、 串连喇叭的阻尼系数(如果有)、分频器的阻尼系数。 所以,为保证不影响原箱的Q值设计, 一般功放要求采用阻尼系数尽量小的, 最最起码是10以上, 但一般要求100以上。 而分频器中主要是电感的电阻的影响,一般是说20以上。线材同样也应该尽量小。 对于串接喇叭, 阻尼系数无可避免的在1以上, 所以一般设计都是并联喇叭的。 阻尼、Q值都是描绘单元在谐振点附近的工作情形, 即谐振点附近的发声变化情况, 对其他频率区域的频响基本无影响。 当然深入细究是有些的,看具体的单元。 各种音箱箱体的特点分析 我们会见到各类箱子,有大有小,有开孔的,有开缝的,有的背后敞开的,还有各种不常见的名字,它们是怎么个样子,各有什么特点? 1,最经典的密闭箱, 它是由无限面板的概念演变过来的,并改变了无限面板造成的喇叭锥盆后面能量浪费的弊病,使音箱可以在相对小的体积内工作,但它仍然是低效的。此箱的优点是小的体积,极小的音染,低频滚降慢,失真小!通常该类箱配用松软锥盆的喇叭(基本等于高Q)。做该箱的要点是注意箱子的密封性! 2,低音反射式(国内惯称倒相式) 这是最普遍见到的箱子,优点是体积适度,中等的效率,在宽频带具良好的声音质量。缺点是低频浑浊,滚降太快!(不适用于低频的hifi重放) 二级倒相式是一种加强低音反射效果的形式,低频的增强效果提升,但也由此造成低频峰前出现一个深谷,并且将低频浑浊失真的效果也加大了!制作调整难度大。 3,敞开后背式(简称OB式,open back or open baffle) 电吉它大都用这箱。它要求配用更硬些锥盆的喇叭。好处式简单易制,缺点是低频钱欠奉。做该箱注意不要把侧板搞过深,否则有共鸣声。 4,传输线式或迷宫式 (Transmission Line and Acoustic Labyrinth ) 该类箱常有庞大的体积,喇叭背后的声波被放进一个数米长的管道反馈出来。管道常常是折叠的,内里使用大量的吸音材料以吸取除低频外的所有声音,减小失真。低频则从管道开口出来,是与喇叭正面声音同相的。特点是低频得到加强的同时,质量相当好。 5,背负载式折叠号角箱(Rear Loaded Folded Horn) 4,传输线式或迷宫式 (Transmission Line and Acoustic Labyrinth ) 该类箱常有庞大的体积,喇叭背后的声波被放进一个数米长的管道反馈出来。管道常常是折叠的,内里使用大量的吸音材料以吸取除低频外的所有声音,减小失真。低频则从管道开口出来,是与喇叭正面声音同相的。特点是低频得到加强的同时,质量相当好。 5,背负载式折叠号角箱(Rear Loaded Folded Horn) 在号角箱,声音经由一个不断扩大截面积的空腔,能量得到放大,并加强了指向。号角制作的难点在单元和号角的接合处,要防止回响共鸣产生失真。音染也是各问题,低频的号角体积巨大,直角的折叠号角优点是够紧凑。缺点是抑制了高频并引起其失真。该箱仍然利用喇叭的正面声音直接输出,虽然效率比倒相箱要高,但还是最低效率的低频号角箱! 6,前负载式直筒号角箱,Front Loaded Straight Horn 此类箱具有极高的效率和方向性!常见于体育场等大场合。但不适合放较低的频率,因为将会要庞大的体积和长度。优点除了前面两点,还有音染小、声音瞬态好、解析力高的的好处。hifi上,常应用于中高频,要求配用 compression driver。 7,前负载折叠号角箱 Front Loaded Folded Horn 经典的W-Bin号角箱就是此类,优点就是高效而又结构紧凑!缺点是带宽较窄、音染大。虽然高效但有人认为低音质量甚至不如倒相箱。 8,带通箱 Band Pass 最近几年才流行起来的箱子设计,一般常见的有4阶和6阶的设计。此类箱的声音质量非常的糟糕,一般不会用于hifi用途!但由于可提升低频并自带低通滤波效果,所以很适合于AV的低音炮设计。 音频扩大机,什么是音频扩大机 人体有五脏六腑,各司其职,暴饮暴食或生活习性不正常,影响到它们的运作,人体就会出毛病。音响器材也是一样,不同的组件各司不同的功能,搭配错误或摆位不正确,即使花费高价,它也一定不会发出好声。从古至今,谈到音响,总是将扩大机列于心脏地位,纵或有人认为聆听室空间及扬声器比它更重要,但它绝对是五脏,而非六腑之一。 Amplifier─扩大机,在本文中谈的是音频扩大机audio amplifier。说它是扩大器或放大器都无所谓,大家能确切了解就好。我们先从功能性谈起,再逐渐由浅至深。 前级扩大机 扩大机的主要作用,是将输入讯号放大至足以驱动负载。但输入讯号的电平( 振幅 )大小不同,讯号的负载阻抗也有高有低,故扩大机为因应不同的状况,常会以不同面貌出现。 Pre Amplifier─前级扩大机,是承受来自CD、 DVD或LP唱盘、FM/AM调谐器、录音座…的讯号,放大后去驱动负载,它的负载是后级扩大机。我们应先明了两点,一是前级扩大机可以不单独存在,它也可以和后级共存。二是除放大讯号去驱动负载外,它还兼具阻抗变换功能。因为前级要承接许多讯源 (source),有CD、调谐器、DVD、录音座,这些讯源的阻抗极可能都不一致,送到前级就可以先做整合。但以目前的电路设计,这些讯源器材都有倾向低阻抗输出特性,比较容易匹配。 你一定看过前级扩大机,背板上有许多镀金座,面板上也有多只旋钮或摇头开关,因此前级扩大机也常被称做控制放大器。最近这些年来,前级扩大机的设计与以往有很大的不同。因CD唱盘、调谐器、录音座、DVD,都被列为高电平(high level)讯源,虽然面板上有四或五档选择,但你可以随意接,因它们都是高电平讯源,没有实质上的差别。 当然,有高就有低,相对于高电平的就是低电平(low level)讯源,以前风行的LP黑胶唱片系统,就是属于低电平讯号源。 LP系统包括转盘、唱臂及唱头,其唱头大致以MM动磁式及MC动圈式这两种为主流。MM唱头的输出电压只有高电平讯源的五十分之一,甚至三百分之一。而MC唱头的输出,更是低到不及MM唱头的二十分之一。所以接MM唱头,它的讯号要先单独放大,然后再送入高电平放大器做第二次放大。接MC唱头更费事,要先单独放大,然后再经过MM唱头放大,最后再送入高电平电路做第三次放大。若是想省掉一级放大,就可以选用高输出MC唱头。 低电平讯源不只输出电压(电平、振幅)低,MM及MC唱头还要经过「反RIAA」网络,而此反RIAA网络,在仅量遵守美国RIAA协会之规范下,每家厂商都有其不同的计算值,这在当年还是一种百花齐放式的特色。 环视现今前级,具备低电平放大的已很少见,有些前级在面板上直接注明high level高电平放大,无法匹配LP系统。至于给MC唱头用的前端放大器(Pre Preamp.)或升压器(Set Up Trans.),大多也停产多年,初入门者大概只能从图片缅怀过去的风光岁月。 很少人认为LP唱片的音质不够水平,至今仍有极少数发烧友坚持使用LP。但CD系统在操作上实在方便,损耗性也低,软件也轻巧易于携带;而且国外著名唱片厂,新录音只发行CD,不再发行LP唱片,因此LP很快式微。再加上最近DVD快速成长,若SACD或DVD audio流行,LP就很可能真的完全没市场。 (注:目前风行的DVD影片,其数字音频规格48KHz/16bit,不是96KHz/24bit。而DVD audio的规格虽然确定是192KHz/24bit,但SACD的取样频率更高过2MHz;纯以音质表现论,SACD应优于DVD audio。) 接近21世纪的前级扩大机还有别的不同,早期的产品都设有tape monitor转录功能,那时的音响迷常会购买卡式录音座,而为了防止因「录音死循环路」产生回授啸叫,一定要有tape monitor开关。几年前,笔者在设计某款前级,为了防止录音死循环路,而发明一种三段开关接法;由于线路接法刊登于《音响技术》杂志上,故此设计也一直被国产中荣音响拿来用在他们的前级上,有机会再将此设计刊登在网站上。 但是如同LP,曾经风光过的卡式座也早就退流行,即便是三磁头双驱动轴高级机种,也几乎是全面停产,Dolby C/Dolby S也都未能改变卡式座被音响市场淘汰出局的命运。所以当你现在有一笔预算,请音响店老板组合一套音响时,他的器材名单上绝对没有LP唱盘,也不会有卡式录音座。 省略tape monitor,前级扩大机最重要的操作功能就只剩下讯源切换选择及音量大小控制。某些机种至今依然保有MM唱头放大器,算是奉送。至于tone control(高、低频音调控制),以及loudness(响度控制),愈是Hi-End机种,愈是看不到。 因现在的前级,特性极优,响应有如直线,已不需额外的添油加醋,若想购买具高、低音控制的前级,可能还会遭人耻笑。正因响应平直,高电平前级也被称为平坦放大器(Flat Amp.)。 后级扩大机 后级的说法亦有不同,后级扩大机或功率扩大机,Main Amp.或Power Amp.皆可。如同前级扩大机,后级扩大机也是将输入讯号放大至足以驱动负载。但实际操作时,两者却有极大的不同。 (Amp.为Amplifier的简写) 后级的输入讯号很单纯,就是承接前级的输出。但后级的负载是喇叭,这就是让许多音响迷,甚至杂志评论写手搞不定之处。后级是前级的负载,是高阻抗负载;喇叭是后级的负载,是低阻抗负载。看起来差不多,只差一个字,但阻抗的一高一低却造成「很容易推」或「推不动」现象;负载何其重要,因此希望你能真正的搞懂。 当前级接上高阻抗的后级,它主要提供适切的输出电压,因为后级扩大机的输入阻抗很少低于10KΩ,有这种后级,但不多见,一般都是47KΩ左右。 当后级扩大机接上低阻抗的喇叭,它不但要提供适切的电压,也要提供足够的电流。除少数特例,目前喇叭阻抗很少高过8Ω,甚至还低于4Ω。而1KΩ=1000Ω,差异是不是很大? 所以Hi-End后级,不但讲求大功率输出,动辄数百瓦,每声道独立装箱,还特别注明是大电流设计,当负载阻抗降低一半,输出功率会提升至原来的两倍。若是输出电流能力不足,当负载阻抗降低时(某些喇叭在工作时,例如Dynaudio,它的阻抗会随着讯号频率降低而降低),若扩大机输出电流不够,就会产生切割─clipping。 综合扩大机 前级与后级装在一起,就是综合扩大机(Integrated Amp.)。后级做成mono(单声道)很常见,前级做成mono也曾经有过,但综合扩大机一向以单机在市场上出现,笔者从未看过mono综合扩大机。或许你会想:又是单机,又是前级+后级,所以综合扩大机不但价格低,音质也不会很好。 就算是身经百战的杂志总编辑,也不会随口说你错。因为综合扩大机有体型、功率、组件上的限制,故以同品牌论,综合扩大机的价格及质素都没有分离机种高。但是扩大视野,环顾一下,或许A牌综合机优于B牌分离式机型。有些综合机并非数万元就可摆平,想将它请回家供奉,得花费不少银子。 分离式机种在换机时好像比较方便,因前、后级是独立的,power不够换power,前级依然可留着用。或是将晶体管前级换成真空管前级,后级依然可留下来用。但综合机也有巧思,背板上增设Pre Out及Main In插孔,前级与后级就可分开使用。正常操作时,在Pre Out及Main In端子间插上U形铜棒即可。但并非每台综合机都有前级输出及后级输入端子,因这种做法虽有利于使用者比机斗机,但也可能会降低讯号杂音比,故亦有厂商将此功能省弃。 收音扩大机---接收机 目前LP与卡式座几乎已完全退出音响市场,FM/AM调谐器的命运也好不到那去,这几年从未见杂志媒体的器材评论有谈调谐器的。多年前,国外有厂商想发展AM Stereo立体声调幅广播,但最后也没成功。由于收音扩大机(Receiver)是将前级放大、后级放大、调谐电路三者融合在一起,故它是一机三用。 欧美厂商对于接收机的生产,好像从未热衷过,纵或有产品上市,机种也不多。这是日本厂商的专利,每个品牌都有多款机种。日本公司拼命搞接收机,在大约二十多年前,曾经走火入魔,功率愈做愈大,你60W,他80W,我100W。彼此玩到最后,竟然出现每声道330W超级大功率接收机!最后因音质不佳,弄到两败俱伤,消费者和厂商都玩不下去了。 如果市面上有这种接收机,价格也不高的话,真是自用送人两相宜。日制品曾出现前级+FM tuner机种,构想不错,但却未流行,资历不深的音响迷可能还不知道有这种机器。 家庭剧院环绕---AV扩大机 这种AV扩大机才是二十世纪末~二十一世纪音频扩大机的主流,现今音响入门者已很少着眼于纯听音乐,其兴趣是DVD家庭剧院外带卡拉OK。AV环绕扩大机,集所有操控于一身,等闲之辈如LKK老扣扣,手握遥控器,可能还不知该按那个键。完整的AV扩大机,包括有MM唱头低电平放大、高电平放大、及多声道功率放大,此外还内藏最重要的杜比AC-3及dts两种5.1声道环绕处理器。 AV扩大机主要特色是将音频audio及视频video结合在一起,音质上或许有所妥协,但它确是普罗消费者的最爱。一面看光盘,一面听多声道环绕音效,是不是比纯听音乐更惬意? 环绕处理技术的进步,以及操控多样化,都对AV扩大机的销售有直接帮助。Dolby Pro-Logic定向逻辑环绕已不吸引人,新Dolby AC-3才是大家谈论重点,dts的加入,更增加了热络。假设以dts看影片,以DSP听唱片,若一机就有此功能,何不花一次钱来换取享受?日本厂商就是看准这点,AV扩大机一直是生产在线的主角。 有一点要特别提出来说明:日本YAMAHA发展的DSP,虽然也是多声道环绕系统,但原意是针对听音乐用,与影片video部份无关。但DSP的理论若直接加在一般聆听环境上,是有冲突的。因为你的聆听空间要先规划成类似无响室,才能发挥DSP仿真各式音乐厅的功效。很多音响评论高手,到现在都不知道这个道理。 欧美厂商以Hi-End自居,原本不肖生产AV环绕扩大机,但眼见市场日益壮大,终于按耐不住,也投入AC-3/dts处理器及多声道后级之生产。但它们仍秉持音质至上态度,产品花样不及日制品,但价格及质素都比日制品高。 日制AV扩大机操控特性是琳琅满目,还具有Y/C分离S输出入端子,以及最top的色差端子;操作时还得接上电视。死硬派发烧友虽然瞧不起AV,但AV环绕已袭卷全球,想躲它也不容易。事实上,当音频与视频相撞时,音频的重要性必然是大幅衰退,或仅是视频的附属品。谁说观赏DVD影片一定要搭配5.1声道环绕?用两只喇叭就不行? 我曾经讲过:眼睛长在耳朵的前面,当你观赏电影或盘片,一旦眼睛被画面(电影情结)吸引,你的耳朵就没什么作用了。在杂志上大力鼓吹AC-3及dts的众编辑写手,他的家里几乎都只有一对喇叭!根本不在意有无环绕音效。 晶体管或是真空管? 不仅是音响,就算是比较普及的计算机,其原始组件都是真空管。因此某段时期,扩大机都是管机,它所匹配的喇叭,也都是高效率型式。半导体组件兴起后,真空管才逐渐淡出市场。相比之下,半导体固态组件有寿命长、热度低、输出功率高的优点。因此很多厂商也放弃真空管,开始采用固态组件来设计扩大机。而真空管生产厂商,有些也关厂,做别的生意去了。 世事难以预料,这几年已遭淘汰的真空管竟然回头了,而且不是悄悄然,是成群结队的与晶体管相庭抗礼,来势汹汹。不但管机之生产如雨后春笋,某些已绝迹多年的真空管也重新问市。 面对晶体机和管机,消费者常有无所适从之感,到底那一种声音比较好?有人批评晶体机又冷又硬,没有管机的温暖,甚至国内许多报社的记者也如此传述。这种论点是绝对的错误!不论晶体管或真空管,只要设计得好,都能发美声。设计欠妥,用上再昂贵的真空管也得不到美声。有人抛弃晶体机改用管机,但听了十多年管机再换成晶体机的,也是大有人在。例如几年前,三重某医院副院长,在换了Brumaster晶体后级之后,才发现十多年来听管机都听错了! 晶体管和真空管争论了不只二十年,笔者看法是:它俩的音色愈来愈接近;管机有晶体机的通透,晶体机也有管机的温暖。将真空管与晶体管结合在一起的混血式设计,就是期望能兼具它俩的优点。但没这么幸运,若不是真正高手设计,有可能得到四不像的声音表现。不过,管机后级输出功率普遍偏低,搭配喇叭宜选用高效率、阻抗恒定型。若是玩AV就没有选择条件,因为AV扩大机百分百都是晶体管机。 在音频放大线路中,许多组件要求配对,特别是输出级主动组件。对于真空管来说,其配对的精准度通常比晶体管低。以6922/E88CC这种常见的双三极为例,其内部两只三极管的误差常在10%以上。半导体组件,若是复合型式,其特性误差很少会高过5%,有些超匹配FET,出厂内部设定误差甚至只有0.3%;真空管就不可能有这种能耐。国内有位温燕萍先生,以前曾开过战斗机,这几年则专精于真空管的测试与配对,他的配对就很精确,有兴趣的网友可和温先生联系,电话:2931-1530。 有源或无源前级 有源─active(主动),简单的说法就是吃电;无源(被动)passive就不吃电。故此源乃电源之源,非指讯号源。后级扩大机不可能无源,因被动组件无法提供足够的电压及电流放大。MC动圈唱头可接升压器,此升压器就是标准的无源或被动式器材,它具电压放大功能。前级也不可能是无源,虽然它的输出电压及输出电流都比后级低,但被动组件也不可能轻易达成提供输出电流。有一种被动式前级,内部无任何组件,只有输入讯号源选择及音量衰减器,再加上输出及输入座和配线,就组合成一台前级。说它是被动式前级,在学理上是讲不通的,因为它没有任何放大作用。在工业上,则有类似器材,就直接称为音量衰减器。如果被动式前级选用高价音量衰减器,例如英国Penny+Giles(P&G),输入输出端子采用WBT,若是进口品牌,保证一台售价超过新台币30,000元! 实际操作上,我们真的可以不需要前级扩大机,有些综合扩大机也未设前级,此时后级的增益就要设定得比较高。音量衰减器对音质有绝对性影响,一只质优音量,有时比一台价廉的前级扩大机还贵。不论是电阻级进式,或连续旋转式,都有高级品与低级品,有人坚持Holco电阻级进式,但P&G连续可调式也有Hi-End厂在用。例如丹麦Dynaudio在生产Arbiter前级时,曾试用过市面上能买到的音量控制器,有多段式、有无段式,最后选择了音质最佳的英国制造导电塑料无段式P&G音量。美国Mark Levinson前级以往也一向采用P&G音量衰减器,从不用电阻级进式音量。 工作类别-A类?AB类?B类? 请记住负载的重要性,因扩大机诸多特性皆与负载有关。前级扩大机都是A类,道理很简单,它的负载(后级)是高阻抗,只要设定一点点电流就能让它工作在A类。但是后级扩大机的负载是低阻抗的喇叭,电流要设定的很高才能让它工作在A类。但A类工作虽然失真低,热度及耗电却非常高,单声道A类100W后级的静态功率消耗高达270W。 晶体后级以AB类为主流,但在设计上采主动式偏压,让偏流随着输入讯号变动,这样就比较接近A类的低失真,而且没有A类的高热及功率消耗。同样是50W输出,有人认为A类扩大机比AB类扩大机够力。不是没道理,因A类工作时,电流/耗损都高,故组件选用特别考虑周到。但AB类扩大机设计得当,特别是大电流,音质也绝不逊于A类。因为A类并非万灵丹,它解决了某些问题,但也引发其它问题,特别是因高热极易造成功率晶体特性大幅变动,例如hFE值降低、漏电流升高。 独立组件或OP IC Hi-End机几乎都使用独立组件,如晶体管、FET、MOS FET,很少用OP运算放大器。你可以不喜欢IC,但不能说采用IC是简化电路的偷工行为。要说简单或复杂,IC内部电路是绝对的复杂,里面包含了上百或上千个组件,只是当我们拿IC用在线路中,它的周边组件比较少。确实有不少音响设计者对IC无任何好感,理由也颇充分,因IC的电压、电流的设定,已在生产在线完成,设计者面对它似乎只有英雄无用武之地。 请注意:某些电路必定要采用IC,如杜比环绕译码、D/A converter--DAC;完全不可能采用晶体管去构筑。某些高质量IC也很贵,比用独立组件还花钞票,也有Hi-End厂商也在高价机内使用IC,例如Jeff Rowland。但是不要看到8只脚、黑黑的塑料包装,就一口认定它是IC,它有可能是配对FET而不是IC。 观视机器内部,日制AV扩大机较为人诟病,因采大量生产自动插件,再加上功能又多,故组件排列较不整齐,配线也很乱。有些手工搭棚的管机,内部配线漂亮整齐,极为可观。除放大组件外,电源稳压也有IC与独立组件之分。在DAC或日制环绕扩大机中,稳压组件的主角几乎都是三只脚的IC,但若能改成独立组件稳压电路,音质也常会明显提升。 平衡式或非平衡式 平衡式balanced端子在许多音响迷心目中是Hi-End代表,代理商及经销商也往往会告诉消费者:平衡式接驳比较好。专业器材因联机甚长,例如超过三十公尺,必得以平衡线做传输。音响器材并非一开始就加入平衡式接续,虽厂商言之凿凿,平衡接头仍未能成为家用音响的普遍性标准。 音响的平衡,与长距离连接无关,是以高音质做考虑,因此电路设计一定比非平衡式复杂。为达到平衡,在背板上必须加装有Cannon/XLR三插输入端子。有些厂商走快捷方式,用简单的反相电路。甚至有些Hi-End机,例如瑞士名厂Revox,它完全没有平衡电路,它的平衡端子是假的,纯粹用来唬外行人。 真正内行的发烧友,也会知道另一个讯息:一台后级扩大机以非平衡和平衡做接续,平横式接法会造成杂音增高、频率响应变窄、失真提升。这并不表示平衡式接驳较差,一切都看设计。当然进行晶体机大多有平衡式端子,管机则较为罕见。 听说不关机比较好 终年不关机的音响迷并不多见,总是担心这担心那。有些晶体前级根本未设电源开关,插上电源线就处备战状态,例如本人制作的前级。你最好安心听原厂建议,不要自做聪明利用电源排插开机关机,当心开关机时的脉冲透过后级将喇叭烧了。即使不关机,前级也消耗不了多少电。但后级就很难说,大功率纯A类机种就明显耗电。若是真空管机,不论前级或后级,不使用时最好关机,除可省电外,也能维持真空管寿命。 晶体机和管机都要温机,也就是操作一段时间后,音质表现才会正常。某些组件或许需要较长时间的温机(run in),若run in不够绝对也没有好声。你也可以利用小技巧,让扩大机在关机时兼具温机功效,这样开机时不但没有脉冲,也很快的在每次开机后,就让扩大机达到最佳工作状态。但是若预知会停电,最好还是关机,否则电一来就有可能因滤波电容瞬间充电烧断保险丝。注意:真正的run in不只是开机,要让系统发出声音! 音响领域,甚少存在有一成不变或「放诸四海皆准」的定律,特别是音质优劣认定及器材匹配、喇叭空间摆位…等非数据式论点,一向是百花齐放。而且各音响专家之观点,甚至具有「互相矛盾」的差异性,这是消费者最迷惑之处,因为他们很难听到真话。 因现在的前级,特性极优,响应有如直线,已不需额外的添油加醋,若想购买具高、低音控制的前级,可能还会遭人耻笑。正因响应平直,高电平前级也被称为平坦放大器(Flat Amp.)。 66B万贯书生小家电 后级扩大机 66B万贯书生小家电 后级的说法亦有不同,后级扩大机或功率扩大机,Main Amp.或Power Amp.皆可。如同前级扩大机,后级扩大机也是将输入讯号放大至足以驱动负载。但实际操作时,两者却有极大的不同。 (Amp.为Amplifier的简写) 66B万贯书生小家电 后级的输入讯号很单纯,就是承接前级的输出。但后级的负载是喇叭,这就是让许多音响迷,甚至杂志评论写手搞不定之处。后级是前级的负载,是高阻抗负载;喇叭是后级的负载,是低阻抗负载。看起来差不多,只差一个字,但阻抗的一高一低却造成「很容易推」或「推不动」现象;负载何其重要,因此希望你能真正的搞懂。 66B万贯书生小家电 当前级接上高阻抗的后级,它主要提供适切的输出电压,因为后级扩大机的输入阻抗很少低于10KΩ,有这种后级,但不多见,一般都是47KΩ左右。当后级扩大机接上低阻抗的喇叭,它不但要提供适切的电压,也要提供足够的电流。除少数特例,目前喇叭阻抗很少高过8Ω,甚至还低于4Ω。而1KΩ=1000Ω,差异是不是很大? 66B万贯书生小家电 所以Hi-End后级,不但讲求大功率输出,动辄数百瓦,每声道独立装箱,还特别注明是大电流设计,当负载阻抗降低一半,输出功率会提升至原来的两倍。若是输出电流能力不足,当负载阻抗降低时(某些喇叭在工作时,例如Dynaudio,它的阻抗会随着讯号频率降低而降低),若扩大机输出电流不够,就会产生切割─clipping。 66B万贯书生小家电 综合扩大机 66B万贯书生小家电 前级与后级装在一起,就是综合扩大机(Integrated Amp.)。后级做成mono(单声道)很常见,前级做成mono也曾经有过,但综合扩大机一向以单机在市场上出现,笔者从未看过mono综合扩大机。或许你会想:又是单机,又是前级+后级,所以综合扩大机不但价格低,音质也不会很好。 66B万贯书生小家电 就算是身经百战的杂志总编辑,也不会随口说你错。因为综合扩大机有体型、功率、元件上的限制,故以同品牌论,综合扩大机的价格及质素都没有分离机种高。但是扩大视野,环顾一下,或许A牌综合机优于B牌分离式机型。有些综合机并非数万元就可摆平,想将它请回家供奉,得花费不少银子。 66B万贯书生小家电 分离式机种在换机时好像比较方便,因前、后级是独立的,power不够换power,前级依然可留着用。或是将电晶体前级换成真空管前级,后级依然可留下来用。但综合机也有巧思,背板上增设Pre Out及Main In插孔,前级与后级就可分开使用。正常操作时,在Pre Out及Main In端子间插上U形铜棒即可。但并非每台综合机都有前级输出及后级输入端子,因这种做法虽有利于使用者比机斗机,但也可能会降低讯号杂音比,故亦有厂商将此功能省弃。 66B万贯书生小家电 收音扩大机---接收机 66B万贯书生小家电 目前LP与卡式座几乎已完全退出音响市场,FM/AM调谐器的命运也好不到那去,这几年从未见杂志媒体的器材评论有谈调谐器的。多年前,国外有厂商想发展AM Stereo立体声调幅广播,但最后也没成功。由于收音扩大机(Receiver)是将前级放大、后级放大、调谐电路三者融合在一起,故它是一机三用。 66B万贯书生小家电 欧美厂商对于接收机的生产,好像从未热衷过,纵或有产品上市,机种也不多。这是日本厂商的专利,每个品牌都有多款机种。日本公司拼命搞接收机,在大约二十多年前,曾经走火入魔,功率愈做愈大,你60W,他80W,我100W。彼此玩到最后,竟然出现每声道330W超级大功率接收机!最后因音质不佳,弄到两败俱伤,消费者和厂商都玩不下去了。如果市面上有这种接收机,价格也不高的话,真是自用送人两相宜。日製品曾出现前级+FM tuner机种,构想不错,但却未流行,资历不深的音响迷可能还不知道有这种机器。 66B万贯书生小家电 家庭剧院环绕---AV扩大机 66B万贯书生小家电 这种AV扩大机才是二十世纪末~二十一世纪音频扩大机的主流,现今音响入门者已很少着眼于纯听音乐,其兴趣是DVD家庭剧院外带卡拉OK。AV环绕扩大机,集所有操控于一身,等閒之辈如LKK老扣扣,手握遥控器,可能还不知该按那个键。完整的AV扩大机,包括有MM唱头低电平放大、高电平放大、及多声道功率放大,此外还内藏最重要的杜比AC-3及dts两种5.1声道环绕处理器。AV扩大机主要特色是将音频audio及视频video结合在一起,音质上或许有所妥协,但它确是普罗消费者的最爱。一面看光碟,一面听多声道环绕音效,是不是比纯听音乐更惬意? 电子管,电子管是怎样工作的 电子管是一种在气密性封闭容器(一般为玻璃管)中产生电流传导,利用电场对真空中的电子流的作用以获得信号放大或振荡的电子器件。早期应用于电视机、收音机扩音机等电子产品中,近年来逐渐被晶体管和集成电路所取代,但目前在一些高保真音响器材中,仍然使用电子管作为音频功率放大器件(香港人称使用电子管功率放大器为“煲胆”)。 电子管在电器中用字母“V”或“VE”表示,旧标准用字母“G”表示。 电子管引脚的识别 电子管脚的识别 电子管的基本参数 1.灯丝电压:V; 2.灯丝电流:mA; 3.阳极电压:V; 4.阳极电流:mA; 5.栅极电压:V; 6.栅极电流:mA; 7.阴极接入电阻:Ω; 8.输出功率:W; 9.跨导:mA/v; 10.内阻: kΩ。 电子管的发明与盘尼西林以及轮胎的发现一样具有戏剧性:在实验室中靠近窗户几个未清洗的实验皿,不经意从窗外飘来一些霉菌落在实验皿上,科学家惊讶的发现某些落入实验皿中的霉菌,可以抑制坏菌的扩散与成长,加以实验分析之後这种霉菌就成为了有效且使用广泛的抗生素之一;同样的情景也发生在研究橡胶的实验中,偶然打破装在玻璃杯里的硫黄,倒入融化的橡胶液体中,凝固後橡胶变成了坚硬且颇富韧性的材质。电子管当然不是无缘无故 做几片金属板封装在抽真空的玻璃瓶里进行实验的,它与发明大王爱迪生有著一段故事。 电流与电子流动的方向恰巧相反 在此之前试问一个小问题:电路分析上「电流」的方向与实际上「电子」流动的方向是否相同?答案是否定的,电流与电子流的方向是恰巧相反的。过去的科学家无法观察电子流动的方向,于是统一说法,将电池的某一极设定为正极,其电压为正电压,电流由正极流至负极而形成一个封闭的回路。由於大家统一说法与作法,因此多年来并没有发生任何冲突之事,直到了近代科学家有了更精良的设备,观察之後遂推翻了之前的说法:「原来电子是由电池的负端流出来的」!(换言之,电子是从扩大机的喇叭负端流出,而从喇叭正端回流的) 身为使用者并不需要在意何者为真,只要按照科学家的结论行事就可以了。说这一段就是因为当初爱迪生发明灯泡之後,发现他生产的灯泡灯丝老是从正极端烧断,于是进一步实验在灯泡中加入一块小金属板,点灯之後将金属板连接电表,分别施以正电压以及负电压,观察电流的情形。 对于当时的科学而言,位于真空状态下且不连接的金属板,不论如何连接是不可能产生电流的,但怪事发生了,爱迪生发现某种物质(其实就是电子)会透过金属板,会从电池的负极腾空「跳」到正极,此发现当然激起更大的实验动机,此现象便称为「爱迪生效应」。这也是科学家首次质疑电流流动的方向,以及自由电子在空间中流动的现象。 金属之所以能导电,就是因为金属的自由电子较多,便于电子的相互流动,因此电子材料必须由导电性佳的材质制成。电子还有个特性,带负电的电子容易受到正电压的吸引,所谓同性相斥、异性相吸。又从爱迪生效应中得知,当加热金属物质时,活跃于质子外围的自由电子容易产生游离现象,温度高导致电子活性增强,此时若空间中有一正电压强力吸引,游离的电子就会在空间中流动。基於这几个当时已被了解的知识,弗来明(J.A. Fleming)于1904年制造出第一支二极电子管,李德科士(De Forest Lee)将二极管加以改良,于1907年制造出第一支三极管,既然成功研发了二极管,电子管的应用开始实现,电子管的发展从此一日千里。(详见图1) 三极管是最基本的电子管 电子管又称「真空管」 (Vacuum Tube),代表玻璃瓶内部抽真空,以利于游离电子的流动,也可有效降低灯丝的氧化损耗。二极管、三极管、五极管,从字面意义代表电子管内部基本「极」的数量。电子管拥有三个最基本的极,第一是「阴极」(Cathode,以K代表):阴极当然是阴性的,它是释放出电子流的地方,它可以是一块金属板或是灯丝本身,当灯丝加热金属板时,电子就会游离而出,散布在小小的真空玻璃瓶里。第二个极是「屏极」(Plate,以P代表),基本上它是电子管最外围的金属板,眼睛见到电子管最外层深灰色或黑色的金属板,通常就是屏极。屏极连接正电压,它负责吸引从阴极散发出来的电子(利用异性相吸的原理),作为电子游离旅行的终点。第三个极为「栅极」(Gird,以G代表),从构造看来,它犹如一圈圈的细线圈,就如同栅栏一般,固定在阴极与屏极之间,电子流必须通过栅极而到屏极,在栅极之间通电压,可以控制电子的流量,它的作用就如同一个水龙头一般,具有流通与阻挡的功能。 引擎运转必须要有燃料,电子管的工作动力为电能。电子管的电极当中,最重要的应属阴极,它负责将电子释放出来,作为一切工作的基础。 最早的电子管由于构造原理简单,直接将灯丝充当阴极使用,换句话说,当灯丝点亮时,由于灯丝温度提高,电子就从灯丝释放出来,经过栅极直奔屏极。这种电子管就叫“直热式电子管”。 300B,就是属于这种类型的电子管,相较於其他现代化的五极电子管, 300B 的构造简单,输出功率也低。 灯丝(Filament)可以使用不同的材质制成,由于直热式三极管直接将灯丝当作阴极,因此灯丝的特性直接影响著直热式电子管的性能。基本上,电子管的灯丝主要可分成三种材质构成,第一种当然是耐高温的钨丝。将纯度高的钨丝抽成细丝,卷绕在电子管的最内层,通电之後即可升高温度。但钨丝必须加温到两千多度时,电子才能发散,因此以钨丝制成灯丝的电子管点燃时,会发出光辉耀眼的亮度,同时温度高得吓人。别意外,不是电子管要烧掉了,而是它本来如此!但将钨丝点亮需要消耗较大的电力,优点是钨丝甚为耐用,普遍运用于较大功率或长寿命的电子管上。在某些情况下这种真空管的寿命可达数万小时,拿来当作家里的灯泡,既耐用又有装饰的作用,一举数得! 另一种灯丝采用钍钨合金,它只须将灯丝加温至一千多度即可工作,相较之下较省电力。最常使用的应为氧化硷土灯丝,它的作法是在灯丝外,涂上一层厚厚的氧化硷土,看起来接近白灰色的物质,它只需要加温至约70度(看起来约为暗红色),即可获得足量的电子,因此工作温度最低、也最节省电力,一般而言只须供应6.3V左右的直流,就可以正常工作。 直热式电子管当然有它天生的优点,但却有一个致命的缺点,那就是阴极容易因灯丝的温度变化而改变特性。当灯丝电压变动时,或以交流电供应灯丝时,阴极呈现在不稳定的状态下。因此有人主张直热式电子管应采用直流供电,也有人强调必须以交流供电以免损伤阴极,这种争论过去在音响界早已成为一个争论不休的话题。 旁热式电子管的稳定度较高 为了解决直热式电子管的灯丝问题,电子管设计者决定让灯丝与阴极分家独立,在灯丝的旁边套上一圈金属套筒,让灯丝直接对金属板加热,电子从金属板散发出来,这种加热方式就称为「旁热式电子管」。 如此,电子管似乎就稳定许多了,由于金属套筒的体积与储热量高高大于传统的灯丝,因此即使灯丝暂时的温度变动,甚至暂时几秒的停止加热,金属板的温度变化改变有限,这也就是为什么某些电子管机关机之後,它还能唱个十几秒的主要原因。既然阴极与灯丝独立,阴极板必须由灯丝间接加热,于是灯丝再度改成钨丝材质,以求耐久性,并在钨丝外层涂上一层白磁,一方面绝缘,另一方面也有定型的效果。由于间接加热效果较差,阴极金属板上会涂上钍、钡或其他有利于电子发散的物质。也因此,电子管的金属极板看起来总是灰黑色,不像正常的金属板,也由于制作组装时必须仰赖手工,因此金属板上总会留下许多细小的刮痕,用家购买电子管时不必意外担心。 直热式电子管与旁热式电子管使用上的差异呢?对于一般使用者而言是不必在乎直热式电子管与旁热式电子管的不同,但对于设计者而言,旁热式电子管由于间接加热的关系,灯丝电流通常较大,而且旁热式的结构必须对阴极金属板加温,因此开机后有一段缓慢的加温期,如果是前级,则必须做好延时设计,以免开机的脉冲伤了后级。 依据发展的过程来看,最早的电子管当然是直热式的设计,二极管是首先被发展出来的,二极管的功能犹如现在的二极晶体管,具有整流以及收音机内部检波的功能,二极管经过适当的设计,也可以成为稳压管。由于电子管的工作原理很简单,因此第一支电子管被成功的制造出来之後,就有许多科学家加入研发的工作。第一支三极管在l907年被一位美国科学家成功制造,从此便开启了无线电时代的来临,告别留声机,进入扩大机时代。 电子管的工作原理 现在,我们更进一步来看看最简单的电子管工作原理。 将一支电子管拆开之後,绘於附图之中,从图可知,当点亮灯丝,灯丝温度逐渐升高,虽然是真空状态,但灯丝温度以辐射热的方式传导至阴极金属板上,等到阴极金属板温度达到电子游离的温度时,电子就会从金属板飞奔而出。此时在电子是带负电的,在屏极加上正电压,电子就会受到吸引而朝屏极金属板飞过去,穿过栅极而形成一电子流。栅极犹如一个开关,当栅极不带电时,电子流会稳定的穿过栅极到达屏极,当在栅极上加入正电压,对于电子是吸引作用,可以增强电子流动的速度与动力;反之在栅极上加入负电压,同性相斥的原理电子必须绕道才能到达屏极,若栅极的结构庞大,则电子流有可能全数被阻隔。 利用栅极可以轻易控制电子流的流量,将输入讯号连接在栅极上,并且加入适当的偏压,并且在屏极串上一个电阻,藉此即可达到讯号放大的目的。电子管也与晶体管一样,具有多种放大形式(事实上,晶体管的放大形式是从电子管延伸过来的应用),结合不同的电子材料如电阻、电感、变压器以及电容等,就可以创造出千变万化的电子产品。 观察电子管的管壁内部可以看到一块类似水银的薄膜黏附在玻璃壁上,这是延长电子管寿命的设计。除了极少部份低压电子管外(并非指工作电压低,而是指电子管内部存在低压气体),大部分的电子管必须抽真空才能正常工作。电子管的接脚为金属脚,虽然以玻璃封装,但玻璃与金属接脚之间仍然有漏气的机会。玻璃管内的金属蒸镀物(即消气剂),会与气体进行作用,它存在的目的就在于吸收气体,以维持电子管内部的真空度。这一层薄薄的金属物氧化之後,会变成白色,表示电子管已经漏气不行了,所以若打破电子管时,这一层蒸镀物质也会变成白色,因此购买老电子管时,也要注意蒸镀物的情况,像水银一样的为佳,若开始苍白、剥落时,就表示这支电子管已经迈入老年了。 扬声器常用参数及其物理意义是什么? 扬声器的参数是指采用专用的扬声器测试系统所测试出来的扬声器具体的各种性能参数值.其常用的 参数主要包括:Z,Fo,η0, SPL,Qts,Qms,Qes,Vas,Mms,Cms,Sd,BL,Xmax,Gap gauss.以下分别是这几种参数其物理意义. 1.1 Z:是指扬声器的电阻值,包括有:额定阻抗和直流阻抗.(单位:欧姆/ohm),通常指额定阻抗. 扬声器的额定阻抗Z:即为阻抗曲线第一个极大值后面的最小阻抗模值,即图1中点B所对应的阻抗值. 它是计算扬声器电功率的基准. 直流阻抗DCR:是指在音圈线圈静止的情况下,通以直流信号,而测试出的阻抗值. 我们通常所说的4欧或者8欧是指额定阻抗. 1.2 Fo(最低共振频率)是指扬声器阻抗曲线第一个极大值对应的频率. 单位:赫兹(Hz). 扬声器的阻抗曲线图是扬声器在正常工作条件下,用恒流法或恒压法测得的扬声器阻抗模值随频率 变化的曲线. 1.3 η0(扬声器的效率):是指扬声器输出声功率与输入电功率的比率. 1.4 SPL(声压级):是指喇叭在通以额定阻抗1W的电功率的电压时,在参考轴上与喇叭相距1m的点上 产生的声压.单位:分贝(dB). 1.5 Qts :扬声器的总品质因数值. 1.6 Qms:扬声器的机械品质因数值. 1.7 Qes:扬声器的电品质因数值. 1.8 Vas(喇叭的有效容积):是指密闭在刚性容器中空气的声顺与扬声器单元的声顺相等时 的容积.单位:升(L). 1.9 Mms(振动质量):是指扬声器在运动过程中参与振动各部件的质量总和,包括鼓纸部分,音圈,弹波以 及参与振动的空气质量等.单位:克(gram). 1.10 Cms(力顺):是指扬声器振动系统的支撑部件的柔顺度.其值越大,扬声器的整个振动系统越软.单 位:毫米/牛顿(mm/N). 1.11 Sd(振动面积):是指在扬声器的振动过程中,鼓纸/振膜的有效振动面积.单位:平方米(m2). 1.12 BL(磁力):间隙磁感应强度与有效音圈线长的乘积.单位T*M). 1.13 Xmax:音圈在振动过程中运动的线性行程.单位:毫米(mm). 1.14 Gap Gauss:间隙磁感应强度值.单位:特斯拉(Tesla). AV功放和Hi-Fi功放,AV功放和Hi-Fi功放异同点有哪些? AV功放 即视听系统中使用的放大器,用于家庭影院视听系统中,功放齐全。AV功放一般具有前置、中置、环绕等4~7个声道功率输出,有的带有杜比定向逻辑环绕解码器或AC-3解码器、DSP数码声场处理、调频/调幅数字调谐收音功能,还具有多种音频输入输出接口,有些功放还有SVIDEO(高清晰度)视频四针接口,各种功能可以用遥控器进行控制,使用非常方便。 AV功放原理 AV功放,顾名思义,它是用于和影像源相配合、产生视听合一的效果、以营造声场为主要设计目的、专门供家庭影院使用的放大器。它通过其内部的延迟、混响处理电路来控制放音时各声道之间的延迟时间,通过调整延迟时间的长短来模拟出各种听音环境下的声场,例如大厅、教堂、体育场、演播室等。AV功放强调声道隔离度、延迟时间范围、各种声场模式等指标参数。AV功放的声道少则四路,多至九路,目前市场上的AV功放结合家庭放音的需要,多为五路或七路。 AV系统主要由大屏幕彩电、影碟机或高保真录像机,AV多声道环绕功放,一只中置音箱,一对主音箱,一对环绕音箱组成。AV系统着重于表现大动态的效果声,以此烘托气氛,配合画面的声场定位制造出惊心动魄的场面。人们在家中就可以享受电影院中所特有的视听效果。 AV多声道环绕声系统主要有杜比逻辑环绕声系统、THX系统、雅马哈的影院CINEMA DSP系统。这三大系统各有千秋,杜比逻辑环绕声是多声道录制的,一般地说是四声道,录制时,用多只拾音器,按不同距离安置在演奏者的各个方向,将拾取的声音信号经过AD变为数码,再将这些数码按一定规则编码,编为两声道的数码,最后录制在两声道的影碟上。当人们要欣赏影碟时,杜比逻辑解码系统将两声道上的数码反变换为四声道或五声道的数码,再经过DA转换,经过AV多声道放大器,分别送到几对不同位置的音箱,以此实现环绕声,力求重现现场录音时的风采。雅马哈的CINEMADSP是从杜比逻辑中发展而来的。与杜比逻辑解码环绕声系统完全兼容而又有自己独有的特色,数字音场处理是雅马哈CIN?EMADSP独有的技术。它使用DSP(数字信号处理芯片)及CPU存贮了原野、教堂、音乐厅、峡谷等等特定场合声音音场传播的参数,并将参数直接加到杜比逻辑解码以后的环绕声上,这样就弥补了杜比环绕声的不足。 AV功放的技术指标 AV功放是家庭影院的重要组成部分,它的性能主要由以下指标决定: 1、信噪比 信噪比指音频信号电平与噪声电平之间的分贝差。信噪比数值越高,放大器相对噪声越小,音质越好。 2、输出功率 输出功率是指功放所接的音箱上得到的能量,对功放来说,其额定功率(功放在不失真的条件下能连续输出的有效值功率)才是评价功放性能的有效指标。 3、 频率响应 简称频响,衡量一件器材对高、中、低各频段信号均匀再现的能力。 4、 失真 设备的输出不能完全重现其输入,产生波形的畸变或者信号成分的增减称为失真,功放的失真越小,音质越好。 5、 动态范围 信号最强的部分与最弱部分之间的电平差,对器材来说,动态范围表示这件器材对强弱信号的响应能力。 6、阻尼系数 阻尼系数是指负载阻抗与放大器输出阻抗之比,是衡量功放内阻对音箱所起阻尼作用大小的一项性能指标。 7、 输出阻抗 功放的输出阻抗是指其输出端子对音箱所表现出的等效内阻,它应与音箱的额定输入阻抗一致。 8、分离度 分离度是指AV功放中的环绕声解码器把音频编码信号还原为各个声道信号的能力。分离度较差的功放会出现声像定位不准、声场不饱满、声像连贯性差等现象。 与Hi-Fi功放的差异 Hi-Fi是英语Hight-Fidelity的缩写,直译为高度保真,它要求音响设备在重放过程中,对声音信号各项指标不失真地放大、处理,以还原声源的本来面貌,强调的是原汁原味,专门用于欣赏音乐:AV功放,顾名思义A(audio)表示音频、音响,V(video)表示音频、图像,因此AV功放是汇集了音频和视频两种信号处理的视听放大器,强调的是声场的氛围,专门用于家庭影院。这两种功放由于侧重点不同,决定了其在技术指标、声场氛围、声道数目、电路设计等方面都有所不同: 1、技术指标不同 高保真Hi-Fi功放的技术指标主要有输出功率、谐波失真、信噪比、频率范围、额定阻抗和阻尼系数等,尤其强调了谐波失真和信噪比等;而AV功放虽然也有这些技术指标,但更强调了声道隔离度、延迟时间范围、各种声场模式(DSP系统、家用THX系统,杜比AC-3系统)等指标参数,另外AV功放还多了有关视频部分的指标。 2、声场氛围不同 Hi-Fi功放在放声方式上多以高保真为设计目的,讲究原汁原味地放大信号源发出的信号,主要用于欣赏音乐、人声等,追求声音的真实效果。而AV功放在放声方式则是以营造声场为主要设计目的,强调表现声音的方位感,模拟听音环境的气氛,例如电影院、大厅、教堂、体育场、演播室等等。 3、放音声道数目不同 Hi-Fi功放在放音时一般为两声道,即放大左、右两个声道的信号,并推动左、右两组音箱,构成了立体声的声场。而AV功放则有4-9路,推动多路音箱,从而构成环绕声场,例如:杜比AC-3需5.1声道(左、中、右、左环绕、右环绕、重低音)。 4、电路设计的不同 从电路设计或电路构成上看,两种功放有较大的差别。首先,高保真Hi-Fi功放电路比较简单,信号处理程序少,仅仅是放大电路与切换、调整电路的组合:AV功放比Hi-Fi功放多了解码电路与延时、混响电路等,并且还要负责放大多路信号,因而集成程度高、电路复杂、信号处理程序多。其次,AV功放在电路构成上还有视频电路。 Hi-Fi功放与AV功放的主要差异,已给您介绍完毕,由于叙述语言较为专业且较为抽象,那么下面我给您详细分析一下,若用AV功放代替Hi-Fi功放会有什么不足呢? 1、AV功放在播放大信号声源时底气不足 这一点可从产品说明书中看,AV放大器在双声道状态下的输出功率比在四声道状态下的输出功率大。不过,有些厂家说明书标注是一样的,这时,可以选用大动态范围的音乐进行试听,可明显感到力不从心。这是因为AV功放的总功率消耗大,电源功率储量不富余,而Hi-Fi功放则显得从容不迫。 2、AV功放走线多影响音质 AV放大器设置多种视频、音频端口,接入多组音频、视频信号源,造成信号走线多而杂,极易造成信号的相互干扰。尤其是分布电容的存在,对高音频及其谐波的影响最大,使优质信号源原有的丰富高频分量受到衰减或干扰,使听者领略不到高保真的效果。 3、AV功放的荧光屏也会干扰音质 AV功放注重方便的多功能操作,面板上设有大型荧光显示器,使操作直观生动,但荧光屏用低压交流灯丝加热,在脉冲信号的驱动下进行字符显示,将对周围辐射出许多电磁干扰,明显影响音质。 AV功放和Hi-Fi功放的区别主要就是如上一些。还有一点需要注意的是,虽然我可以在这里给你一二三四的列出很多AV功放和HIFI功放的不同之处,但在实际上,这两种功放的区分并不是那么的明显,一般人根本分辨不出这两种功放的不同之处。于是JS就利用了这点,把AV功放说成是HIFI功放,以此来抬高价格。因此发烧初友在选购功放时,一定要选择有信誉的商家进行交易,比如天津的HIFI音响平价屋,其产品质量过硬,价格公道,售后服务也很周到,是一家比较值得信赖的HI-FI音响商家。 如果你想要欣赏影视大片,那么选择AV功放无疑,如果你对音乐情有独钟,那么还是选择Hi-Fi功放。 我国已进入全面建设小康社会时期,高保真音响与家庭影院音响器材也大踏步进入寻常百姓家,然而音响市场上品种繁多,品牌琳琅满目。面对市场上常见的两种家用功放:Hi-Fi功放与AV功放时,普通消费者常感到无所适从,不知该选择哪一款。本文将重点从Hi-Fi功放与AV功放的差别做一论述,以帮你做出选择。 Hi-Fi是英语Hight-Fidelity的缩写,直译为高度保真,它要求音响设备在重放过程中,对声音信号各项指标不失真地放大、处理,以还原声源的本来面貌,强调的是原汁原味,专门用于欣赏音乐:AV功放,顾名思义A(audio)表示音频、音响,V(video)表示音频、图像,因此AV功放是汇集了音频和视频两种信号处理的视听放大器,强调的是声场的氛围,专门用于家庭影院。这两种功放由于侧重点不同,决定了其在技术指标、声场氛围、声道数目、电路设计等方面都有所不同: 1、技术指标不同 高保真Hi-Fi功放的技术指标主要有输出功率、谐波失真、信噪比、频率范围、额定阻抗和阻尼系数等,尤其强调了谐波失真和信噪比等;而AV功放虽然也有这些技术指标,但更强调了声道隔离度、延迟时间范围、各种声场模式(DSP系统、家用THX系统,杜比AC-3系统)等指标参数,另外AV功放还多了有关视频部分的指标。 2、声场氛围不同 Hi-Fi功放在放声方式上多以高保真为设计目的,讲究原汁原味地放大信号源发出的信号,主要用于欣赏音乐、人声等,追求声音的真实效果。而AV功放在放声方式则是以营造声场为主要设计目的,强调表现声音的方位感,模拟听音环境的气氛,例如电影院、大厅、教堂、体育场、演播室等等。 3、放音声道数目不同 Hi-Fi功放在放音时一般为两声道,即放大左、右两个声道的信号,并推动左、右两组音箱,构成了立体声的声场。而AV功放则有4-9路,推动多路音箱,从而构成环绕声场,例如:杜比AC-3需5.1声道(左、中、右、左环绕、右环绕、重低音)。 4、电路设计的不同 从电路设计或电路构成上看,两种功放有较大的差别。首先,高保真Hi-Fi功放电路比较简单,信号处理程序少,仅仅是放大电路与切换、调整电路的组合:AV功放比Hi-Fi功放多了解码电路与延时、混响电路等,并且还要负责放大多路信号,因而集成程度高、电路复杂、信号处理程序多。其次,AV功放在电路构成上还有视频电路。 Hi-Fi功放与AV功放的主要差异,已给您介绍完毕,由于叙述语言较为专业且较为抽象,那么下面我给您详细分析一下,若用AV功放代替Hi-Fi功放会有什么不足呢? 1、AV功放在播放大信号声源时底气不足 这一点可从产品说明书中看,AV放大器在双声道状态下的输出功率比在四声道状态下的输出功率大。不过,有些厂家说明书标注是一样的,这时,可以选用大动态范围的音乐进行试听,可明显感到力不从心。这是因为AV功放的总功率消耗大,电源功率储量不富余,而Hi-Fi功放则显得从容不迫。 2、AV功放走线多影响音质 AV放大器设置多种视频、音频端口,接入多组音频、视频信号源,造成信号走线多而杂,极易造成信号的相互干扰。尤其是分布电容的存在,对高音频及其谐波的影响最大,使优质信号源原有的丰富高频分量受到衰减或干扰,使听者领略不到高保真的效果。 3、AV功放的荧光屏也会干扰音质 AV功放注重方便的多功能操作,面板上设有大型荧光显示器,使操作直观生动,但荧光屏用低压交流灯丝加热,在脉冲信号的驱动下进行字符显示,将对周围辐射出许多电磁干扰,明显影响音质。 AV功放和Hi-Fi功放的区别主要就是如上一些。还有一点需要注意的是,虽然我可以在这里给你一二三四的列出很多AV功放和HIFI功放的不同之处,但在实际上,这两种功放的区分并不是那么的明显,一般人根本分辨不出这两种功放的不同之处。于是JS就利用了这点,把AV功放说成是HIFI功放,以此来抬高价格。因此发烧初友在选购功放时,一定要选择有信誉的商家进行交易,比如天津的HIFI音响平价屋,其产品质量过硬,价格公道,售后服务也很周到,是一家比较值得信赖的HI-FI音响商家。 谈到这里,你对二者差异是否已心中有数,购买何种功放,你下决心了吗?如果你想要欣赏影视大片,那么选择AV功放无疑,如果你对音乐情有独钟,那么还是选择Hi-Fi功放。 Hi-Fi是英文High—Fidelity的缩写,即高保真的意思,是指逼真地还原音源信息,即原汁原味。它要求音响设备在重放过程中,对声音信号各项指标不失真地放大、处理,以还原声源的本来面貌,强调的是原汁原味,大多用于欣赏音乐。 Hi-Fi功放是为高保真地重现音乐的本来面目而设计的放大器,一般为两声道设计,且没有显示屏。 AV功放与Hi-Fi功放差异 Hi-Fi功放与AV功放是目前家用功放中的两个主要类别。这两类功放用于不同的用途,设计的侧重也不相同。Hi-Fi功放用于欣赏音乐,使用者追求的是尽可能的“原汁原味”。而AV功放的使用者追求的是与画面相配合的“现场”效 果,甚至是夸张了的“现场”效果。这两类功放不太好直接比较孰优孰劣, 比如价位同为三千多元的Hi-Fi功放与AV功放,Hi-Fi功放的成本投入只在两个声道上,而AV功放的成本投入则要兼顾5—6个声道,还要具有一定的效果处理功能。如果仅看其两个主声道的投入,肯定低于Hi-Fi功放两个声道的投入。其 放音效果的差异是显而易见的。但是无论是Hi-Fi功放还是AV功放,都有高档精品型与超值普及型之分,比如天龙的AVC-A1型AV功放,当其用于音乐放音时,其音效不会比一台四、五千元的Hi-Fi功放逊色。 一般来说,很难能有一台可以对Hi-Fi、AV全兼容的AV功放,AV功放兼顾Hi-Fi音乐欣赏是有条件的,这一条件就是使用者欣赏音乐时的要求与标准,如果使用者仅是用来欣赏一些休闲音乐,或是只要求能够听到乐曲的旋律,AV功放是比 较容易满足的,但是要是对音乐欣赏有较高的要求,一般的AV功放就难于满足了。 晶体管功放与电子管功放 用于Hi-Fi欣赏的功放可以分作晶体管功放和电子管功放两大类,以前还有用集成电路或是模块电路的Hi-Fi功放,但是现在已经不多见了。 晶体管功放和电子管功放并不存在着优劣的差异,只不过应用的器件不同(一是晶体管,一是电子管),由于两类器件不同,其物理基理与电路特点也不相 同。 电子管的电流是电子在真空中受电场力的吸引,运动形成的。而晶体管的电流是半导体元素的外层电子在电场力的作用下转移位置形成的。这种物理基理的不同,造成在实际应用中电路特点也不同。相对来说,电子管功放的工作电压 较高,但工作电流比较小,而晶体管功放的工作电压较低,工作电流都比较大。 电子管功放与晶体管功放的音色确是有一定的差异,两者对瞬态信号的响应也不相同。这种不同都又分别适应了不同类别的音乐和不同的音乐欣赏者,所以目前的Hi-Fi功放中形成了晶体管功放和电子管功放并存的情况。不过,若是 以品牌、型号、数量而言,晶体管功放所占的份额仍是绝对大于电子管功放。 甲类功放与乙类功放 晶体管功放输出级晶体管的工作状态,可以分做甲类与乙类。所谓甲类,简单地说就是使输出级晶体管在正弦交流信号的正负半周时均工作在线性区,而乙类则是仅使输出级的晶体管在正弦交流信号的正半周(或是负半周)工作在线性 区。由于输出级晶体管的工作状态不同,使得输出级的电源利用效率(即输出功放与耗电功率之比)也不同。在实用的输出电路中,乙类的效率要比甲类的效率高2—3倍。比如马兰士PM80晶体管 功放,在确定的供电电源条件下,工作在乙类时输出功率有100W,而在甲类时只有20W。 AV功放,顾名思义A(audio)表示音频、音响,V(video)表示音频、图像,因此AV功放是汇集了音频和视频两种信号处理的视听放大器,强调的是声场的氛围,专门用于家庭影院。这两种功放由于侧重点不同,决定了其在技术指标、声场氛围、声道数目、电路设计等方面都有所不同: 1、技术指标不同 高保真Hi-Fi功放的技术指标主要有输出功率、谐波失真、信噪比、频率范围、额定阻抗和阻尼系数等,尤其强调了谐波失真和信噪比等;而AV功放虽然也有这些技术指标,但更强调了声道隔离度、延迟时间范围、各种声场模式(DSP系统、家用THX系统,杜比AC-3系统)等指标参数,另外AV功放还多了有关视频部分的指标。 2、声场氛围不同 Hi-Fi功放在放声方式上多以高保真为设计目的,讲究原汁原味地放大信号源发出的信号,主要用于欣赏音乐、人声等,追求声音的真实效果。而AV功放在放声方式则是以营造声场为主要设计目的,强调表现声音的方位感,模拟听音环境的气氛,例如电影院、大厅、教堂、体育场、演播室等等。 3、放音声道数目不同 Hi-Fi功放在放音时一般为两声道,即放大左、右两个声道的信号,并推动左、右两组音箱,构成了立体声的声场。而AV功放则有4-9路,推动多路音箱,从而构成环绕声场,例如:杜比AC-3需5.1声道(左、中、右、左环绕、右环绕、重低音)。 4、电路设计的不同 从电路设计或电路构成上看,两种功放有较大的差别。首先,高保真Hi-Fi功放电路比较简单,信号处理程序少,仅仅是放大电路与切换、调整电路的组合:AV功放比Hi-Fi功放多了解码电路与延时、混响电路等,并且还要负责放大多路信号,因而集成程度高、电路复杂、信号处理程序多。其次,AV功放在电路构成上还有视频电路。 AV功放代替Hi-Fi功放会有什么不足呢? 1、AV功放在播放大信号声源时底气不足 这一点可从产品说明书中看,AV放大器在双声道状态下的输出功率比在四声道状态下的输出功率大。不过,有些厂家说明书标注是一样的,这时,可以选用大动态范围的音乐进行试听,可明显感到力不从心。这是因为AV功放的总功率消耗大,电源功率储量不富余,而Hi-Fi功放则显得从容不迫。 2、AV功放走线多影响音质 AV放大器设置多种视频、音频端口,接入多组音频、视频信号源,造成信号走线多而杂,极易造成信号的相互干扰。尤其是分布电容的存在,对高音频及其谐波的影响最大,使优质信号源原有的丰富高频分量受到衰减或干扰,使听者领略不到高保真的效果。 3、AV功放的荧光屏也会干扰音质 AV功放注重方便的多功能操作,面板上设有大型荧光显示器,使操作直观生动,但荧光屏用低压交流灯丝加热,在脉冲信号的驱动下进行字符显示,将对周围辐射出许多电磁干扰,明显影响音质。 如果你想要欣赏影视大片,那么选择AV功放无疑,如果你对音乐情有独钟,那么还是选择Hi-Fi功放。 自制高保真发烧Hi-Fi功放(图) 本文向读者介绍一款高保真发烧Hi—Fi功放组合,全部制作成本仅需几百元,制作调试极易,非常适合广大工薪阶层的音乐爱好者制作,该组合音质极其纯真通透、纤细和清晰。有兴趣的朋友可自制一套与市面上千多元的机子比试一下! 该Hi—Fi组合原理图如图1所示:音源(CD、VCD、LD、DVD等)由该Hi—Fi组合的信号选择开关进入音量、音调、平衡、等响、展宽电路LM1036N,为使音乐信号表现力更自然、更逼真,更接近于原汁原味,由LM1036N输出的音乐信号输入BBE2150AD音效增强清晰处理器进行智能化地还原出逼真的原音信号(即原汁原味),经BBE输出的信号由高速低噪音双运放“皇上皇”NE5535N(美国SignetICs公司生产,比NE5532N还好,发烧友也称之美国大S集成)将信号放大推动功率放大级TDA1514A×2,功率放大后的信号由左右音箱进行音乐的Hi—Fi重放。 图2是信号输入切换开关TDA1029的典型应用电路,TDA1029是飞利浦公司推出的一片用于音频领域的立体声四路高保真音源切换集成电路,其工作电压6—23V,典型值12V,总谐波失真仅为0.005%,信噪比优良(S/N=120dB)是信号切换集成的精品。可作组装或更换功放机信号选择开关用。 本Hi—Fi组合的音量、音调、平衡控制电路采用美国国家半导体公司(NS)的高品质音调电路LM1036N,LM1036N是采用直流电平控制音调(高、低音)、音量、平衡的双声道集成电路,采用直流电平控制的优点是高低音调节量互不影响,音量电位器采用国产普通品也无噪音,控制非常平滑,LM1036N具有频响补偿,宽范围单电源(9—18V,典型值12V),信噪比高(输入0.3rns,90dB)等特点,是发烧级集成电路。LM1036N音调控制范围>;15dB,音量控制范围>;80dB,失真小于0.03%。图3为LM1036N的典型应用电路,NE5532N为美国SignetICs公司产品,在电路中的作用是将信号进行一级放大并有展宽作用(T2、NEH点短接时起展宽作用,该功能对卡座效果好),以适用于不同音源的需要。对于已拥有功放机的音乐爱好者,也可以将原功放的音量音调平衡电路采用图3的电路取代,令功放机音质得予改善。 Hi—Fi的意思为逼真地还原音源信息,即原汁原味,本文介绍的Hi—Fi组合除了全部采用Hi—Fi级发烧器件外,能真正做到Hi—Fi的功臣非BBE技术莫属了!BBE是美国BBE Sound Inc公司推出的用于大幅度改善听音质量的一种音效增强清晰技术,该技术通过弥补扬声器和耳机的一种固有缺陷来恢复声音的清晰度,赋予音乐信号更自然、更逼真的还原能力,使音乐表现力更接近于原汁原味。BBE技术应用领域包括广播音响、专业音响、发烧音响、民用音响(CD、VCD、LD、DVD、电视等),BBE可加装于任何功放机、电视机中令其音质升级。有关BBE技术在很多电子刊物均有介绍,在此不作讲述了。现推荐笔者认为各项指标、性能均很好的BBE2150AD的BBE电路(见图4),BBE2150AD是日本JRC公司产品,工作电压4.5—13V典型值9V,工作电流9V时为8mA,具有直通和BBE功能。BBE的处理程度有2档程度选择,图4为其应用电路,该电路采用了电源反接保护及三端稳压,因而加装于各种功放机、电视机时可取原机中的电源,而无需另备电源,加装非常方便。 担任本Hi—Fi组合的信号放大推动功放的是采用NE5535N,NE5535N是美国SignetICs公司产品,它比高速运放之皇NE5535N还好,具有高的开环频响,高的单位增益带宽,转换速率比NE5535N还要高,被发烧友称之为高速低噪双运放“皇上皇”。NE5535N可直接代换4558、4560、LM833及NE5532N等,代换后音质将有显著改变,音质纯真通透,更加清澈,NE5535N的应用电路与NE5532N一样,相信广大发烧友已经精通,在此不画出电路图,无谓占用版面。 众所周知,很多功放机都有100W×2左右的功率,但应用于家庭中通常其音量只开1/5—1/4左右,也就是只开10—30W左右的功率,开大了耳朵就要受罪了,刺叭也受不了并会使音乐失真,因此一般几十平方米的家庭有“黄金功率”30W左右的音响器材最为适合。本文介绍由2块飞利浦公司专为数字音响而设计的功放电路TD1514A作为本Hi—Fi组合的双声道功放电路(如图5所示,图中另一声道省略不画,另一声道与该图一样)TDA1514A的输出功率大:Pout =50W(VP =±27.5V),转换速度高:15V/μs,信噪比优良85dB,纹波抑制75dB,THD—0.08%,TDA1514A的工作电压:± 9—±30V,TDA1514A电路设有等待、静噪状态,具有过热保护、短路保护、功率管安全工作区保护以及静电放电保护。低失调电压,高纹波抑制,而且热阻极低。应用电路图5电路的特点:采用恒流负反馈式和具有直流伺服系统(直流伺服电路主路是用来精确修正TDA1514A电路在取消负反馈的对地隔直电容后,输出直流电位的漂移)。用线性元件电阻RA(0.5Ω2W)把流过扬声器音圈的电流取样反馈给功放输入端,使放大器以固定电流方式驱负载,扬声器受电流控制振荡而发声。特点是当重放频率到了低频及谐振峰附近时,恒流式电路增强了低音的力度和高音的解析力,使整个系统的重放音色听起来丰满厚实又清晰明快,很有电子管功放的韵味。 采用集成功放大批量的一致性有充分保证,最大的特点是立体声平衡度好,在可靠性及性价比方面均远优于分立元件功放。 元件选择:为确保本Hi—Fi组合能做到Hi—F级,各电路中的无极电容均要采用进口CBB金属化无感电容,耦合电容用日本高级电容,所有电阻均采用5色环精密(±1%)金属膜电阻,集成电路一定要用正品,不能用廉价的水货。 电源部分:为了能有效的提高整机的瞬态特性和高频特性,前后级电源要分别供电。实践证明前置级电路电源特性对整机的重放特性有重要影响,因此TDA1029、LM1036N、BBE2150AD、NE5535N均使用有源伺服电源电路进行供电,有源伺服电源电路的特点是其输出电压稳定,噪音极低,能保证前级的高频特性及瞬态特征。图6是该有源伺服电源电路。 功放级电源相信广大发烧友都非常熟悉,所以在此不给出电路图,笔者建议制作时整流二极管用6A的大电流二极管如6A07等,滤波电容应使用大水塘如6800UF—10000UF/50V的南韩SANWHA金色印字电容,金色印字是发烧级专用电容,日本黑金刚红宝石也是非常好的发烧电容。该电源板最好加上3—5A的保险管,以确保安全。前后级供电可用一只200—300W双18V+双12V的环形变压器,双18V是功放级电源,经整流滤波获得约±25.5V直流电源,采用双18V的电压只要市电不超过260V,整流滤波后的电压就不会超过TDA1514A的最高工作电压±30V。该变压器的双12V可供有源伺服电源电路进行整流滤波等供电给前TDA1514A级电路用。 组装方面:功放机箱目前市面上有出售,也可以邮购得到,价格50—150元左右,具体视不同的机箱有不同的方案,全部电路按图1的组合原理图中的顺序逐一连接即可,但必须注意信号线要用优质屏敝,电源线要粗而短,并且注意一点接地的方法,这样可防止产生噪音,TDA1514A的输出端与扬声器接口中加上用专业银触点继电器制作的喇叭保护器,以确保扬声器的安全。 实际组装若只有一台唱机的话TDA1029可以省略,有录音卡座可在卡座中安装上LM1894N×2动态降噪板,本Hi—Fi若需增加卡拉OK功能可加进 M65831AP或M65839SP等,若要实现一对音箱产生三维空间感环绕声音场,可在TDA1029与LM1036N之间增加一块3D音场处理器,若要将本Hi—Fi组合组成多声道功放可将音量音调板换为由UPC1892四声道环绕声处理器,并相应增加前置放大及功放(如TDA1521、LM1875等)。 只要正确组装检查无误后即可试听。笔者的试听感觉是该Hi—Fi组合音质极其纯真通透,听起来音质温暖、细腻、亲切、甜美,总体上的低音力度和弹性好,高音清晰和纤细,营造出的音乐信号更自然,更逼真,是真正的Hi—Fi功放组合。 音频功放失真,如何处理音频功放失真 音频功放失真是指重放音频信号波形畸变的现象,通常分为电失真和声失真两大类。电失真就是信号电流在放大过程中产生了失真,而声失真是信号电流通过扬声器,扬声器未能如实地重现声音。 无论是电失真还是声失真,按失真的性质来分,主要有频率失真和非线性失真两种。其中,引起信号各频率分量间幅度和相位的关系变化,仅出现波形失真,不增加新的频率成分,属于线性失真。而谐波失真(THD)、互调失真(IMD)等可产生新的频率成分,或各频率分量的调制产物,这些多余产物与原信号极不和谐,引起声音畸变,粗糙刺耳,这些失真属于非线性失真。在这里,分别对谐波失真、互调失真、瞬态互调失真(TIM)、交流接口失真(IHM)等加以讨论。 音频功放电路 1.谐波失真 谐波失真是由功放中的非线性元器件引起的一种失真。这种失真使音频信号产生许多新的谐波成分,叠加在原信号上,形成了波形失真的信号。将各谐波引起的失真叠加起来,就是总谐波失真度,其值常用输出信号中的所有谐波均方根值与基波电压有效值之比的百分数来表示。在这里,基波信号就是输入信号,所有谐波信号为由非线性失真引入的各次谐波信号。显然,该百分数越小,谐波失真越小  ,电路性能越好。目前,Hi-Fi功放的谐波失真一般控制在0.05%以下,许多优质功放的谐波失真已小于0.01%,而专业级音频功放的谐波失真度一般控制在0.03%以下。事实上,当总谐波失真度小于0.1%时,人耳就很难分辨了。另需说明的是,对于一台指定的音频功放而言,例如,某音频功放的总谐波失真指标表示为THD<0.009%(1W)。初看起来,似乎总谐波失真很小,但它只是在输出功率为1W时的总谐波失真,这与在有关标准要求的测量条件下所得的总谐波失真值是不同的。所以,在标明音频功放的总谐波失真指标时,一般都会注明测量条件。 众所周知,人的听觉系统是极其复杂的,有时谐波失真小的功放不如谐波失真大的耐听,这种现象的原因是多方面的。其中,与各次谐波成分对音质的影响程度不同有直接关系。尽管石机与胆机的稳态测试数据相同,但人们总觉得胆机的低音醇厚激荡、中音明亮圆润、高音纤细清澈,极为耐听;石机则低频强劲有力,中高频通透明亮,但高频发毛,声音生硬,音色偏冷。经频谱分析发现,石机含有大量的奇次谐波,奇次谐波给人耳造成刺耳难听的感觉;胆机则含有丰富的偶次谐波,而人耳对偶次谐波不敏感。此外,人耳对偶次谐波失真分辨力较低,对高次谐波却非常敏感,这也是上述现象的重要原因之一。 降低谐波失真的办法主要有: 1)施加适量的电压负反馈或电流负反馈;2)选用fT高、NF小、线性好的放大元器件;3)尽可能地提高各单元电路中对管的一致性;4)采用甲类放大方式,选用优秀的电路程式;5)提高电源的功率储备,改善电源的滤波性能。 2.互调失真 两种或多种不同频率的信号通过放大器后或扬声器发声时互相调制而产生了和频与差频以及各次谐波组合产生了和频与差频信号,这些新增加的频率成分构成的非线性失真称为互调失真。通常,将两个振幅按一定比例(多取4:1)的高低频信号,混合进入电路,新产生的非线性信号的均方根值与原较高频率信号的振幅之比的百分数来量度互调失真,即互调失真的大小,可用互调产物电平与额定信号电平的百分比来表示。此值越大,互调失真越大。显然,互调失真度的大小与输出功率有关。由于新产生的这些频率成分与原信号没有相似性,因而较小的互调失真也很容易被人耳觉察到,听起来感到又尖、又刺耳,且伴有“声染色”现象。也就是说,互调失真带来的影响,会使整个重放系统的声场缺乏层次感,清晰度下降。在Hi-Fi功放中,总希望互调失真度越小越好,要做到这一点是非常困难的,因而高保真功放要求该值小于0.1%即可。当然,石机与胆机相比,前者的互调失真要大一些,这也是为什么石机的音色不及胆机甜美的一个原因。 减小互调失真的方法,常见的有: 1)采用电子分频方式,限制放大电路或扬声器的工作带宽;2)在音频功放的输入端增设高通滤波器,消除次低频信号;3)选用线性好的管子或电路结构。 3.瞬态失真 瞬态失真是现代声学的一个重要指标,它反映了功放电路对瞬态跃变信号的保持跟踪能力,故又称为瞬态反映。发生瞬态失真的高保真系统,输出的音乐信号缺少层次感和透明度。一般地,发生瞬态失真的原因有: 1)电路内电抗元器件的作用过大,频率范围不够宽;2)扬声器振动系统的动作跟不上瞬变电信号的变化。 瞬态失真的主要表现形式有两种,即瞬态互调失真和转换速率(SR)过低引起的失真。 瞬态互调失真 在输入脉冲性瞬态信号时,因电路中电容(如滞后补偿电容、管子极间电容等)的存在使输出端不能立即得到应有的输出电压(即相位滞后)而使输入级不能及时获得应有的负反馈,放大器在这一瞬间处于开环状态,使输入级瞬间过载,此时的输入电压比正常时要高出好几十倍,导致输入级瞬间的严重削波,这一削波失真称为瞬态互调失真。它实质上是一种瞬态过载现象。 由于胆机抗过载能力强,放大倍数低,没有深度级间负反馈,仅有一些局部负反馈,因而不易产生瞬态互调失真。而一般石机都采用了大环路深度负反馈网络来满足低失真、宽频带的要求。可见,瞬态互调失真主要发生在石机中。此外,音量大、频率高、动态范围大的节目源最容易产生瞬态互调失真。原因在于:音乐在零信号电平附近的时间变化率最大,会使声音变得不完全清晰,特别是中低档石机,往往出现在高频部分,产生尖硬、刺耳的感觉,即所谓的“晶体管声”和“金属声”。 瞬态互调失真是在20世纪70年代提出来的一项动态指标,主要由音频功放内部的深度负反馈引起的。被公认为是影响石机音质,导致“晶体管声”和“金属声”的罪魁祸首,人们对此极为重视。改善TIM可从其形成机理入手,常采用的方法有: 1)将放大器的开环增益和负反馈量分别控制在50dB和20dB左右;2)选用高fT的管子,前级采用fT大于100MHz的管子,末级功率管的fT  应大于20MHz,尽量拓宽电路的开环频响,并加大各级自身的电流负反馈,取消大环路负反馈。目前有部分功放(如钟声JA-100)的末级扩流电路不介入环路负反馈,其目的之一便在于此;3)采用全互补对称电路,提高功率输出级的工作电流,并在输出级前增设缓冲放大级,改善电路的瞬态响应;4)取消相位滞后电容,改滞后补偿为超前补偿,即不用滞后补偿电容,而在大环路反馈电阻上并联一只适当容量的小电容;5)适当加大输入级的静态电流,增大其动态范围,并在其输入电路中设置低通滤波器,消除80kHz以上的高频杂波信号,防止高频干扰信号导致输入级瞬间过载。 转换速率过低引起的失真 转换速率指音频设备对猝发声信号或脉冲信号的跟踪或反应能力,是反映功放电路瞬态应变能力的重要参数。转换速率过低引起的瞬态失真是由于放大器输出信号的变化跟不上输入信号的迅速变化而引起的。如果给放大器输入一个足够大的脉冲信号时,其电压的最大变化速率应是电压上升值与所需时间之比,单位是每秒上升多少伏,写成数字表达式为SR=V/μs。SR对高保真功放来说,它直接影响放大器的瞬态响应和反应速度,SR值高的功放,解析力、层次感及定位感都好,听感佳,重放流行音乐更是如此。SR数值的大小与功放的输出电压和输出高频截止频率等有关,输出功率大的,SR值就大;高频截止频率高的,SR值也大,优质功放的SR值可达100V/μs。为了提高功放的SR值,通常采用超高速、低噪声的管子,但SR值过高,易使电路自激,稳定性变差。此外,前级电路的SR值不应高于后级电路,否则易引起瞬态互调失真。顺便多说几句,功放的SR可用示波器来估测,方法是先给音频功放馈送一方波信号,作为输入信号,其输出信号波形前沿上升至额定值所需时间,所得的结果用V/μs表示便是转换速率的大小。显然,如果音频功放能够很好地处理方波信号,那就表明它具有很好的转换速率和较宽的频率特性。 4.交流接口失真 交流接口失真是由扬声器的反电动势通过线路反馈到电路而引起的。改善这种失真的方法有:1)减少电路级数,适当加大电路的静态工作电流;2)选择适合的扬声器,使阻尼系数更趋合理;3)采用大容量优质电源变压器,并适当提高滤波电容的容量,在滤波电容上并联小容量CBB电容。 此外,由于电路直流工作点选择不当或元器件质量不高,还会出现另一些非线性失真,诸如交叉失真和削波失真,它们均可以引起谐波失真和互调失真。交叉失真又称为交越失真,它是对推挽功放而言的,主要由乙类推挽功放中的功率管起始导通非线性而引起的,特别是在小电流的情况下,其输出电流在交界处产生非线性失真,且信号幅度越小,失真越严重。削波失真是功放管动态范围不够,由饱和导通引起大信号被限幅削波而造成的,削波失真产生了大量超声波,使声音变得模糊而抖动,听久了使人头痛。减小交叉失真常用的方法,是适当提高推挽输出管的直流工作点;而改善削波失真的措施,一般是适当加大电路的线性工作范围。 前级放大器,前级放大器的作用和原理是什么? 前级放大器 按语:看到有帖子询及前级放大器的问题,一时手痒,将自己收集到的资料贴出,供大家参考: 在音响系统里,前级放大器所发挥的功能并不复杂,它只是负责切换讯源、处理讯号与控制音量,这就是音乐信息在进入后级前的最后一道处理程序。它的连接位置,介于讯源器材与后级放大器之间,故前级放大器所扮演的角色——负责将讯号整理与调整。 设计上,前级放大器可以简单也可以复杂。 简单的前级只需要具备讯源输入、讯源选择、控制音量便行。换言之,简单的前级只要有一个讯源切换开关和音量电位器,加上一个机箱及输出入端子就成。 复杂的前级集中很多的功能:设计师可以在讯源输入里,针对每一种输入加上一个缓冲电路,以隔绝前级与讯源之间的缓冲接口;讯号经过切换开关之后,则以最复杂、最严谨的处理方式,进入一个庞大的电路架构,包含缓冲、等化、调整等等步骤,最后再经过另一级缓冲电路,将阻抗降低之后,才连接到输出端子。当然,这种设计可以使用简单的IC,也可以使用大量晶体管架构电路,想用真空管的话,当然可以在机箱内塞入满满的真空管,外加上电池供电等等额外的设计,只要具备前级的功能,是没有什么限制的。 简单还是复杂?前级放大器的设计形式和用料,像厨师手里的材料一样,可以不同搭配、不同的作法、不同的烹饪方式、泡制出来不同的口味;电子设计师也像厨师一样,当然也可以使用任何电子材料,任意搭配设计与作法,设计制造出一部前级放大器,回放出来的声音的音色,各有各不同的多种结果。记得80-90年间,Burmester就有一部808,稍后Mark Levinson的Cello出了一部Pallet Suit额,成为复杂前级放大器的典范。 Mark Levinson的Cello Suite 简单的被动式前级、夸张复杂的全功能型前级我在这里不谈(事实上我在十多年前翻译过一篇Counterpoint的唱放前前级,共享了17枝真空管,夸张复杂之极),我们将焦点集中在标准的前级应该具备哪些基本架构。 前级放大器又称「前置放大器」,通常设定的放大倍率为10倍,故也又称「10倍放大器」,人们简称为「前级」。 是任何器材皆必备的,前级仅使用讯号线输出入,目前市面上的前级采用的输入端子,除了Mark Levinson早期的机型使用Lemo头之外,其的多数是单端的RCA端子,或是平衡的XLR端子。这种三孔插头与数码转换器使用的「AES/EBU」平衡头完全相同,请留意名称上的差异。XLR、平衡头、Canon头指的是插头本身,而「AES/EBU」指的是数字传输的格式;看到前级上XLR头,就说是「我的前级具有AES/EBU插头」,会闹笑话的。一些欧洲器材偶然会使用特制的输出输入端子,Linn、Naim都曾经使用过多孔DIN插头,它们与平衡头一样,具有负端先接地的功能,因此在未关机的情形下,可以直接拔除讯号线而不会发出杂音,使用单端RCA头的用家绝不可贸然一试。 讯号由输出入端子进入前级之后,利用电路板或隔离讯号线,将讯号引导至切换开关,切换开关负责切换输入的讯源,透过数个切换开关的搭配使用,也可以控制录音输出的讯源种类,方便您一边听音乐,同时录制另一讯源的音乐。讯号经过切换开关之后,再进入左右声道平衡控制电位器,音响使用的平衡电位器为特制的MN型,此种电位器设计特殊,向左边旋转时,左声道的音量维持不变,但右声道则随着角度逐渐衰减,旋钮转至最左边时,右声道恰巧没声音;同理,向右边旋转时,左声道逐渐降低音量,藉此达到控制左右声道音量的目的。正常的使用之下,并不需要调整左右平衡,因此部份前级逐渐省略这项设计,或者将左右平衡电位器隐藏于机箱角落,反正它不常用到。 经过平衡电位器之后,讯号接着进入音量电位器。音量电位器也使用专用的A型电位器,这种电位器依照对数特性制造,使旋钮旋转的角度,可以随着耳朵的感受而线性增加。正常使用的音量电位器,应该转至那个角度才属正常?这没有一定的答案,要看整体器材搭配的总增益而定。音箱效率高、后级增益大者,前级所需负担的放大倍率就得降低,音量开一点点声音就很大了;反之,单增益前级由于放大倍率仅有一倍,因此往往把音量开到底,仍然还有不够大声的缺憾。正常而言,旋钮位置由九点钟方向至十二点钟方向之间皆正常,转动时也最顺手。 讯号经过音量电位器之后,便直接进入放大电路。放大电路有繁有简,设计形式不一。放大电路输出之后,有的前级会设计哑音Mute继电器,藉此控制前级讯号的输出与否,经过Mute开关之后则直接连至输出端子。 前级的运作架构就是:输入→讯号切换→左右平衡→音量控制→放大电路→静音开关→输出。 主动与被动的差异 「主动」(「有源」)的意义在于电路中使用主动组件,主动式前级便是有源前级,是必须插电才能工作的前级。有前级不需要插电的吗?有的,这就是被动式前级。 从电路架构上分析,被动式前级其实就是省略了「放大电路」过程,讯号输入之后,经过讯号切换开关,进入平衡控制(或者将此功能省略),再使用一个音量电位器控制音量,最后直接输出。就控制音量的角度而言,它仅能衰减而无法放大,就阻抗匹配的功能来说,它也无法扮演缓冲的角色,因此被动式前级是最经济也最直接的前级。First Sound是最有名的被动式前级之一,内部仅由切换开关与音量控制器组成,由于没有任何主动组件,因此S/N比相当高。Jeff Roland的Synergy也是楚楚之典范。 主动式前级具备放大电路,可以将输入的讯号放大后输出,因此增益绝对充足有余;被动式前级除非使用被动式升压器提升输出电压,否则是永远不可能达成放大的任务。就缓冲与阻抗匹配的角度来看,主动式前级由于具有主动组件进行讯号放大,因此可以将阻抗特性较高的讯源,转换为较低阻抗的讯号输出,易于驱动后方的后级线路。这也是被动式前级所望尘莫及的要求。被动式前级充其量只能衰减,在音量全开的情况下,等于讯源直入后级,其中并没有任何缓冲的作用。假如使用升压器将电压放大,放大之后的结果也必须遵照质、能不变的物理原理,而增加了输出阻抗。因此几乎没有任何一部被动式前级愿意使用升压器进行电压放大,顶多使用一颗音量电位器控制音量罢了。 既然被动式前级缺点这么多,为何还有存在的必要呢? 因为被动式前级没有放大电路,其讯号通路直接,能够将讯源器材的讯号以最简短的路径直接输出给后级,这就是人们采用被动式前级的初衷。由于不使用主动组件,因此没有任何的失真、音染、噪声、相位飘移等问题,也由于使用机械开关,因此被动式前级也没有增益频宽积的限制,正常设计的被动式前级可以传输数MHz的讯号,尤其是噪声以及S/N比规格两项,几乎没有任何主动式前级可以匹敌。各有优缺点吧!只要该前级适用于您的系统,是没有什么不可以的。 真空管前级 依照电子材料发展的历史来看,最早发明的电子组件是真空管,隔了数十年之后半导体发明,半导体之中先以锗晶体问市,之后才是硅组件的天下,等到制造硅晶体团的技术成熟,才有集成电路(IC)的出现。因此前级使用主动组件的过程,是跟随着半导体组件发展的历程而进步的。最早的前级扩大机全部是应用真空管设计,从电源部份开始,变压器输出交流电压后,便以二极管进行管整流以及管稳压的动作,真空管的整流特性与稳压特性并不理想,因此早期的真空管前级声音普遍也不理想,哼声中夹带着嘶声噪音,S/N比不高、频宽也不够,不过对于当时而言,这已经是不错的产品了! 电子组件不断进步,扩大机的电路水平也逐步提升,半导体发明之后,以半导体取代部份真空管,效率不高、功能不佳的真空管整流与管稳压,逐渐被半导体组件所取代。体积小、动作稳定的半导体,制造出了稳定的电源,前级扩大机的性能也提升不少,背景噪音大幅度降低,S/N比马上提高不少,哼声消失了,聆听音乐开始进入更高级的享受。 目前为止,大部份的真空管扩大机仍然以半导体稳压为主。其实对于声音而言,真空管确实是无可取代的好组件,它的体积虽大,但却有其独特且无法取代的音色,温暖、醇厚,都是管机常见的特色。坚持使用真空管放大的Audio Research以及Sonic Frontiers,两家的前级几乎全为真空管设计,但不可否认的是,它们设计师仍然偏好使用半导体进行整流与稳压的工作。真空管的电路架构,早在二十年前就已经发展完成,差动、串迭、推挽、倒相,无一不在早期的真空管前级中出现。使用相同的组件要达到相同的目标,方法不外乎是那几样,因此对于现代的真空管设计者而言,电路的创新反而不再是追求的目标,为真空管线路提供一个稳定、干净的电源,搭配质量优秀的被动材料,便能让真空管好好的工作。最后,再藉由零件的搭配,进行调整声音的工作。 有的真空管前级线路很复杂,有的仅使用一支真空管,这其中有什么差别?难道管子越得越多声音就一定越好吗?这答案当然不一定,目前前级当中真空管使用最多的可能是Sonic Frontiers Line 3,它是Sonic Frontiers最高级的前级,一口气用了12支真空管;而也有不少真空管前级,仅使用一支双三极管进行放大,如Audio Research LS-2。前级使用数量的多寡当然不能表示声音一定好,严谨的态度进行规画与设计,否则真空管的音染、失真等问题,还没开声就已经难以收拾了。设计者进行高级器材的规划时,必然考虑到线路架构与其价格的等级分布,即使以相同的理念设计出不同等级的产品,价位高的声音必然要胜过旗下机种。真空管使用多寡与声音没有绝对的关系,设计者不过将器材设计得更完整严谨,以赢取消费者的信赖罢了。 真空管前级的巅峰之作,多年前Audio Research的SP-11以及最近热门的Sonic Frontiers Line 3。Sonic Frontiers喜欢使用精密的半导体稳压,配合真空管放大,声音兼具晶体机的透明度与管机的厚度。 混血真空管前级 混血前级曾经流行过一阵子,最早Luxman推出了以真空管及晶体管电路的Hybrid线路。混血前级的发展,主要目的在于截长补短,将半导体以及真空管的优点结合在一起,所形成的号召设计。 当半导体组件成熟的运用于音响电路中时,真空管似乎一下子失去了原有的地位,没有人对于体积庞大的真空管提起兴趣,音响器材不断标榜着全半导体、全晶体管的设计。但早期的半导体在制造以及线路的构成上,很难避免的会让声音变硬、变冷、甚至于变吵。于是开始有音响迷回头重新寻找管味,原来, 音响迷需要的不仅仅是优异的特性,更重要的是回放声音的音乐性。 真空管比较有音乐性吗? 这当然无法论定,但对于当时而言确是不争的事实。Luxman率先把真空管摆入晶体管线路当中,让真空管负责一级的放大,藉由真空管的独特音色,「感化」晶体管的声音。Audio Research在推出了半导体前级不获好评之后,也重新回头检讨真空管受欢迎的原因。声音,其实才是音响迷注重的焦点;技术,不过是附属的噱头罢了。 Audio Research想到,FET与真空管同属于高输入阻抗组件,但FET却拥有真空管难以企及的频宽,但早期的FET声音偏冷,而真空管却洋溢着温暖的气息,何不将两者的长处融合,于是Audio Research使用FET输入,在输出段加入一支6922真空管,这就是脍炙人口的LS-2胆石混血前级。 LS-2的成功推出,确实为混血前级设计开出一条成功的道路,目前市面上仍有许多混血前级,它们同时拥有高频宽的特性,S/N比与晶体机无异,用家还能自行换管调声,反正只要声音好,殊途也同归。Audio Research喜欢使用半导体与真空管的混血设计,打开内部之后可以发现真空管与晶体管、IC供列于电路板上。 晶体管前级 晶体管前级当然不限于场效应晶体管(FET)或双极性晶体管(BJT),晶体管的发展就是为了更好的规格而来的,因此当晶体管制造技术逐渐成熟时,音响的用料也朝向全晶体管的方向发展。晶体管与真空管的线路架构虽然类似,但却大不相同。晶体管体积小,可以在有限空间的电路板中大量使用,因此可以将线路设计得更严谨、更精密,不同的晶体管拥有不同的特性,适度的搭配便可以创造极佳的效果。 晶体管线路的发展仍然来自于真空管架构,差动是最长使用的放大方式,单差动、双差动、电流源、达灵顿、串迭等等电路技巧,可以依照设计者的喜好像拼图一般逐步建构,最简单的晶体管放大电路为单端放大,以一颗或以两颗晶体管直接放大;也可以利用复杂的架构,缜密且严谨的盖出高塔。Mark Levinson、Cello Encore、Palette以及Krell、Thershold等公司,是最喜好使用大量晶体管制造器材的公司。他们使用晶体管有几个特色: 一、数量其多无比,可以使用两颗的绝对不会以一颗解决。 二、偏好双极性晶体管,虽然在特性上FET拥有较佳的性能,但也许是习惯加上喜好,一部前级从头到尾几乎全是双极性晶体管。 三、对于电源供应相当讲究,以晶体管为主的稳压线路,其实就可以达到相当优秀的性能,使用低杂音零件所制造出来的直流电源,杂音特性足以与电池相比。但完美之外还要更完美,Mark Levinson、Cello等设计师,嗜好以多层次稳压,电源从变压器输出之后,以二极管整流,再以电容进行稳压,好戏从这里才开始,利用精密的晶体管稳压电路,稳压之后再稳压,一连两三次的串联稳压,让电源涟波完全没有发生的机会。 近代这几家嗜好以晶体管设计前级扩大机的厂家,也开始尝试加入FET以及IC的设计,电路架构依旧复杂无比,但声音却拥有极高度的透明感与分辨率,细节多到吓人的地步,却不见古早晶体管生涩的表情。可见,空凭电路架构与材料种类,并无法推断其声音的绝对表现,过去总有人说:FET的声音较清亮,MOSFET的声音具有真空管味,晶体管生涩没弹性,现在这些说法已经完全不正确了。Mark Levinson、Krell以及Cello等厂商,酷爱使用大量晶体管堆砌线路,打开机箱一看,尽是满满的电阻与晶体管。 有人说6DJ8是为音响而设计的真空管,那么NE5534应该就是第一颗专为音响而设计的IC。1981年对IC设计而言,尚不到发达的年代,Philips的子公司推出了NE5534 IC,宣称特别为音响用途而设计,特点是采用双极性晶体差动输入,低阻抗输出,适合在前级线路中使用。NE5534是一颗运算放大器OPAMP,它将放大器线路浓缩于一颗八支脚的IC内,只要附加几颗电阻以及防止震荡的电容,就可以构成前级放大器中所需要的放大电路。消息一出确实轰动业界,原本要使用不算少量零件构成的放大电路,竟然可以使用一颗IC取代,不禁让设计师看了傻眼。不过当时大家普遍不相信IC的声音,总认为它的特性甚差,声音不理想,因此并没有人愿意真正拿OPAMP来做前级的主要放大组件,除了MBL 6010之外。 早期的OPAMP特性确实相当不理想,它的回转率低,杂音特性不佳,还得依照不同的电路给予不同程度的补偿修正。但现代的IC性能可不能同日语,现代专为音响而设计的OPAMP,具有如FET及真空管高输入阻抗的优点(具有数M奥姆的输入阻抗,其实比FET还高),同时也有BJT低输出阻抗的优点(可以降至数十奥姆,也比小信号晶体管还低),它的回转率高达数千V / μs,输出中点电压低不可测。不必加装交连电容也可以直入后级,它的频宽更是惊人,直接拿来放大射频讯号也没问题,价格低廉特性超强,早已经成为音响设计必备的放大组件。 虽然现代的OPAMP特性极佳,但体积却依旧小巧,设计师认为如果一部前级内仅以几颗OP构成,卖得了大钱吗?因此IC前级的发展不在于声音,而是有没有办法卖高价钱。这世界上肯定没有任何前级比MBL 6010更幸运的了,一部前级仅使用十来颗NE5534 OPAMP,身价却高达六十余万元,德国人确实有一套。MBL 6010与McIntosh C100皆以NE 5534做为主要放大组件,所不同的是,mbl 6010的线路相当简洁,而McIntosh C100则使用大量OPAMP盖成一部两层楼的作品。 这是前级发展的新趋势,但碍于技术的研发并不容易,因此能够设计数字前级的厂家并不多。数字前级意味着控制与放大皆采用数字的方式进行,以前级的功能来说的确不必如此麻烦复杂,但尝新总是发展的原动力。数字前级如何工作?模拟讯号输入前级之后,利用内部的A / D转换,将模拟讯号转成数字讯号,再依据音量控制器的大小数据,以DSP进行运算,再以数类转换器的技术将计算之后的数字数据转成模拟讯号,再输出至后级扩大机。如此兜一圈是不是很浪费力气?但Accuphase认为,他们推出DC-300的用意在于宣告,模拟前级他们拥有高完成度的C-290V,为了因应数字时代的来临,推出复杂处理程序的数字前级正是迈入下一个挑战的开始。 就两声道的世界而言,数字前级的确多此一举,但Accuphase其实已经见到了未来。多声道的流行是不可避免的趋势,多声道等于环绕系统,从讯源的解读开始,就必须仰赖高度计算的数字技术,现今每一部环绕处理器必须使用数字化设计,利用数字技术解出每个声道的讯号之后,再利用模拟的方式进行放大。何不尝试直接以全数字化处理,将译码后的声音数据直接转换为输出,而省略了前级放大的部份?如此即可达到更直接的效果,对于音质的提升应该有实质的帮助。 其实数字前级的概念早在多年前就已经出现了,只不过这些数字前级存在于数类转换器之中。Vimak DS-2000应该是第一部融合数字前级的数类转换器,我们暂且不谈论这部数类转换器的种种设计,光就内部附属的数字前级进行解说。Vimak DS-2000的数位前级是这样的:在DS-2000内部拥有一个高位的DSP运算器,将CD数据以128倍超取样之后,再依据面板上的数字音量控制器,直接改写数字数据,进而决定DAC芯片的输出。换句话说,DS-2000的讯号输出正是DAC芯片的直接输出,而非经过音量电位器的衰减,它提供了最简洁路径的设计,也提供了最直接的音质。当然,Vimak的设计者来头可不小,这些数字技术对他来说并不困难,音响世界缺乏了Vimak,让很多数字厂家松了不少口气!最出名的数位前级是Accuphase DC-300。 单增益前级 一开头提到,主动式扩大机内部具有放大电路,一般的增益为0至十倍,而被动式前级使用音量电位器衰减,其最大输出即等于输入。也有一种主动式前级,其放大倍率与被动式前级一样,这就是单增益前级。 单增益前级的目的在于:将前级想象成一个缓冲器(Buffer),在英文意义里,Buffer具有隔离、缓冲的作用,亦即不改变讯源器材的信号强度,但以高输入阻抗接收,以低阻抗输出的观念将讯号送出,因此单增益前级便具有阻抗转换的功能。市面上的单增益前级并不多,最主要原因在于增益往往不足,音量开至最大依旧意犹未尽,国产厂商交直流工作室推出的Encore前级,正是单增益前级的具体代表。这部前级使用孪生场效应晶体管做输入,以ZTX双极性晶体管做输出,具有高输入阻抗、低输出阻抗的特性,由于零件极少,因此S/N比奇高,将音量开至最大,耳朵贴近高音单体听不到任何嘶声,音色通透无染,细节呈现自然,是一部价格极其便宜音质极其优异的单增益前级。 前级放大器线路越简略就是越理想吗? 有非常多的废话谈论前级放大器,因此,现在是该为它澄清的时候了。在理想的环境聆听中,组件数目越少的讯号路径设计,这种放大器可能会越完全真实完美。这就是simple is the best理论。 每多用一个组件,会增加一分失真,而开关和音量控制却是主要的罪犯。但是很多好的录音能够达致做到,需要在前面的音调上,帮一个忙,才能消除掉回放时那些声音尖刺、令人聆听起来容易感到疲倦的毛病。 这样一来,就产生了这种情况:音调控制提供精密敏感的的运作(事实上许多高级层次的前级放大器都采用了步进制的电阻选择器取代了常用的电位器)。当你试听一个放大器,不妨做一个尝试:只使用它附有的低音与高音旋钮控制音量的时候,你会聆听到相应的差异。你应该相对地小的变化。这种现像不单只是发生在聆听摇滚音乐或流行音乐上,甚至聆听古典音乐的朋友,也会时常想找对一个「左手向下的」在高音上渐减的旋钮,驯化录音天然的顶端。 音量控制器已经尽力仍不能令放大器更高声输出——令书架型音箱的低音单元听起来像怪物 Cerwin Vega。请紧记我们提到的附加失真?为了舞会尽兴,将旋钮旋到低音和高音都提高的位置,整个声浪提高了,但失真已经开始吹拍喇叭。 两个世界都一起拥有是最好的?既有好音量调控制的前级放大器,又可以直接的音源输出,或设有一个「音量撤离」按钮,当需要时可以将它旁路。但要留意的一点,纯化论者会更甚至这仍然坚持越简单越好。 前级放大器与后级放大器输出、输入阻抗匹配 前级放大器与后级放大器皆有输出与输入阻抗这项规格,输出阻抗表示前级或后级放大器讯号输出的内阻,单位是欧姆,输出阻抗越低,就表示该放大器的内阻越低、驱动能力越强。同理,输入阻抗就是前级放大器或后级放大器对于讯号输入器材时所遇到的阻抗,单位也是欧姆。输入阻抗越高,就表示前端器材可以推得更轻松,同时也可以降低负载效应的影响。每部放大器都有输入阻抗与输出阻抗,一般而言,输入阻抗Ri越高越好,输出阻抗Ro越低越好。阻抗匹配理想上前级的输出阻抗越低越好,而后级放大器的输入阻抗越高越好,这是为了避免负载效应的影响。 通常后级放大器的输入阻抗,最好高于前级放大器输出阻抗的十倍以上,这样才能让前级的实力尽量发挥。这就好比火车头拉车厢的道理是相同的,相同的车厢让不同马力的火车头拉动,轻松程度自然不一样,马力越大(输出阻抗越低)的火车头,拉动重量越轻(输入阻抗越低)的车厢,自然轻松愉快。 前置放大器 在另外一个有关怎样选择前置放大器里的帖子,L版说:「这个时代讲求的是个性! 」的确,挑选前置放大器最重要的是该前置放大器的个性气质。 前级放大器最重视的它的频率响应范围一定要宽阔(5- 35K Hz以上)高频越延伸谐波、泛音、余韵才会丰富,高频不出色,中低频无论多么好,我也不接受,影响了听感。一台好的前级放大器,首先要做到整个声音音域要平衡,动态不能过大,也不能太小,声音解析力十分好,这样声音才会通透,音场的结像自然,乐器隔离度玲珑,尺寸大小才适当。 当提出怎样选择前级放大器需要考虑那些问题时,我忽然想起自己拥有的那 3部前级放大器,是我在无法作出取舍、选一部符合自己的构想的情况下,索性全把它买下来的(当然不是3部前级放大器在同一时间添置的)。这是一个多么笨的方法!?自己既然这样笨,还有资格继续写这篇文章? 要想丰润的声音,中低和低音最难调校,怎样调,利用什么材料,这就看你个人的工夫了。我当年的没有办法的办法是购置了几部前级放大器(Restek的Vector,喜欢它的频域宽,解释能力强,回放出来的声音认真清晰细致,我称它为「燕瘦」;另外一部称为「环肥」的是Audiolabor的Klar,它回放出来的声音就丰润细腻了,有血有肉,滑不留手,我仿如唐明皇般喜欢杨玉环多于赵飞燕,尤其像冬天寒冷天气里,它给我带来温暖;不像赵飞燕那般冷若冰霜,我心情燥热时才以她播放,回放出来的声音往往能令自己整个人沉静下来,起安神降燥的特殊功效。再者,我还有一部ARC SP 11 Mk II,那就专门用来聆听人声的特别措施了,由于接驳繁复,不像我的「燕瘦」「环肥」一部接XLR、另一部接RCA插头输入我的Restek Exponent后级放大器般方便,我只需要在Exponent背板的按钮上将Bal变Unbal,就可以选择「燕瘦」或「环肥」了。 这个例子说明前级放大器对聆听者的偏爱有直接关系,我聆听音乐种类、性质繁多,因此用了多部,其它的发烧朋友,当然要根据自己聆听那一类型的音乐去选择了。喜欢古典音乐的,当然频率响应范围一定要宽阔(5- 35K Hz以上);以聆听人声为主的音压和频域的要求就可以降低些…… 总之,要诀还是要多些聆听,还要配合已选好的音箱结合起来聆听,只有这样,回放出来的声音才会是将来自己想聆听到的声音。 假如音响器材的前级放大器,能在速度、瞬变、动态、声压等要素,较为真实还原出来的话,就可以冷静的坐下来聆听音乐了,并可以进入音乐优美的境界,欣赏到音乐的内涵而深受感动。 玩HiFi的朋友往往会偏重于调校某些环节,而疏忽其它因素的影响,器材除了要配搭得宜之外,更要有一个好的聆听环境,悉心的调校和使用,才可以达到目的,不会是一蹴而就的。这些道理相信大部分的发烧友都懂得,但能够顾及全面去玩的朋友毕竟不多。单就器材使用方面,很多发烧友对自己的器材性能都不甚了了,往往因为使用不当,而将声音不好的原因归究在某些器材身上。结果「玩」HiFi变成了不停地「换」HiFi。我居住的这个小镇里,就有这样一位发烧朋友,玩音响的经历仅五六年,前后换了不下六套系统了。我说的是「套」,换的是整套!大家猜猜他现在是怎样玩前级放大器的?他现在是以玩CD Wadia 861为讯源(半年前曾玩过一台LP唱盘,弄不出好声音而转让或退回给代理了) ,这部机已经可以直接连接后级放大器了,因为它经已设置了有一个数码式音量遥控器。可是这位发烧友大概慕名或者是嫌Wadia 861数码声音较重,另外连接了一部ARC Reference II 前级放大器,然后连接到每边输出600W的Pass功率放大器,驱动一对Wilson WATT / Puppy 6。钞票原来是可以这样来花的!?大概他认为这样就能将声音真空管化了! 前级可以说是整个系统的控制中心。一般人对前级的理解,以为仅是前级只是用来控制音量的大小和选择讯源的一件器材,对于机上的按钮和设施往往视而不见,甚至对每个按钮的用途也懒得去理解,他们其实是浪费自己的金钱和设计者的心血,没有好好地去发挥它的性能。 就以一部最简单的前级为例,它通常只具备选择讯源和控制大小声的功能,但你不要轻视它,其实声音的好坏,与操作前级是否正确和调校有极大关系。先撇开调校不谈,就以控制音量旋钮(Volumn)来说,它可以说是一种艺术,音量的大小足以影响到整个系统声音的好坏。我居住的这个小镇里,又有这样的另一位发烧朋友,他喜欢欣赏鼓声音,招待客人就是鼓声连场,音量旋钮通常都旋至12.00 o’clock 或 13.00 o’clock位置,谁受得了。他不管听什么音乐,都以同一音量去听,以为录音好的自然声音就必然好听。更要命的是他以为大声就是好听,所以不管是听交响乐,或是单一乐器演奏都用同一音量去听,结果你听到邓丽君的歌喉声如洪钟,娇小的身躯变得像姚明雄伟,小提琴的体积扩大为倍音大提琴,结他的高音像古钢琴,低音部分像打鼓。当你听到皱起眉头,心中发闷时,他还对你说他的系统的动态如何的劲,歌手是如何的够中气,录音细节是如何多,简直可以把你气得半死! 为什么这些朋友会这样子去听音乐呢?纯粹因为他们少了去聆听音乐会,正统的现场音乐会。当他听过在同一音乐厅里演奏的交响乐队,和单一件乐器演奏时的音量大小,和真正乐器发声时,他会明白到什么叫做声音的比例,才能了解到单一件乐器演奏发声时的音量的响度。除了听现场外,其它解乐器发声和音量的方法,就是听一些不用扩音机系统的真人演奏。那么当你再去听那些CD上的罐头音乐时,就不会毫无准则地去调节音量,不但使声音失真,乐器变形,耳朵受罪外,听觉也可能受损呢! 音量控制的最高技巧,就是能令到自己的音响器材达到最佳的表现,能够将乐队、独奏乐器、真人唱歌时的音量大小,原汁原味地还原!就是HiFi的1:1的音量,同样比例的体积和同样大小的立体音场,彷佛整个交响乐队在家里聆听室作现场演奏!发烧友以为:只要把世上最贵的器材搬回家,就可以做到这样的景界。事实上并不像他设想的那么简单,其中学问多着。 样正确选择前级放大器 译者注:这是一篇这两天刚开始翻译的文章,目的是配合坛子里网友提出的要求,将会分段贴出,希望大家耐心等候。 当提出怎样选择前级放大器需要考虑那些问题时,我忽然想起自己拥有的那 3部前级放大器,是我在无法作出取舍、选一部符合自己的构想的情况下,索性全把它买下来的(当然不是3部前级放大器在同一时间添置的)。这是一个多么笨的方法!?自己既然这样笨,还有资格继续写这篇文章? 前级放大器的添加目标,是达成在你的音源(s)和放大器之间的协同作用。任何时候你有一个机会试听连接在你的系统中多部前级放大器,却说不出那一部的声音较另一部的声音好。理由是声音好的通常或多或少在价格上会较高,或者那部前级放大器的在电路设计上多做了很多功夫。 选择理想前级放大器时,你必需弄清楚两件事 : A. 你的音源输出电压(最光盘驱动器是 2伏); B. The input sensitivity of your amplifier (most amplifiers are around 1 volt) 你的放大器的输入灵敏度(大多数的放大器1伏在附近) 究竟你的光盘驱动器或其它的音源的输出电平小于或大于 2伏,你必需知道。在相同的音符上,如果你功率放大器的输入灵敏度小于或大于1伏,你也应该必需知道。一经你确实知道这些电压,你就可以好好的选择正确的前级放大器了。 首先了解两个名词代表什么。 音源输出电压(output voltage of your source)音源输出电压是一个不会变更的固定电平,除非你的音源有一个”可变的输出”。这一个 2伏的讯号(音乐),驱动着功率放大器的输入级,或者驱动着前级放大器,它依次驱动放大器的前级放大器的输入或功率放大器的输入级。 放大器的输入灵敏度(input sensitivity of an amplifier),简单地说,放大器的输入灵敏度意思指有多少伏的电平讯号传送到功率放大器去。任何的电压量超过这个数量,将会令到你的功率放大器尝试使出更多的、超越实际上有的功率,结果令它超负载产生所谓”削波clipping”。 因此在所有的情况下,一个前级放大器理所当然的是用来控制来自音源的电压。当前级放大器音量向左被旋到最尽的时候,你能测算到只有零伏电压输出,功率放大器因此没有声音。当你把音量音量旋钮向右旋调把输出电压增大时,你的功率放大器便能驱动音箱发出声音。音量控制上的理想工作范围应该在一个向右1/4 与 3/4 之间,这是聆听电平的正常位置(实际上超越向右1/2位置时,失真已经存在了)。意思是说:前级放大器永远不会在输入信号里增添任何的电压,也即是”增益gain”。什么情况下前级放大器需设”增益” 呢?有两个理由可能希望前级放大器增强增益: A. 当功率放大器需要高于1伏才能到达全功率输出的时候。 B. 当你的音源只有小于2伏输出的时候。 某些功率放大器需要5伏输入,才能达到全功率输出,通常放大器设计,全部设定在2伏输入时便达到全功率输出。偶然间我们会看到某种放大器仅需要1/2伏输入便到达全功率输出。 一些被修改过的光盘驱动器的输出电平少于 2伏,一些数码模拟转换器 DACs 也有少于2伏输出电平的。(虽然大多数的 DACs 至少有 2伏或稍高伏的情况,有时可能达到5伏。) 喜爱乙烯基唱片的人,有时可能很难找到一部以输出的一部附设有 2伏的唱头和唱盘接线端子级。我曾看到过多数是1伏的。假如音源只有 1伏输出电平的情况下,而放大器的输入灵敏度只有2伏,就必须多设一部有增益的前级放大器,否则便无法让后级放大器去正常的回放出该有的音压。即使有一对超高效率的音箱、聆听的要求仅是非常松软水平,但回放出来的音乐将会缺乏动态和重量感的。一旦作出决心需要增益或不增益,便已经大大缩窄了选择范围。但无论选择增益或没有增益,都必需考虑匹配的「阻抗」。 所有的音源和放大器有被称为「输出阻抗output impedance」的东西。把它当作这部机对付困难负载的驱策能力,例如以很长的信号线连接放大器。 相反的情况,所有的放大器有被称为「输入阻抗input impedance」这种的东西。把它当作这部机遭逢到前级放大器或光盘驱动器所施的电平。 一般规律是愈低输出阻抗,愈比较易于驱策困难的负载。同样,愈高的输入阻抗,也是比较容易驱动。前级放大器最好是输出阻抗低于1000Ω去驱动一部输入阻抗为100,000Ω的放大器。 市面上的光盘驱动器的输出阻抗通常都相当低,但是不幸的是功率放大器的输出阻抗,通常都在 10,000Ω和 500,000Ω之间,多数是在50 KΩ附近。50 KΩ是一个适当的负载,大多数的音源和前级放大器驱动时都不会产生问题。除非是以一部高输出阻抗的前级放大器,以额外长的信号线去尝试驱动一部50 KΩ放大器。结果可能经常不是低频响应衰落便是声音变得缺乏动态,或者两者同时存在。聆听者当然不希望回放出来的声音听起来单薄,因此,千万设法使用短的信号线。如果那部前级放大器的输出阻抗颇低,那么就没关系了,即使功率放大器在房子的另一边,仍然低频响应硬朗有重量感,也不会有衰落。 这里有3部前级放大器模型: 顶级的A模型跟据怎样在背板设定的选择开关,设有许多增益或没有增益;或者采用一个正常输出阻抗或低的输出阻抗。这样才能够确定它实发出独特的、或经常性的好声音。 模型B则没有增益,输出阻抗却是低的,对大多数的系统的匹配最为理想。 模型C有较大增益以及较高的输入灵敏度,迎合以较低输出的音源或较高输出灵敏度的放大器,或两者都存在都适配。 谈到这里,或许不妨多读的另外一篇文章:《前级放大器究竟帮忙改善或伤害了声音》 假如玩家的讯号只是CD机,而音响系统所采用的功率放大器设有音量控制电位的话,用与不用前级放大器,则存在有可选用或不选用前级放大器的可能。事实上大多数的情况下,建议被劝告不要不选用前级放大器。 [编辑本段]前置放大器作用 音源选择电路的作用是选择所需的音源信号送入后级,同时关闭其他音源通道。 输入放大器的作用是将音源信号放大到额定电平,通常是1V左右。 音质控制的作用是使音响系统的频率特性可以控制,以达到高保真的音质;或者根据聆听者的爱好,修饰与美化声音。 功率放大器、线路放大器和前置放大器的区别和应用 是由前置放大器放大输入的信号,比如通过麦克风拾取的声音信号,由于它比较弱,需要先被放大到一定的电平才可以到其它级上。通常前置具有较高的电压增益,可以将小信号放大到标准电平上。 线路放大器是为了传输使用的,为了减小输送衰减,使接收方得到足够强的信号,输送时要进行电流放大和推动,有时也需要提高电压输送,比如定压广播就是利用这个原理的。 功率放大器主要是放大电流,这样才能推动低阻的扬声器发出声音。当然,这个例子是按音频实例讲的,若是射频信号,和这个讲法会有些出入,但是意思差不多,像发射机的功放,输出是输出到天线上的。 单增益前级 一开头提到,主动式扩大机内部具有放大电路,一般的增益为0至十倍,而被动式前级使用音量电位器衰减,其最大输出即等于输入。也有一种主动式前级,其放大倍率与被动式前级一样,这就是单增益前级。 单增益前级的目的在于:将前级想象成一个缓冲器(Buffer),在英文意义里,Buffer具有隔离、缓冲的作用,亦即不改变讯源器材的信号强度,但以高输入阻抗接收,以低阻抗输出的观念将讯号送出,因此单增益前级便具有阻抗转换的功能。市面上的单增益前级并不多,最主要原因在于增益往往不足,音量开至最大依旧意犹未尽,国产厂商交直流工作室推出的Encore前级,正是单增益前级的具体代表。这部前级使用孪生场效应晶体管做输入,以ZTX双极性晶体管做输出,具有高输入阻抗、低输出阻抗的特性,由于零件极少,因此S/N比奇高,将音量开至最大,耳朵贴近高音单体听不到任何嘶声,音色通透无染,细节呈现自然,是一部价格极其便宜音质极其优异的单增益前级。 前级放大器线路越简略就是越理想吗? 有非常多的废话谈论前级放大器,因此,现在是该为它澄清的时候了。在理想的环境聆听中,组件数目越少的讯号路径设计,这种放大器可能会越完全真实完美。这就是simple is the best理论。 每多用一个组件,会增加一分失真,而开关和音量控制却是主要的罪犯。但是很多好的录音能够达致做到,需要在前面的音调上,帮一个忙,才能消除掉回放时那些声音尖刺、令人聆听起来容易感到疲倦的毛病。 这样一来,就产生了这种情况:音调控制提供精密敏感的的运作(事实上许多高级层次的前级放大器都采用了步进制的电阻选择器取代了常用的电位器)。当你试听一个放大器,不妨做一个尝试:只使用它附有的低音与高音旋钮控制音量的时候,你会聆听到相应的差异。你应该相对地小的变化。这种现像不单只是发生在聆听摇滚音乐或流行音乐上,甚至聆听古典音乐的朋友,也会时常想找对一个「左手向下的」在高音上渐减的旋钮,驯化录音天然的顶端。 音量控制器已经尽力仍不能令放大器更高声输出——令书架型音箱的低音单元听起来像怪物 Cerwin Vega。请紧记我们提到的附加失真?为了舞会尽兴,将旋钮旋到低音和高音都提高的位置,整个声浪提高了,但失真已经开始吹拍喇叭。 两个世界都一起拥有是最好的?既有好音量调控制的前级放大器,又可以直接的音源输出,或设有一个「音量撤离」按钮,当需要时可以将它旁路。但要留意的一点,纯化论者会更甚至这仍然坚持越简单越好。 前级放大器与后级放大器输出、输入阻抗匹配 前级放大器与后级放大器皆有输出与输入阻抗这项规格,输出阻抗表示前级或后级放大器讯号输出的内阻,单位是欧姆,输出阻抗越低,就表示该放大器的内阻越低、驱动能力越强。同理,输入阻抗就是前级放大器或后级放大器对于讯号输入器材时所遇到的阻抗,单位也是欧姆。输入阻抗越高,就表示前端器材可以推得更轻松,同时也可以降低负载效应的影响。每部放大器都有输入阻抗与输出阻抗,一般而言,输入阻抗Ri越高越好,输出阻抗Ro越低越好。阻抗匹配理想上前级的输出阻抗越低越好,而后级放大器的输入阻抗越高越好,这是为了避免负载效应的影响。 通常后级放大器的输入阻抗,最好高于前级放大器输出阻抗的十倍以上,这样才能让前级的实力尽量发挥。这就好比火车头拉车厢的道理是相同的,相同的车厢让不同马力的火车头拉动,轻松程度自然不一样,马力越大(输出阻抗越低)的火车头,拉动重量越轻(输入阻抗越高)的车厢,自然轻松愉快。 前置放大器 在另外一个有关怎样选择前置放大器里的帖子,L版说:「这个时代讲求的是个性! 」的确,挑选前置放大器最重要的是该前置放大器的个性气质。 前级放大器最重视的它的频率响应范围一定要宽阔(5- 35K Hz以上)高频越延伸谐波、泛音、余韵才会丰富,高频不出色,中低频无论多么好,我也不接受,影响了听感。一台好的前级放大器,首先要做到整个声音音域要平衡,动态不能过大,也不能太小,声音解析力十分好,这样声音才会通透,音场的结像自然,乐器隔离度玲珑,尺寸大小才适当。 当提出怎样选择前级放大器需要考虑那些问题时,我忽然想起自己拥有的那 3部前级放大器,是我在无法作出取舍、选一部符合自己的构想的情况下,索性全把它买下来的(当然不是3部前级放大器在同一时间添置的)。这是一个多么笨的方法!?自己既然这样笨,还有资格继续写这篇文章? 要想丰润的声音,中低和低音最难调校,怎样调,利用什么材料,这就看你个人的工夫了。我当年的没有办法的办法是购置了几部前级放大器(Restek的Vector,喜欢它的频域宽,解释能力强,回放出来的声音认真清晰细致,我称它为「燕瘦」;另外一部称为「环肥」的是Audiolabor的Klar,它回放出来的声音就丰润细腻了,有血有肉,滑不留手,我仿如唐明皇般喜欢杨玉环多于赵飞燕,尤其像冬天寒冷天气里,它给我带来温暖;不像赵飞燕那般冷若冰霜,我心情燥热时才以她播放,回放出来的声音往往能令自己整个人沉静下来,起安神降燥的特殊功效。再者,我还有一部ARC SP 11 Mk II,那就专门用来聆听人声的特别措施了,由于接驳繁复,不像我的「燕瘦」「环肥」一部接XLR、另一部接RCA插头输入我的Restek Exponent后级放大器般方便,我只需要在Exponent背板的按钮上将Bal变Unbal,就可以选择「燕瘦」或「环肥」了。 这个例子说明前级放大器对聆听者的偏爱有直接关系,我聆听音乐种类、性质繁多,因此用了多部,其它的发烧朋友,当然要根据自己聆听那一类型的音乐去选择了。喜欢古典音乐的,当然频率响应范围一定要宽阔(5- 35K Hz以上);以聆听人声为主的音压和频域的要求就可以降低些…… 总之,要诀还是要多些聆听,还要配合已选好的音箱结合起来聆听,只有这样,回放出来的声音才会是将来自己想聆听到的声音。 假如音响器材的前级放大器,能在速度、瞬变、动态、声压等要素,较为真实还原出来的话,就可以冷静的坐下来聆听音乐了,并可以进入音乐优美的境界,欣赏到音乐的内涵而深受感动。 玩HiFi的朋友往往会偏重于调校某些环节,而疏忽其它因素的影响,器材除了要配搭得宜之外,更要有一个好的聆听环境,悉心的调校和使用,才可以达到目的,不会是一蹴而就的。这些道理相信大部分的发烧友都懂得,但能够顾及全面去玩的朋友毕竟不多。单就器材使用方面,很多发烧友对自己的器材性能都不甚了了,往往因为使用不当,而将声音不好的原因归究在某些器材身上。结果「玩」HiFi变成了不停地「换」HiFi。我居住的这个小镇里,就有这样一位发烧朋友,玩音响的经历仅五六年,前后换了不下六套系统了。我说的是「套」,换的是整套!大家猜猜他现在是怎样玩前级放大器的?他现在是以玩CD Wadia 861为讯源(半年前曾玩过一台LP唱盘,弄不出好声音而转让或退回给代理了) ,这部机已经可以直接连接后级放大器了,因为它经已设置了有一个数码式音量遥控器。可是这位发烧友大概慕名或者是嫌Wadia 861数码声音较重,另外连接了一部ARC Reference II 前级放大器,然后连接到每边输出600W的Pass功率放大器,驱动一对Wilson WATT / Puppy 6。钞票原来是可以这样来花的!?大概他认为这样就能将声音真空管化了! 前级可以说是整个系统的控制中心。一般人对前级的理解,以为仅是前级只是用来控制音量的大小和选择讯源的一件器材,对于机上的按钮和设施往往视而不见,甚至对每个按钮的用途也懒得去理解,他们其实是浪费自己的金钱和设计者的心血,没有好好地去发挥它的性能。 就以一部最简单的前级为例,它通常只具备选择讯源和控制大小声的功能,但你不要轻视它,其实声音的好坏,与操作前级是否正确和调校有极大关系。先撇开调校不谈,就以控制音量旋钮(Volumn)来说,它可以说是一种艺术,音量的大小足以影响到整个系统声音的好坏。我居住的这个小镇里,又有这样的另一位发烧朋友,他喜欢欣赏鼓声音,招待客人就是鼓声连场,音量旋钮通常都旋至12.00 o’clock 或 13.00 o’clock位置,谁受得了。他不管听什么音乐,都以同一音量去听,以为录音好的自然声音就必然好听。更要命的是他以为大声就是好听,所以不管是听交响乐,或是单一乐器演奏都用同一音量去听,结果你听到邓丽君的歌喉声如洪钟,娇小的身躯变得像姚明雄伟,小提琴的体积扩大为倍音大提琴,结他的高音像古钢琴,低音部分像打鼓。当你听到皱起眉头,心中发闷时,他还对你说他的系统的动态如何的劲,歌手是如何的够中气,录音细节是如何多,简直可以把你气得半死! 为什么这些朋友会这样子去听音乐呢?纯粹因为他们少了去聆听音乐会,正统的现场音乐会。当他听过在同一音乐厅里演奏的交响乐队,和单一件乐器演奏时的音量大小,和真正乐器发声时,他会明白到什么叫做声音的比例,才能了解到单一件乐器演奏发声时的音量的响度。除了听现场外,其它解乐器发声和音量的方法,就是听一些不用扩音机系统的真人演奏。那么当你再去听那些CD上的罐头音乐时,就不会毫无准则地去调节音量,不但使声音失真,乐器变形,耳朵受罪外,听觉也可能受损呢! 音量控制的最高技巧,就是能令到自己的音响器材达到最佳的表现,能够将乐队、独奏乐器、真人唱歌时的音量大小,原汁原味地还原!就是HiFi的1:1的音量,同样比例的体积和同样大小的立体音场,彷佛整个交响乐队在家里聆听室作现场演奏!发烧友以为:只要把世上最贵的器材搬回家,就可以做到这样的景界。事实上并不像他设想的那么简单,其中学问多着。 怎样正确选择前级放大器 译者注:这是一篇这两天刚开始翻译的文章,目的是配合坛子里网友提出的要求,将会分段贴出,希望大家耐心等候。 当提出怎样选择前级放大器需要考虑那些问题时,我忽然想起自己拥有的那 3部前级放大器,是我在无法作出取舍、选一部符合自己的构想的情况下,索性全把它买下来的(当然不是3部前级放大器在同一时间添置的)。这是一个多么笨的方法!?自己既然这样笨,还有资格继续写这篇文章? 前级放大器的添加目标,是达成在你的音源(s)和放大器之间的协同作用。任何时候你有一个机会试听连接在你的系统中多部前级放大器,却说不出那一部的声音较另一部的声音好。理由是声音好的通常或多或少在价格上会较高,或者那部前级放大器的在电路设计上多做了很多功夫。 选择理想前级放大器时,你必需弄清楚两件事 A. 你的音源输出电压(最光盘驱动器是 2伏); B. The input sensitivity of your amplifier (most amplifiers are around 1 volt) 你的放大器的输入灵敏度(大多数的放大器1伏在附近) 究竟你的光盘驱动器或其它的音源的输出电平小于或大于 2伏,你必需知道。在相同的音符上,如果你功率放大器的输入灵敏度小于或大于1伏,你也应该必需知道。一经你确实知道这些电压,你就可以好好的选择正确的前级放大器了。 首先了解两个名词代表什么。 音源输出电压(output voltage of your source)音源输出电压是一个不会变更的固定电平,除非你的音源有一个”可变的输出”。这一个 2伏的讯号(音乐),驱动着功率放大器的输入级,或者驱动着前级放大器,它依次驱动放大器的前级放大器的输入或功率放大器的输入级。 放大器的输入灵敏度(input sensitivity of an amplifier) 简单地说,放大器的输入灵敏度意思指有多少伏的电平讯号传送到功率放大器去。任何的电压量超过这个数量,将会令到你的功率放大器尝试使出更多的、超越实际上有的功率,结果令它超负载产生所谓”削波clipping”。 因此在所有的情况下,一个前级放大器理所当然的是用来控制来自音源的电压。当前级放大器音量向左被旋到最尽的时候,你能测算到只有零伏电压输出,功率放大器因此没有声音。当你把音量音量旋钮向右旋调把输出电压增大时,你的功率放大器便能驱动音箱发出声音。音量控制上的理想工作范围应该在一个向右1/4 与 3/4 之间,这是聆听电平的正常位置(实际上超越向右1/2位置时,失真已经存在了)。意思是说:前级放大器永远不会在输入信号里增添任何的电压,也即是”增益gain”。 什么情况下前级放大器需设”增益” 呢?有两个理由可能希望前级放大器增强增益: A. 当功率放大器需要高于1伏才能到达全功率输出的时候。 B. 当你的音源只有小于2伏输出的时候。 某些功率放大器需要5伏输入,才能达到全功率输出,通常放大器设计,全部设定在2伏输入时便达到全功率输出。偶然间我们会看到某种放大器仅需要1/2伏输入便到达全功率输出。 一些被修改过的光盘驱动器的输出电平少于 2伏,一些数码模拟转换器 DACs 也有少于2伏输出电平的。(虽然大多数的 DACs 至少有 2伏或稍高伏的情况,有时可能达到5伏。) 喜爱乙烯基唱片的人,有时可能很难找到一部以输出的一部附设有 2伏的唱头和唱盘接线端子级。我曾看到过多数是1伏的。 假如音源只有 1伏输出电平的情况下,而放大器的输入灵敏度只有2伏,就必须多设一部有增益的前级放大器,否则便无法让后级放大器去正常的回放出该有的音压。即使有一对超高效率的音箱、聆听的要求仅是非常松软水平,但回放出来的音乐将会缺乏动态和重量感的。 一旦作出决心需要增益或不增益,便已经大大缩窄了选择范围。但无论选择增益或没有增益,都必需考虑匹配的「阻抗」。 所有的音源和放大器有被称为「输出阻抗output impedance」的东西。把它当作这部机对付困难负载的驱策能力,例如以很长的信号线连接放大器。 相反的情况,所有的放大器有被称为「输入阻抗input impedance」这种的东西。把它当作这部机遭逢到前级放大器或光盘驱动器所施的电平。 一般规律是愈低输出阻抗,愈比较易于驱策困难的负载。同样,愈高的输入阻抗,也是比较容易驱动。前级放大器最好是输出阻抗低于1000Ω去驱动一部输入阻抗为100,000Ω的放大器。 市面上的光盘驱动器的输出阻抗通常都相当低,但是不幸的是功率放大器的输出阻抗,通常都在 10,000Ω和 500,000Ω之间,多数是在50 KΩ附近。 50 KΩ是一个适当的负载,大多数的音源和前级放大器驱动时都不会产生问题。除非是以一部高输出阻抗的前级放大器,以额外长的信号线去尝试驱动一部50 KΩ放大器。结果可能经常不是低频响应衰落便是声音变得缺乏动态,或者两者同时存在。聆听者当然不希望回放出来的声音听起来单薄,因此,千万设法使用短的信号线。如果那部前级放大器的输出阻抗颇低,那么就没关系了,即使功率放大器在房子的另一边,仍然低频响应硬朗有重量感,也不会有衰落。 这里有3部前级放大器模型: 顶级的A模型跟据怎样在背板设定的选择开关,设有许多增益或没有增益;或者采用一个正常输出阻抗或低的输出阻抗。这样才能够确定它实发出独特的、或经常性的好声音。 模型B则没有增益,输出阻抗却是低的,对大多数的系统的匹配最为理想。 模型C有较大增益以及较高的输入灵敏度,迎合以较低输出的音源或较高输出灵敏度的放大器,或两者都存在都适配。 假如玩家的讯号只是CD机,而音响系统所采用的功率放大器设有音量控制电位的话,用与不用前级放大器,则存在有可选用或不选用前级放大器的可能。事实上大多数的情况下,建议被劝告不要不选用前级放大器。 电流负反馈放大器的原理分析与CAA计算机辅助分析设计 自从1970年Otala博士提出关于晶体管放大器瞬态互调(TIM)失真的理论,传统的电压负反馈技术在高保真音频放大器的设计中就陷入了一种矛盾。一方面,为了降低瞬态互调失真,设计师们减少了负反馈量,甚至采用无大环负反馈设计;另一方面,非线性失真却得不到有效的抑制。虽然采用优质元件和复杂的电路以提高放大器的开环特性,从而减小对负反馈的依赖,但代价也是不小的。近年来,一些音频设计师把目光投向了在视频运算放大器中得以广泛应用的电流负反馈技术,并在高保真音频放大器的设计中取得了成功。如今,像著名的金嗓子公司、马兰士公司、先锋公司、AKAI公司等都纷纷推出采用电流负反馈技术的放大器。国内也有个别厂家推出电流负反馈放大器,可惜仅局限于对国外某款名机的仿制。下面,笔者将对电流负反馈放大器的基本原理进行分析,并在此基础上,结合计算机辅助分析软件SPICE推出一款200W甲乙类电流负反馈放大器。 1 基本原理分析 1.1 电流负反馈放大器的开环特性 关于电流负反馈放大器的设想,早在30年代就有人提出,但进入实用和普及阶段则是80年代的事了。图1是电流负反馈放大器的基本结构。为了便于分析,忽略输入射极跟随器,并仿照差分输入电压负反馈放大器的“半电路分析”方法,以中心水平线为对称轴将电流负反馈放大器简化为如图2所示的分析用的电路,RF与RG组成反馈网络。可以说,这个普通而熟悉的电路就是现代电流负反馈放大器的雏形。为了讨论方便,进一步把图2简化成图3所示的电路,其中RE为RF与RG的并联值,RL为RF与RG的串联值。这样该电路的开环DC增益可以表达如下: 图1 电流负反馈放大器的基本结构 图2 电流负反馈放大器简化电路 图3 电流负反馈放大器简化电路 AVDC=(R1/RE)×(R3/R2)×1  (1) 显然,其开环增益和反馈网络有关,换句话说,开环增益是随闭环增益的变化而变化的。这是电流负反馈放大器一个最重要的基本特征。而在当时为了解决这个问题,工程师们加入一只缓冲用三极管BG4将输入级BG1和反馈网络RF,RG隔离,见图4。由三极管BG4的动态发射极电阻替代了图3中的RE,因此开环增益和反馈网络无关,开环增益不随闭环增益的变化而变化。这个电路就是差分输入电压负反馈放大器的标准模板。这里,还可以看到电流负反馈放大器和电压负反馈放大器的一些其他基本差别,如反馈网络都连到反相输入端,电流负反馈放大器是低阻抗端,而电压负反馈放大器则是高阻抗端;由于BG4的加入,差分输入电压负反馈放大器具有平衡的两个输入端,因而有低的失调电压和相等的输入偏置电流等。 图4 电流负反馈放大器简化电路 现在,再回到电流负反馈放大器的分析上。由图3可以计算开环极点: ωP≈1/[R1×(R3/R2)×CT]  (2) 补偿电容CT可以是BG2的固有的基极-集电极电容或一个外加的补偿电容,(2)式成立是假定BG1的动态发射极电阻可以忽略,并且R2包含BG2的动态发射极电阻。设RT=(R1×R3)/R2,RT定义为传输电阻。则(1),(2)式简化为: AVDC=RT/RE  (3) ωP=1/(RT×CT) (4) 这样,电流负反馈放大器的开环增益可以用下式表达: AV=(RT/RE)×[1/(1+jω/ωP)] =(RT/RE)×[1/(1+jωRT×CT) (5) 将(5)式等式两边除以反馈网络参数RE,就得到一个只与电流负反馈放大器内部特性有关的参数,它更直观真实地描述了电流负反馈放大器的开环特性,这就是开环传输阻抗ZT,单位Ω。RT定义为开环传输电阻,CT为开环传输电容。 ZT= AV/RE=RT×1/(1+jωRT×CT) (6) 由于输出电压等于反相低阻抗输入端(BG1的发射极)的电流与开环传输阻抗ZT的乘积,所以就有了“电流负反馈”名称的来由。 图5是电流负反馈放大器的开环传输阻抗曲线。 图5 电流负反馈放大器的开环传输阻抗曲线 1.2 电流负反馈放大器的闭环特性 用经典的分析方法,电流负反馈放大器的闭环响应可以描述为下式: ACL=AV/(1+AV×β)  (7) 反馈系数β=RG/(RF+RG) 将开环增益表达式(5)带入(7)式可得: AC={(RT/RE)×[1/(1+jωRT×CT)]}/{(RT/RF)× [(1+RF/RT+jωRF×CT)/(1+jωRT×CT)]} 由于RT远大于RF(RT典型值>100kΩ,RF典型值<5kΩ),上式可以简化为: ACL=(RF/RE)×[1/(1+jωRF×CT)] =[(RF+RG)/RG]× [1/(1+jωRF×CT) (8) 可见,电流负反馈放大器闭环增益的直流值由反馈网络RF,RG决定,闭环极点由RF与CT决定。只要RF不变,闭环带宽就基本不变,此时改变RG就可以改变闭环增益,因此可以得到电流负反馈放大器的闭环增益和闭环带宽无关的重要特性。实际上,只要RF不变,在闭环增益改变的同时,开环增益也在改变,以确保闭环带宽基本不变。图6反映了开环增益随闭环增益变化的这种特性。 图6 开环增益随闭环增益变化的特性曲线 1.3 电流负反馈放大器在音频应用上的优势 首先,电流负反馈放大器可以较好地兼顾非线性失真与瞬态互调失真这两项指标。众所周知,环路增益是衡量一个放大器保持原始信号保真度的重要指标。现代的电压负反馈放大器为了减小瞬态互调失真,不得不减小负反馈深度,从而降低了环路增益,导致闭环增益误差增大,非线性失真增大。而电流负反馈放大器由于有闭环增益和闭环带宽无关的重要特性,只要反馈电阻RF保持不变,不论闭环增益如何变化,环路增益都保持不变,从图6也可以看到,环路增益即开环增益曲线以下与闭环增益曲线以上所包围的面积,虽然闭环增益改变了,但环路增益不变。因此,可以根据需要确定闭环增益而不必考虑是否会影响到闭环增益误差和非线性失真。其次,电流负反馈放大器的开环传输阻抗的主极点频率比电压负反馈放大器高,高频时的环路增益相对地大于电压负反馈放大器。当信号频率增加时电流负反馈放大器的闭环增益误差就较小,高频信号的非线性失真也小。 表1 OPA603和OPA621的失真特性 失真 增益 闭环增益ACL=2 闭环增益ACL=10 OPA603 OPA621 OPA603 OPA621 二次谐波失真 -65dB -68dB -63dB -50dB 三次谐波失真 -78dB <-90db> -62dB -70dB 等效BIT数 10.5 11 10 9             表1是电流负反馈运放OPA603和电压负反馈运放OPA621在不同负反馈深度(闭环增益)条件下的失真特性,OPA603在闭环增益为2和10时,谐波失真变化很小,OPA621在闭环增益增大时,谐波失真明显变大,等效BIT数由11BIT降为8 BIT。再次,电压负反馈放大器有GBW的限制,减小反馈深度就要牺牲带宽指标,而电流负反馈放大器的闭环带宽与闭环增益无关。最后,电流负反馈放大器的转换速率一般比电压负反馈放大器要好,因为电流负反馈放大器的转换速率主要是由输入信号幅度和边缘决定的,理论上没有转换速率的限制,而且对所有的阶跃输入信号都产生理想的单极点指数输出响应。图7是电流负反馈运放LT1352的转换速率与输入阶跃信号幅度的关系,可见,转换速率是随输入信号幅度呈线性增长的。电压负反馈放大器的转换速率是由电路内部决定的与输入信号无关的定值。因而在大信号输入时,电流负反馈放大器的转换速率比电压负反馈放大器高得多,确保了电流负反馈放大器在大信号输出时的功率带宽远大于一般电压负反馈放大器,获得了大幅度高频信号的低失真重放。由此可以得出,在闭环增益较高、反馈深度较浅、功率带宽越来越宽的现代音频放大器的应用中,电流负反馈放大器比电压负反馈放大器有利得多。 图7 LT1352的转换速率与输入信号幅度的关系 2 200W甲乙类电流负反馈放大器的CAA计算机辅助分析设计 由于电流负反馈放大器的设计比较复杂,很难用传统的数字解析法完成,因此用SPICE软件对电路进行计算机辅助分析设计。整个设计分为开环设计、闭环设计和动态输入信号的验证设计。 2.1 开环设计(包括直流工作点计算)采用经典的电流负反馈放大器的拓扑结构,如图8所示。分为交叉耦合输入级、I/V变换、输出缓冲器三大部分,中点零电位主要由输入级元件的对称性保证,再加上运放组成的DC伺服电路,确保中点零电位的稳定。为了提高能量速度,交叉耦合输入级没有采用恒流源,输入级电流为3.0mA,比较大,主要是提高在正、负两个方向上转换速率的极限。I/V变换没有采用恒流源有源负载,而是用电阻检测输入缓冲放大级输出端的电流,两级推挽射极接地电路进行电压放大以提供足够的增益。输出缓冲器的静态电流设置为0.545A,由两对大功率管分担,8Ω负载上的甲类输出功率约5W。电路设计描述文件如下: 图8 开环仿真电路图 *SPICE_NET**INCLUDE \H-BB\\BJT.LIB*INCLUDE DEVICE.LIB*INCLUDE NONLIN.LIB.AC DEC 20 5HZ 200000KHZ*ALIAS V(21)=VOUT*ALIAS V(36)=V-*ALIAS I(V8)=I-.PRINT AC V(21) VP(21) V(36) VP(36) .PRINT AC I(V8) IP(V8)BG2 15 0 7 2SD667A TEMP=50BG3 5 6 1 2SD667A TEMP=50BG4 4 7 1 2SB647A TEMP=50BG5 29 5 8 2SB649A TEMP=50BG7 10 4 9 2SD669A TEMP=50BG9 15 29 12 2SD669A TEMP=50BG13 31 16 23 2SC3858 TEMP=50BG14 32 2 22 2SA1494 TEMP=50BG15 32 30 25 2SA1494 TEMP=50R3 15 6 22KR4 7 3 22KR5 4 3 1.2KR8 9 3 330R9 29 14 2.7KR10 14 10 842C1 29 10 0.1UR15 12 18 150R16 20 21 0.22R17 21 22 0.22R18 23 21 0.22R19 21 25 0.22R20 12 26 10R21 12 16 10R22 18 2 10R23 18 30 10V1 15 0 69VV2 31 0 63VV3 0 32 63VV4 0 3 69VR6 15 5 1.2KBG10 3 10 18 2SB649A TEMP=50R7 15 8 330X1 33 34 28 24 35 OP27R29 34 21 150KC4 34 0 2.2UC5 28 33 2.2UR30 33 0 150KR31 36 28 1KV5 0 35 15VV6 24 0 15VBG12 31 26 20 2SC3858 TEMP=50R36 15 11 200BG16 29 8 11 2SB649A TEMP=50R37 13 3 200BG17 10 9 13 2SD669A TEMP=50I1 36 0 DC 0 AC 1 0V8 1 36R38 29 0 33KR39 0 10 33KBG18 29 14 10 2SD669A TEMP=50R40 21 0 8BG13 0   6 2SB647A TEMP=50.00 .END 设计结果,包括开环传输阻抗ZT——频率特性、开环传输阻抗相位——频率特性、反相输入端阻抗RIN——频率特性分别见图9和图10。 图9 开环传输阻抗特性曲线 图10 反相输入端特性曲线 开环传输阻抗ZT的直流值为130kΩ;反相输入端阻抗RIN的直流值为4.76Ω,最大值为6.63Ω,由于反相输入端阻抗RIN会降低电流负反馈放大器开环电压增益的直流值以及影响闭环电压增益的极点频率,所以在实际设计中要尽量减小这个值,这对提高转换速率也有好处;开环极点频率约31.5kHz。由(4)ωP=1/(RT×CT),可计算出开环传输电容CT的值约为39pF。这个电容是制约电流负反馈放大器转换速率的内部参数。为了获得高的转换速率和提高放大器的小信号特性,应设计使这个电容尽量的小。以上的开环设计就是在这样的指导思想下,经过计算机大量仿真得出的。 2.2 闭环设计 闭环设计就是确定反馈网络。反馈网络设定了闭环增益和相位裕量。并且对一个电流负反馈放大器的设计来说,相位裕量是选择反馈网络的决定性因素。相位裕量的优化值为60°,此时闭环增益曲线平坦而且带宽最宽,放大器非常稳定。所以电流负反馈放大器的闭环设计就是确定反馈电阻RF,使开环相位在开环增益曲线与闭环增益曲线交点处频率降为-120°。图11是闭环设计仿真电路图,闭环增益=1+RF/RG=31.6倍(30dB),RF=2 156Ω,RG=70.5Ω,开环电压增益= RT/(RE+RIN)=1781倍(65dB),最大环路增益为65-30=35 dB。图12是闭环设计仿真曲线。可以看到开环增益曲线与闭环增益曲线交点处频率为2.63 MHz,该点频率下的开环相位为-115°,基本符合设计目标。下面是闭环设计的仿真电路文件: *SPICE_NET *INCLUDE \H-BB\\BJT.LIB *INCLUDE DEVICE.LIB *INCLUDE NONLIN.LIB .AC DEC 20 5HZ 200000KHZ *ALIAS V(86)=VOUT *ALIAS V(98)=V- *ALIAS I(V7)=I- .PRINT AC V(86)VP(86)V(98)VP(98) .PRINT AC I(V7)IP(V7) BG2 84 2 68 2SD667A TEMP=50 BG3 70 67 69 2SD667A TEMP=50 BG4 72 68 69 2SB647A TEMP=50 BG5 74 70 71 2SB649A TEMP=50 BG6 83 72 73 2SD669A TEMP=50 BG7 84 74 75 2SD669A TEMP=50 图11 闭环仿真电路图 BG8 88 76 77 2SC3858 TEMP=50 BG9 89 78 79 2SA1494 TEMP=50 BG10 89 80 81 2SA1494 TEMP=50 R1 84 67 22K R2 68 1 22K R3 72 1 1.2K R4 73 1 330 R5 74 82 2.7K R6 82 83 842 C1 74 83 0.1U R7 75 85 150 R8 95 86 0.22 R9 86 79 0.22 R10 77 86 0.22 R11 86 81 0.22 R12 75 87 10 R13 75 76 10 R14 85 78 10 R15 85 80 10 V1 84 0 69V V2 88 0 63V V3 0 89 63V V4 0 1 69V R16 84 70 1.2K BG11 1 83 85 2SB649A TEMP=50 R17 84 71 330 X1 94 90 91 92 93 OP27 R18 90 86 150K C2 90 0 2.2U C3 91 94 2.2U R19 94 0 150K R20 98 91 1K V5 0 93 15V V6 92 0 15V BG12 88 87 95 2SC3858 TEMP=50 R21 84 96 200 BG13 74 71 96 2SB649A TEMP=50 R22 97 1 200 BG14 83 73 97 2SD669A TEMP=50 V7 69 98 R23 74 0 33K R24 0 83 33K BG15 74 82 83 2SD669A TEMP=50 R25 86 0 8 V8 2 0 AC 1 R26 98 86 2156 R27 0 98 70.5 BG1 1 2 67 2SB647A TEMP=50.00 .END 图12 闭环设计仿真曲线 2.3 动态输入信号的验证设计 在闭环仿真电路中加入理想的VIN=1.04V(P-P)10kHz的方波激励,输出的方波响应见图13,此时的转换速率为SR=ΔY/ΔX=27.5/0.121=227V/μs。考虑到实际的扬声器负载并非纯阻,而是一个复合负载,于是在RL上并一个电容。电容值从小到大逐一仿真,最后发现放大器可驱动的最大电容约为0.01μF。超过该值 输出方波出现振荡 见图14。为了放大器在各种实际负载情况下都能稳定地工作,把放大器可驱动的最大电容负载CL定为0.5μF。此时在电路上就必须加上RL并联防振网络 结果效果非常明显,见图15。曲线2的电容负载仍为0.015μF,但波形上已没有寄生振荡了。曲线1的电容负载加大到0.5μF,波形上只有一点振铃。当然,在实际应用中很少有这种负载状况。最后,为了抵偿扬声器的感抗分量,加入了波切洛特 R C网络。完整的电路见图16。 图13 闭环仿真电路输出的方波响应曲线 图14 方波响应曲线出现振荡 图15 矫正后的方波响应曲线 为验证设计,制作了两台样机,实测的指标如下: (1)残留噪声(输入端短路,宽带):L 0.26mV;R 0.28mV (2)折算到输入端的信噪比(宽带):101dB (3)最大不削波输出电压有效值(1kHz正弦波):40VRMS,折合在8Ω负载上的输出功率为200W。 (4)功率带宽 (50W,8Ω):DC——440 kHz(-3dB) (100W,8Ω):DC——240 kHz(-2dB) (5)THD+N(1kHz,50W,8Ω):0.054% (400Hz,50W,8Ω):0.05% 主观听音评价是在深圳欧琴电子有限公司的标准试音室里进行的。CD机是日本TEAC的顶级机VRDS-10,前置放大器为深圳欧琴电子有限公司的胆前级AP-100PR,音箱是英国“思奔达”的顶级型SP-100监听音箱,对比的后级功放为“第二届国产影音器材大展”最受专家好评的深圳欧琴电子有限公司的纯后级A-30(200W,8Ω)。听音对比结果是200W甲乙类电流负反馈放大器在高频的延伸、低频表现的自然、微小细节的再现、营造声场的深度等方面全面胜出。更应指出的是,这两款放大器除了主电路结构不同而外,其余完全相同,包括使用的元件和机械结构。这里又充分地展示了电流负反馈放大器在高保真音频放大器应用中的优势。 图16 修改后的闭环仿真电路 作者单位:深圳欧琴电子有限公司成都技术开发部 成都 610041 参考文献 [1] 美国Linear线性技术公司1997数据光盘 [2] 美国elantec 公司1997 Databook [3] 美国BB公司1997数据光盘 [4] 姚立真.通用电路模拟技术及软件应用SPICE和Pspice.北京:电子工业出版社 如何选购Hi-Fi音响 望 人们对物品的感性认知首先取决于视觉感受,所以Hi-Fi音响的外观是取悦消费者的一个重要因素,因为它要与家居环境搭配,显出高雅的氛围。外观设计,但究其实质大体可归纳为两类--"暖音响"、"冷音响",温馨家居搭配弧线圆润、色彩柔和的"暖音响"比较合适,而注重生活品质的人购买一套线条简单、特有"专业棱角"的"冷音响",则更能体现非凡品位。以国际知名品牌博声(Provox)的V6时尚型家庭影院系统为例,它采用镁铝合金复合材料打造,极富金属质感,简约的几何线条设计平添几许后现代韵味,各种音箱相互搭配起来,整洁素雅,丝毫没有一丝的累赘。无论是外表还是内部细节,都十分的"养眼"! 闻 这是相当重要的一步。音乐是用来听的,而决定音质水平的关键就是产品的材质、部件性能以及合理的搭配了。普通音响也许可以依靠迷人的外表混迹于高档之列,但是内在品质却有着天渊之别。普通产品用料和高档产品的用料区别很大,一般情况下通过试听的办法就可以侦测出一些端倪。 在音响产品的品评中,"眼见为实,耳听为虚"的情况就要调过来了,消费者要亲耳试听音质、音色效果,最好找几首有代表性的歌曲、乐曲、敲击乐、鼓乐等唱碟,对各种音响效果的纯真度进行签别,再确定是否购买。 除了主要元器件之外,一些细枝末节也是需要注意的地方,设计的好了同样可以为音质水平的提升推波助澜。像V6这种在柱脚处使用橡皮脚垫的产品,就很好的利用了"四两拨千斤"的效应,一个小小的脚垫即可有效吸收系统传达至地面的共振,大家都知道,重心下移的音箱,声音表现沉稳自然,定位更为准确。千里之堤溃于蚁穴,细节处的设计也是大家选购时不容忽视的。 问 "凡事预则立不预则废",在选购前通过网络、媒体进行调查,以及询问有经验的Hi-Fi族都是必不可少的。不可轻信厂商的标称,如果有条件,最好询问一些实际使用过的人的感受。在厂商故意"混淆视听"的伎俩中,功放是一个最可能做文章的环节。在一套高档的Hi-Fi音响中,功放是不可或缺的伙伴,一款功放的优劣是靠输出功率、频率范围、失真度、信噪比等指标来衡量的,指标当然越高越好。但是往往许多厂商故意夸张输出功率等指标,或者用峰值功率代替额定功率进行标示。峰值功率是指产品满负荷工作中瞬间最大功率,并非额定的输出功率,任何一套音响也不可能始终工作在峰值功率下。一般来说,一间25-40平米的房间,输出功率在50W左右即可满足。 此外,在选择时还要注意考虑主机的功放能力,尽量选用大于喇叭指示功率的功放。比如:博声V6时尚型家庭影院系统中喇叭的额定功率是10~25瓦,T50功放的输出功率为50W,形成了良好的搭配,在驱动所有的音响单元时也不会出现负载的情况! 说到最后,想必广大读者对Hi-Fi音响的选购已经有了一个初步的认识,首先要先有个预算--配置什么档次的音响系统,至于品牌和音色,要根据自己的要求、硬件指标及试听来决定,但是"授人以鱼不如授人以渔",主意还是购买者来定夺,这里只是把一些常识做一个分享,让购买者心中有个尺度,希望Hi-Fi音响能走进更多的家庭!音乐是声的艺术,大自然中存在各种各样的声音,世界上无数的音乐家都非常善于捕捉大自然的美妙音符,谱写了无数不朽的音乐篇章,正所谓“声音源之自然,音乐来之自然”。 如何选购Hi-Fi级PC音响系统 (转贴)  如何选购Hi-Fi级PC音响系统 讲起电脑的音箱,绝对没有3D显卡那样让人感到极速激情。为什么呢?高档声卡必须配合一对大功率有源音箱,才能表现出最佳的效果。PC音响系统与真正音响有一些差别,这并不是说PC音箱的性能肯定比家用音响差,而是说它的定位有问题。大多数面向普通家庭用户的产品,跟不上消费者的需求。符合消费者需求的,价格又贵得离谱。下面,我们就来分析一下,一组Hi-Fi级PC音响系统究竟应该达到何种标准。 一、音箱的性能指标 1、防磁 这是PC音箱才拥有的特性,可以避免CRT显示器产生磁化现象,防止光栅变形、色斑。由于我们的工作空间有限,防磁是PC音响系统必不可少的。测试方法很简单,开启音箱后,把它靠近CRT显示器即可。 2、频率响应 人类的听力范围是25Hz~20KHz,为了覆盖人耳的有效听力区域,音箱频率响应最好能达到45Hz~20KHz,频率响应范围越宽,制造难度越大,成本就越高。超过20KHz或低于25Hz的超专业级音箱也不是没有可能,而是价格非常昂贵,普通用户跟本不需要。 3、信噪比 SNR(Signal to Noise Ratio,信噪比)指信号和噪声的比值,该数值越大,性能越好,成本当然也越高。普通音箱为70~80 dB,高档音箱是80~90dB,专业级音箱在95dB以上。如果是Hi-Fi级系统,最少也要在90dB以上。 4、谐波失真 音箱所产生的谐振现象而导致了声音重放失真,谐振是不可能完全避免的,只能尽量减少它对声音基频信号输出的影响。原始声波中有二次、三次或多次谐振,谐波失真也分为二次、三次或多次谐波失真。此数值越小,失真越小。 5、输出功率 输出功率分为标称连续功率和最大峰值功率,标称连续功率指谐波失真在标准范围内变化时,音箱长时间工作输出功率的最大值。最大功率指在不损坏音箱的前提下瞬时功率的最大值,即不超过负荷的最大承受能力。最大峰值功率是标称连续功率是八倍,PC音箱通常为5~30W,你看到那些200W、250W的都是商家搞的把戏,标称连续功率分别是25W和31W。 有源音箱有变压器,音箱功率与变压器功率成正比,变压器功率越大,音箱越重。保证扬声器单元足够灵敏度的超厚密度板、加强大功率放大器散热的重型金属散热器、实现强劲电源供应的大型变压器都会增加音箱重量,因此从重量也可估计出音箱的标称功率。 功率越大震撼力越好,价格也越贵。家用音响的输出功率为100W左右,PC音响约为5~30W。标称功率30W~40W的音箱,适合20平方米的房间,恰好是普通家庭用户电脑工作间的面积。 6、3D系统 1)Extended Stereo(扩展式立体声) 传统立体声音箱存在的最大缺陷就是它所能展现的只是单一方向的平面声场,而这种平面声场不能提供类似置身音乐厅那样的临场感,为此才开发出了3D立体声音箱,表示出三方位声场。这种3D立体声音箱发出的声音只是经过处理的双声道3D系统产生的,因而并不能代表真正的3D环绕立体声,只是一种改进而己。它使用声音延迟技术对传统的立体声进行额外处理,扩宽了音场的位置,使声音延展到音箱以外的空间,让我们感觉的3D世界更广阔。这是一种被动播放音轨的技术,充其量只能称之为3D定位音效。 2)Surround Sound(环绕立体声) 它采用音频压缩技术(如:杜比AC-3)把多通道音源编码成一段程序,再以一组多扬声器系统来进行解码,实现多区域环绕效果。这也是一种被动播放音轨的技术,最适合于电影播放。另外,环绕立体声的主要工作是编/解码,当然亦能通过特殊的算法,做到两个音箱模拟5个音箱的环绕效果。 3)Interactive 3D Audio(交互式3D音效) 交互式3D尽量地复制了人耳在真实世界中听到的声音,并使用一定的算法来播放出来,让我们感到整个三维空间的所有地方都可能产生声音,并随听者的移动而作出相应改变。它是最接近实际生活的环境3D音效,通常应用于第一人称3D游戏。 7、多声道系统 四声道声卡的流行,促使人们选择范围从立体混合声升级到多声道音箱系统。四声道并非双声道的简单复制,而是为了实现3D定位而设计的。它不同于AC-3等只能翻放预录式3D音效的系统,最大特点是能进行实时定位,按照程序(如:游戏)的发展而决定声音发出的位置,属于双声道交互式3D音效的加强版。 8、音箱材料 普通低档塑料音箱箱体单薄且体积大,无法克服声谐振,两只箱体一致性差,实在无音质可言,木制音箱降低了箱体谐振所造成的音染,音质普遍好于塑料音箱。材料的厚度及质量优劣与音箱成本有直接关系,密度越大,发出声音时箱体所产生的振动越小,特别是带大功率放大器的有源音箱更是如此。板材厚度一定程度上是实现超低音效果的有力保障,拿相同功率的木制和塑料音箱比较,你会发现低音效果有天壤之别,也只有木制音箱才能给人一种雄浑有力的低音感受。即使选用的板材相同,输出功率也相同,不同设计结构,不同箱体大小,其音质则可能相差甚至远。 从音箱材料和造工,也可以看出音箱质量的高低,选购时应仔细观察箱体的棱角和接缝是否紧密平滑,扬声器的安装是否严丝合缝,扬声器的外观是否清洁整齐。 9、喇叭材料高音单元现以球顶为主,有钛膜球顶与软球顶,前者有更高的频率上限(软球顶不及之),高音音色明亮,在模拟音源的系统中优于后者;后者广泛用于中高档音箱中,与数字音源相配合能减少高频信号的生硬感,给人以温柔、光滑、细腻的感觉。与电脑声卡相连的音箱,选用绢膜、丝膜等软球顶高音的更多。 喇叭中最重要的是低音扬声器,关键是它左右了音箱的性能,最常见的有以下几种: 纸盆,又分为纸盆、纸基羊毛盆、紧压纸盆、强化纸盆等几种,有音色自然、廉价、较好的刚性、高内阻尼等优点,缺点是防潮性差寿命短,制造时一致性难以控制,功率过大时低音显得沉闷。纸基羊毛盆的耐用性好一些,但同样不适合大功率使用。此级产品只能满足一般爱好者,还不够专业。 防弹布纤维纺织盘,有较宽的频响与较低的失真,是酷爱强劲低音者之首选,特别适合摇滚乐和打击乐中大功率放大器的主扬声器,缺点是成本高,制作工艺复杂,轻音乐效果不甚佳。 羊毛编织盆,质地稍软,优点是对柔和音乐的表现十分完美,定位于中音;缺点是低音效果不好,摇滚乐和进行曲的表现力不尽人意。 PP(聚丙烯,也称为CD)膜,广泛流行于高档音箱中,一致性好失真低,各方面表现都可圈可点。此外纤维类振膜、复合材料振膜等少见之于普及型音箱中,不再谈了。 扬声器尺寸自然是越大越好,5寸或5.25寸的喇叭就足可以满足一般用户的需要了,低档音箱的喇叭多为3寸或3寸半的。银迪、南鲸、惠威、美之声都是不错的国产扬声器品牌,用他们的扬声器制造的音箱也意味着更好的音质。 二、音箱定位 1、低档 10W~20W的塑料壳音箱,没有3D环绕声。只能称为加入放大器的喇叭,不能称之为音箱,适合对音乐无特殊要求的人士。价格约30~180元。 2、中档 每声道的标称连续功率为15W~60W,专业中的入门级,拥有一定的表现力,和足够的3D游戏定位效果。价格约200~800元。 3、中高档 50W~100W,在PC界属于“发烧级”产品,可满足杜比级3D环绕声,能表现出气势磅礴而且双细腻美妙的乐曲。注意:它的3D游戏定位效果与中档完全相同,只是加强了预录式影片(如:DVD)的3D环绕声。价格约1000~1500元。 4、高档 买音箱买到这个程度,已经不是在听音乐,而是为了玩硬件。如同CPU要不断升级,音箱也要不断升级。价格已经不是问题,最重要是完美的音色。不过,并非所有人都能听出高档音箱与中档音箱的差别,对于大多数人来说,中档已经能够满足需要,根本无法“听到”中高档或高档的效果。毕竟,听觉与视觉不同,人们很容易分辨出3D视觉特效,但对于听觉特效,除非长时间的集中注意力研究,否则无法分辨出具体的差别。 三、举例说明 DIYer绝对不该光说不练,找个实际对象来试试,你就能学会购买音箱。我们找来了速捷时公司新推出的4.1系统----罗马剧场作为测试对象。 1、技术参数 上面学了那么多理论,正好来对照看看。罗马剧场的主要技术参数如下:频率响应:55~20KHz 环绕卫星箱功率:15(2.5寸喇叭)×4 W 重低音箱功率:30(5.25寸喇叭)×1W 重音失真:小于或等于2%重低音箱信噪比:99dB 价格:约450元,中档产品 频率响应值不过不失,正好满足PC用户的需求,也接近入门级的Hi-Fi标准。在不失真的情况下,2.5寸喇叭能达到15W,是非常不错的成绩。重音失真小于2%、信噪比为99dB,这两项参数均已经超过了普通高档音箱,达到专业级的水平。 2、普通测试 在测试音箱播放音乐时,我拿了一些专门试音箱的试音碟《中国第一鼓》、《侏罗纪公园》、《未来战士》的CD来考验这款音箱。我先用《中国第一鼓》做测试,为了测试低音炮能够承受的频率,我将声音开到最大声,那鼓声先是由小声慢慢的响起,突然间一声大鼓,全场寂静,没有一丝声音(包括可恶的“电流声”),然后连续三声大鼓敲响,咙!咙!咙!(我的可口可乐只喝了一口,因为我把音箱开到最大声,把它给震倒弄得我一身都是,以后还是别把可乐罐放在音箱旁)哇!好大的风迎面吹来啊!!叹!!我好象没开风扇啊!!哦!原来是底音炮的喇叭因为剧烈的震动而向我“喷风”,令我惊喜的是喇叭虽然震得这样厉害,但音质没有因此而下降。看来那个自行研发的低音喇叭已经可以和专业级的喇叭相蓖美。 《侏罗纪公园》测试,主要用它来测试音箱的细微音效回放够不够真实,当播放到恐龙在踏过森林时那踩断的树木声响历历在“耳”,恐龙在演员背后喘息的声响都非常逼真。 《未来战士》测试,用它来测试不但可以测试效果回放还可以测试声音的定位效果,我特意选了一段有激烈战斗场面的声响,玻璃摔在地板上发出的声音十分细致,炮弹爆炸声及子弹敲击钢板的声音令人心悸,那激光枪声音由左到右,再由前到后,另我有一种亲临其境的感觉。 一些音响发烧友,经常说电脑音箱比不上家用音响,但又说不出个所以然。其实,他们是忽略了量感这个概念,家用音响的喇叭比电脑音箱大得多,推动空气产生音波的能力也要更强,因此家用音响的摆放位置通常离使用者较远。电脑音箱放在电脑旁边,声音开得太大,会导致整台主机振动,很容易损坏主机内部零件(特别是硬盘)。由于喇叭小,量感小,造成的音场小,听起来就会觉得感觉比不上专业音响。现在,国外许多厂商都要求音响音箱的体积做得尽可能小,以最小体积表现出最佳效果,可不是每个厂商都能做到的。因此,小音箱并不等于效果差。玩三角洲部队时,仿佛置身于枪林弹雨之中,邻居还以为我家在开战呢,罗马剧场在这方面的表现可见一斑。 3、3D环绕声测试测试时,要注意环绕箱的位置高于人的头部,避免声音被房间中的摆放物品吸收,保持环绕声良好的传播空间,增加真实感。另外,两只环绕音箱与聆听者的背后夹角在120度最佳,这样的位置会产生与环境最适应的音响效果,从而使人产生一种身临其境的感觉。 优点:加入四声道效果以后,对于快速从前方向观众靠近的声音,可以较为清晰的分辨出发声位于左前方还是右前方,或是正前方位置,火车进离站时可以明显感觉到声音的多普勒效应。4.1系统有能力给我们营造了一种类似于电影院的包围效果,比如激烈的战斗场面声音和大型工厂的环境背景声音。 缺点:由于测试品为4.1系统,缺少了中置音箱和杜比解码器,尽管各种背景声音比较完整,但在中间的人物语音部分比较弱,杜比效果还出不来。 4、3D游戏定位测试 我使用SBLive!和MX400对此音箱进行测试,SBLive!自带的软件LiveWare3.0中就有几个EAX2.0展示程序,正好用来测试3D定位功能。在反复听过那段投篮和射击以及直升机飞行的声音后,发现其3D音场效果丝毫不比其它4.1音箱逊色,而定位效果似乎更为准确?各声道的分离度要更好点。 《Quake 3》等第一人称射击游戏最能考验3D定位,我正在练习听声辨位的攻击技术,罗马剧场使学习变得更为简单,很容易就能分辨出敌人的位置,即使看不到敌人,也能从他的跑步声音预计出行进位置,准确地作出提前量射击,特别是当敌人从背后偷袭时,还未瞄准已经被我干掉了,轻松地取得Excellent和Perfect。 测完射击测试,再试试赛车,在玩《极品飞车五——保时捷之旅》时,经过终点后,人群的欢呼声如潮流般地涌向玩家。 总的来说,背景音乐无论欢快、凄惨、恐怖还是苍凉,罗马剧场发出的声音总是那么饱满、那么清晰、那么接近自然,而且低音相当具有震撼力,当音量加大时连窗户也在微微颤动。你会发现用它玩游戏绝对是一种享受,枪炮从后方射来,引擎轰鸣的战斗机就在头顶盘旋。 5、主观感受 从外表上看,罗马剧场并不太起眼,整体设计很像70、80年代的音响,特别是银色的金属面板、旋转式调节棒、全木制外壳,更有一种怀旧的感觉,但这恰好符合它的身份——HiFi级PC音箱。 罗马剧场的环绕箱使用专业音箱线,和音响交易市场上的线一模一样,为了体现出专业级的音质,速捷时下了重本。 普通音箱的低音炮和高音喇叭都使用IC功放(旧式8位和16位声卡都有此设备),导致发热量极大,甚至通电几分钟,就有烫手的感觉。罗马剧场把低音炮的IC分解成几个分立件,在降低了发热量的同时,增加了功率输出量,即使玩几个小时Quake 3(火箭炮多为低音),也不会感觉到温度过量。 四、总结 通过上述理论和实例分析,大家可以了解到音箱最重要的参数有那些,使用那几种方法来进行测试,最后,祝愿各位都能买到一套称心如意的Hi-Fi级PC音响系统。 整流电路的类型和原理是什么? 电力网供给用户的是交流电,而各种无线电装置需要用直流电。整流,就是把交流电变为直流电的过程。利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。下面介绍利用晶体二极管组成的各种整流电路。 一、半波整流电路 上图是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2 ,D 再把交流电变换为脉动直流电。 下面从波形图上看着二极管是怎样整流的 变压器砍级电压e2 ,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在0~K时间内,e2 为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2 通过它加在负载电阻Rfz上,在π~2π 时间内,e2 为负半周,变压器次级下端为正,上端为负。这时D 承受反向电压,不导通,Rfz,上无电压。在π~2π 时间内,重复0~π 时间的过程,而在3π~4π时间内,又重复π~2π 时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc 。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。下图是全波整流电路的电原理图。 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2 、Rfz ,两个通电回路。 全波整流电路的工作原理,可用图5-4 所示的波形图说明。在0~π 间内,e2a 对Dl为正向电压,D1 导通,在Rfz 上得到上正下负的电压;e2b 对D2 为反向电压, D2 不导通(见下图在π-2π时间内,e2b 对D2 为正向电压,D2 导通,在Rfz 上得到的仍然是上正下负的电压;e2a 对D1 为反向电压,D1 不导通(见下图如此反复,由于两个整流元件D1 、D2 轮流导电,结果负载电阻Rfz 上在正、负两个半周作用期间,都有同一方向的电流通过,如图所示的那样,因此称为全波整流,全波整流不仅利用了正半周,而且还巧妙地利用了负半周,从而大大地提高了整流效率(Usc =0.9e2,比半波整流时大一倍)。 图3所示的全波整滤电路,需要变压器有一个使两端对称的次级中心抽头,这给制作上带来很多的麻烦。另外,这种电路中,每只整流二极管承受的最大反向电压,是变压器次级电压最大值的两倍,因此需用能承受较高电压的二极管。 三、桥式整流电路 桥式整流电路是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。 桥式整流电路的工作原理如下:e2 为正半周时,对D1 、D3 和方向电压,Dl,D3 导通;对D2 、D4 加反向电压,D2 、D4 截止。电路中构成e2 、Dl、Rfz 、D3 通电回路,在Rfz ,上形成上正下负的半波整洗电压,e2 为负半周时,对D2 、D4 加正向电压,D2 、D4 导通;对D1 、D3 加反向电压,D1 、D3 截止。电路中构成e2 、D2 Rfz 、D4 通电回路,同样在Rfz 上形成上正下负的另外半波的整流电压。上述工作状态分别如图所示。 如此重复下去,结果在Rfz ,上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整洗电路小一半! 四、整流元件的选择和运用 需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。。如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。表5-1 所列参数可供选择二极管时参考。 "另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。 下图示出了二极管并联的情况:两只二极管并联、每只分担电路总电流的一半口三只二极管并联,每只分担电路总电流的三分之一。总之,有几只二极管并联,"流经每只二极管的电流就等于总电流的几分之一。但是,在实际并联运用时",由于各二极管特性不完全一致,不能均分所通过的电流,会使有的管子困负担过重而烧毁。因此需在每只二极管上串联一只阻值相同的小电阻器,使各并联二极管流过的电流接近一致。这种均流电阻R一般选用零点几欧至几十欧的电阻器。电流越大,R应选得越小。 图示出了二极管串联的情况。显然在理想条件下,有几只管子串联,每只管子承受的反向电压就应等于总电压的几分之一。但因为每只二极管的反向电阻不尽相同,会造成电压分配不均:内阻大的二极管,有可能由于电压过高而被击穿,并由此引起连锁反应,逐个把二极管击穿。在二极管上并联的电阻R,可以使电压分配均匀。均压电阻要取阻值比二极管反向电阻值小的电阻器,各个电阻器的阻值要相等。 音响中晶体三极管的工作原理是什么? 一、三极管的电流放大原理 晶体三极管(以下简称三极管)按材料分有两种:储管和硅管。而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。 图一是NPN管的结构图,它是由2块N型半导体中间夹着一块P型半导体所组成,从图可见发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极。 当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。 在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)极基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。 由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连续性原理得: Ie=Ib+Ic 这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即: β1=Ic/Ib 式中:β--称为直流放大倍数, 集电极电流的变化量△Ic与基极电流的变化量△Ib之比为: β= △Ic/△Ib 式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。 三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。 二、三极管的特性曲线 1、输入特性 图2 (b)是三极管的输入特性曲线,它表示Ib随Ube的变化关系,其特点是:1)当Uce在0-2伏范围内,曲线位置和形状与Uce 有关,但当Uce高于2伏后,曲线Uce基本无关通常输入特性由两条曲线(Ⅰ和Ⅱ)表示即可。 2)当Ube<UbeR时,Ib≈O称(0~UbeR)的区段为“死区”当Ube>UbeR时,Ib随Ube增加而增加,放大时,三极管工作在较直线的区段。 3)三极管输入电阻,定义为: rbe=(△Ube/△Ib)Q点,其估算公式为: rbe=rb+(β+1)(26毫伏/Ie毫伏) rb为三极管的基区电阻,对低频小功率管,rb约为300欧。 2、输出特性 输出特性表示Ic随Uce的变化关系(以Ib为参数)从图2(C)所示的输出特性可见,它分为三个区域:截止区、放大区和饱和区。 截止区 当Ube<0时,则Ib≈0,发射区没有电子注入基区,但由于分子的热运动,集电集仍有小量电流通过,即Ic=Iceo称为穿透电流,常温时Iceo约为几微安,锗管约为几十微安至几百微安,它与集电极反向电流Icbo的关系是: Icbo=(1+β)Icbo 常温时硅管的Icbo小于1微安,锗管的Icbo约为10微安,对于锗管,温度每升高12℃,Icbo数值增加一倍,而对于硅管温度每升高8℃,Icbo数值增大一倍,虽然硅管的Icbo随温度变化更剧烈,但由于锗管的Icbo值本身比硅管大,所以锗管仍然受温度影响较严重的管,放大区,当晶体三极管发射结处于正偏而集电结于反偏工作时,Ic随Ib近似作线性变化,放大区是三极管工作在放大状态的区域。 饱和区 当发射结和集电结均处于正偏状态时,Ic基本上不随Ib而变化,失去了放大功能。根据三极管发射结和集电结偏置情况,可能判别其工作状态。 截止区和饱和区是三极管工作在开关状态的区域,三极管和导通时,工作点落在饱和区,三极管截止时,工作点落在截止区。 三、三极管的主要参数 1、直流参数 (1)集电极一基极反向饱和电流Icbo,发射极开路(Ie=0)时,基极和集电极之间加上规定的反向电压Vcb时的集电极反向电流,它只与温度有关,在一定温度下是个常数,所以称为集电极一基极的反向饱和电流。良好的三极管,Icbo很小,小功率锗管的Icbo约为1~10微安,大功率锗管的Icbo可达数毫安,而硅管的Icbo则非常小,是毫微安级。 (2)集电极一发射极反向电流Iceo(穿透电流)基极开路(Ib=0)时,集电极和发射极之间加上规定反向电压Vce时的集电极电流。Iceo大约是Icbo的β倍即Iceo=(1+β)Icbo o Icbo和Iceo受温度影响极大,它们是衡量管子热稳定性的重要参数,其值越小,性能越稳定,小功率锗管的Iceo比硅管大。 (3)发射极---基极反向电流Iebo 集电极开路时,在发射极与基极之间加上规定的反向电压时发射极的电流,它实际上是发射结的反向饱和电流。 (4)直流电流放大系数β1(或hEF) 这是指共发射接法,没有交流信号输入时,集电极输出的直流电流与基极输入的直流电流的比值,即: β1=Ic/Ib 2、交流参数 (1)交流电流放大系数β(或hfe) 这是指共发射极接法,集电极输出电流的变化量△Ic与基极输入电流的变化量△Ib之比,即: β= △Ic/△Ib 一般晶体管的β大约在10-200之间,如果β太小,电流放大作用差,如果β太大,电流放大作用虽然大,但性能往往不稳定。 (2)共基极交流放大系数α(或hfb) 这是指共基接法时,集电极输出电流的变化是△Ic与发射极电流的变化量△Ie之比,即: α=△Ic/△Ie 因为△Ic<△Ie,故α<1。高频三极管的α>0.90就可以使用 α与β之间的关系: α= β/(1+β) β= α/(1-α)≈1/(1-α) (3)截止频率fβ、fα 当β下降到低频时0.707倍的频率,就是共发射极的截止频率fβ;当α下降到低频时的0.707倍的频率,就是共基极的截止频率fαo fβ、fα是表明管子频率特性的重要参数,它们之间的关系为: fβ≈(1-α)fα (4)特征频率fT因为频率f上升时,β就下降,当β下降到1时,对应的fT是全面地反映晶体管的高频放大性能的重要参数。 3、极限参数 (1)集电极最大允许电流ICM 当集电极电流Ic增加到某一数值,引起β值下降到额定值的2/3或1/2,这时的Ic值称为ICM。所以当Ic超过ICM时,虽然不致使管子损坏,但β值显著下降,影响放大质量。 (2)集电极----基极击穿电压BVCBO 当发射极开路时,集电结的反向击穿电压称为BVEBO。 (3)发射极-----基极反向击穿电压BVEBO 当集电极开路时,发射结的反向击穿电压称为BVEBO。 (4)集电极-----发射极击穿电压BVCEO 当基极开路时,加在集电极和发射极之间的最大允许电压,使用时如果Vce>BVceo,管子就会被击穿。 (5)集电极最大允许耗散功率PCM 集电流过Ic,温度要升高,管子因受热而引起参数的变化不超过允许值时的最大集电极耗散功率称为PCM。管子实际的耗散功率于集电极直流电压和电流的乘积,即Pc=Uce×Ic.使用时庆使Pc<PCM。 PCM与散热条件有关,增加散热片可提高PCM。 胆管代换资料表 国产型号 管芯结构 主要用途 国外同类型号代 备注 5Z3P 直热式双阳极二极管 小功率全波整流 5T4、5×4G、5U4G*、5ц3C、U52 氧化物阴极 5Z4P 旁热式双阳极二极管 小功率全波整流 *5B×1、*5ц4C,GZ30、5Z4G/GT 氧化物阴极 5Z1P 直热式双阳极二极管 小功率全波整流 氧化物阴极 5Z2P 直热式双阳极二极管 小功率全波整流 5W4、5Y3G、 80、 U50 氧化物阴极 5Z8P 旁热式双阳极二极管 全波整流 *5ц8C 氧化物阴极 5Z9P 旁热式双阳极二极管 全波整流 *5ц9C 氧化物阴极 6Z4 旁热式双阳极二极管 全波整流 *6ц4П、6B×4、6×4、6Z31 共阴极 6Z5P 旁热式双阳极二极管 小功率全波整流 *6ц5C 共阴极 6H2 旁热式双阳极二极管 检波、整流 *6×2П、6AL5、C 氧化物阴极 6C1 旁热式三极管 宽带电压放大 *6C1П、CV664、9002 氧化物阴极 6C3 旁热式三极管 宽带电压放大 *6C3П 阴地三极管 6C4 旁热式三极管 宽带电压放大 *6C4П 栅地三极管 6C5P 旁热式三极管 低频电压放大 6C5GT、*6C5C、6C5 氧化物阴极 6C6B 旁热式三极管 低频电压放大 5703、CV3917、*6C6Ь 氧化物阴极 6C7B 旁热式三极管 低频电压放大 *6C7Ь 氧化物阴极 6C12 旁热式三极管 宽带电压放大 EC88、5842 高S、低N 6C31B-Q 旁热式三极管 电压放大 *6C31Ь-B 氧化物阴极 6C32B-Q 旁热式三极管 电压放大 *6C32Ь-B 遥截止三极管 6N1 旁热式双三极管 低频电压放大 *6H1П、6AQ8、AA61、ECC40/82 氧化物阴极 6N2 旁热式双三极管 低频电压放大 *6H2П、6AX7、6AV7、ECC41 氧化物阴极 6N3 旁热式双三极管 低频电压放大 *6H3П、6A8Q、2C51、ECC42 氧化物阴极 6N4 旁热式双三极管 低噪声电压放大 ECC83、12A×7 高μ、低N 6N5P 旁热式双三极管 低频功率放大 *6H13C、6AS7、CV2523、6NS7G/GT 低Ri 6N6(T) 旁热式双三极管 低频电压放大 *6H6П、E182CC、12BH7 氧化物阴极 6N7P 旁热式双三极管 低频功率放大 6H7、*H7C、6N7/G/GT 共阴极 6N8P 旁热式双三极管 低频电压放大 *6H8C*6H8M、6SN7、6F8G、CV181、QB65、ECC32 氧化物阴极 6N9P 旁热式双三极管 低频电压放大 *6H9C、6SL7、ECC35、6SC7、6CY7 高μ 6N10 旁热式双三极管 低频电压放大 *6H10M、12AV7A、E82CC、CV491 氧化物阴极 6N11 旁热式双三极管 宽带电压放大 *6H23П、6DJ8、ECC84、E88CC、6922、CV2492 高S、低RI、N 6N12P 旁热式双三极管 低频电压放大 *6H12C、TS229、5687 氧化物阴极 6N13P 旁热式双三极管 低频功率放大 *6H13C、6AS7、CV2523、6NS7G/GT 低内阻 6N15 旁热式双三极管 低频电压放大 *6H15П、6J6WA、6CC31、CV858 共阴极 6N16B 旁热式双三极管 低频电压放大 氧化物阴极 6N17B 旁热式双三极管 低频电压放大 *6H17Ь、6112、CV5007 氧化物阴极 6N21B-Q 旁热式双三极管 低频电压放大 氧化物阴极 6N23 旁热式双三极管 低频电压放大 6DJ8、ECC88、PCC88 高μ低N 6J1 旁热锐止五极管 宽带电压放大 *6ж1П、6AK5、6BC5、EF40、EF95、CV850 高频管 6J1B 锐截止五极管 宽带电压放大 *6ж1Ь、CV3929、61489、 CK5702/7083 旁热式阴极 6J2 锐截止五极管 宽带电压放大 *6ж2П、6AS6、CV2522、EF11/732、CV4011 旁热式阴极 6J2B 锐截止五极管 宽带电压放大 *6ж2Ь、CK5639 旁热式阴极 6J3 锐截止四极管 宽带电压放大 *6ж3П、EF96、CV848、6BC6、6AG5 束射四极管 6J4 锐截止五极管 宽带电压放大 *6ж4、6136、6BX6、6AC7、EF94 旁热式阴极 6J4P 锐截止五极管 宽带电压放大 *6ж4C、CV849、1852 旁热式阴极 6J5 锐截止高频管 宽带电压放大 *6ж5П、EF80、CV2521、6F36、6AH6 高S、束射四极管 6J8 锐截止五极管 低频电压放大 CV2901、6SJ7、6CF8、6267、EF16、EF86、2729 低噪声N 6J8P 锐截止五极管 宽带电压放大 *6ж8C、5693、EF6、EBC3、CV592 旁热式阴极 6J9 锐截止五极管 宽带电压放大 *6ж9П、EF861 旁热式阴极 6J20 锐截止五极管 宽带电压放大 *6ж20П 空间电荷栅 6J23 高互导双五极管 宽带电压放大 *6ж23П 阴极框架栅 6J23B-Q 锐截止五极管 宽带电压放大 *6ж23B-K 低振动噪声 12J1S 锐截止五极管 小功率放大 *12ж1л 氧化物阴极 6K1B 遥截止五极管 宽带电压放大 *6K1 6K3P 遥截止五极管 宽带电压放大 *6K3、6SK7、6K7、6D6、6SG7 旁热式阴极 6K4 遥截止五极管 宽带电压放大 *6K4П、6BA6、6DA6、EF89/93、5749、6K5 旁热式阴极 6K5 遥截止五极管 宽带电压放大 同6K4 旁热式阴极 12K3P 遥截止五极管 宽带电压放大 12K3、12SK7/GT 旁热式阴极 2P2 输出四极管 低频功率放大 2П2П、DL92、1S4T、1L33、1L34 直热式阴极 2P3 束射四极管 低频功率放大 3A4、1662、CV807、DL93 直热式阴极 2P19B 五极管 功率放大 直热式阴极 2P29 直热式五极管 功率放大 *2、*2П29л 氧化物阴极 4P1S 直热式阴极 功率放大 *4П1л、4L2D 五极管 6P1 束射四极管 低频功率放大 *6П1П、6AQ5、6BW6、6L31、EL14、90 旁热式阴极 6P3P 束射四极管 低频功率放大 *6П3C、*6л6C、6L6、6L6G/GT、1614、1619、1622 同型:1631、6TT3C 6P4P 束射四极管 低频功率放大 旁热式阴极 6P6P 旁热式束射四极管 低频功率放大 *6П2、*6П6C、6Φ6、1611、1613、1621、6K6、CV509、6V6GT、CV510、CV1912、CV511、6N6C、KT63 6P9P 旁热式五极管 宽带功率放大 *6П9C、CV569 氧化物阴极 6P13P 束射四极管 低频功率放大 *6П13C(旁热) 旁热式阴极 6P14P 旁热式五极管 宽带功率放大 *6П14П、6BQ5、N709、EL84、CV2975、7320、6L40 氧化物阴极 6P15P 旁热式五极管 低频功率放大 6CH6、6CW5、EL180、EL821、CV2127、12BY7A 氧化物阴极 6P25B 束射四极管 低频功率放大 *6П25Ь、EL71、5902 氧化物阴极 6P30B-Q 束射四极管 低频功率放大 *6П30Ь-B(旁热) 氧化物阴极 6P31B-Q 束射四极管 低频功率放大 *6П31Ь-B(旁热) 氧化物阴极 13P1P 输出五极管 低频功率放大 *13П1C 旁热式阴极 6S6 高S五极管 电压/功率放大 *6Э1П(旁热) 氧化物阴极 6T1 高频双四极管 推挽输出 QM322、5656 旁热式阴极 6A2 七极电子管 TUNER变频 CV453、EK90、X77、*6A2П、6BE5、5750 旁热式阴极 6F1 三极-五极管 变频/电压放大 *6Φ1П、6BL8、6C16 旁热式阴极 6F2 三极-五极管 变频/电压放大 6Φ2П、6U8、6GH、CV5065、ECF82、6BL8 旁热式阴极 6G2P 双二极-三极管 检波、电压放大 *6Γ2、6SQ7、6SQ7GT/G 旁热式阴极 WE300B 直热式三极管 功率放大 300B、4300A 古典式低内阻 FU-5 直热式三极管 低频功率放大 T100-1、RK57、ML714、NU-150、CV2622、CV2768 F123A、GL805、HF150、CV25 FU-7 旁热式四极管 大S功率放大 QV05-25、RK39、HY-61、QE06-50、CV124、807 5B/250A、807V、5S1 FU-13 直热束射四极管 功率放大 *гY-13、813、4B13 TT10、QY2-100、QB2、250、CV278、4T100 CV1927、3874A、5C/100A FU-15 直热束射五极管 中功率放大 *гY-15 氧化物热子 FU-17 双束射四极管 中功率放大 *гY-17、CV3517、6360、QQV03-10、QQV03/12 旁热式阴极 FU-25 旁热束射四极管 宽带功率放大 1625、FD-25 氧化物阴极 FU-29 双束射四极管 宽带功率放大 *гY-29、829B 旁热式阴极 FU-31 直热式三极管 宽带功率放大 2T26、826、826“RCA” 钍钨阴极 FU-32 双束射四极管 宽带功率放大 *гY-32、RS1019、TT20SRS4452、QQE03/20、P2-12 与FU-29类同 FU-33 直热式三极管 功率放大 ES833、CV635、B142、3578、833A、5T33 钍钨阴极 FU-46 旁热式五极管 中功率放大 QV06-20、P40、QE05/40、7212、6146、2B46 氧化物阴极 FU-50 束射五极管 宽带功率放大 *гY-50、SRS552、P50/2 旁热式阴极 FU-811 直热式三极管 宽带功率放大 *г-811、811A 钍钨阴极 FU-250F 旁热式四极管 宽带功率放大 4C×250A 金属陶瓷型 EL81 旁热式五极管 功率放大 6CJ6 氧化物阴极 845 直热式三极管 功率放大 UV-845 Po≈100W 6CY7 旁热式双二极管 电压放大 每组三级管特性参数不同 Rg< 100kΩ 6CX8 旁热式三极管-五极管 电压放大和P-K分割 比6U9、6F2靓 高S 18045 旁热式五极管 小型功放 作耳机放大有极佳表现 Po> 1W FC4 旁热式三极管 电压放大 *гC4 金属陶瓷管 6C22D 旁热式三极管 电压放大 5876 金属陶瓷管 6550 旁热束射四极管 功率放大 KT88 氧化物阴极 KT100 旁热束射四极管 功率放大 KT94 氧化物阴极 PL81 旁热式五极管 功率放大 21A6 氧化物阴极 EL34 旁热式五极管 功率放大 6CA7、KT66 氧化物阴极 2A3 直热式三极管 功率放大 *2C4、AD1、6A3、6B4G、6C4C 211 直热式三极管 功率放大 FD422 直热式五极管 功率放大 2E22 6C33C-B 旁热式三极管 功率放大           发烧音响的电子管保养知识 给管子戴上安全套?可行吗?呵呵 电子管吉他功放是否会影响音色???下面专题是从音响论坛拷的,不知对大家有用否?如何散热?开关机次数不能频繁等,如何更换管子?管子的寿命都是大家关心的问题,高手和斑竹都来说说,谢谢。 转贴文章: 一般人面对真空管机器,最大的隐忧就是: 真空管什么时侯该换?特别是一些珍贵的老管子,用坏一只就少一只,再多钱都买不回来.有关真空管的寿命,正常的厂制机交到顾客手中前, 真空管都一定测试过,因为头一百小时其损坏率最高,过了以后大致就没什么问题,只是会随着时间老化而已.过去的观念认为真空管机器越少开关越好,否则真空管寿命会减少,或者在开机瞬间烧毁.对一些老古董机说得通,但新式真空管机在电源部分处理得都不错,一般开机都有延时送电装置,有些灯丝还特别稳压,上述的情况发生的机率实在太小了.另外, 灯丝电压只要是在规定的范围之内,也没有明显证据说每天开关会减少真空管的寿命,反而是永远不关机状态下, 真空管的老化会比较严重. 一般前级所用的双三极管,每天开机听4个小时(含热机时间),用上数年大概都没有问题,不过你要是频频开关那又另当别论了.据测定, 灯丝电压太高固然会提高素损坏率,但太低了也会降低性能,如果希望延长真空管的寿命,当然仍选择较低电压为益.平时避免频繁插拔管子,用散热套降低温度,做好避震措施,这些也是延长真空管寿命的有效方式. 下面是转贴的参考文献: 音响迷当中有许多属于真空管迷。很不幸的是真空管迷与真空管机为伍的日子里,往往要担心受怕棗深恐自己,心 爱的「管子」不知那一天就那么「不告而去」了;担心在兴致勃勃扭开电源开关之后,那些「管子」突然有甚么不测;担心众多发烧友来访之际,平日好端端的管子竟然恶劣起来;也担心在最不可能发生的时刻居然又出现无所不在的麦克风效应。未雨绸缪,谨防意外,所以我随时都保持著足够替换的真空管安全存量,虽然此乃一种有效的策略,但是不算十分完备棗而且过于昂贵。同时这种近乎坐以待毙的消极方式委实不是最适当的途径,我们应该要有更好的应变措施才对。真空管的内部组件属于机械结构,在实际使用之际,常有振动与共振的现象。当此共振发出显而可闻的声音时,特别称之为「麦克风效应」------此乃真空管最普通且最为人诟病的地方。 解决此一特别问题有一个很好的治疗工具,即AudioQuest公司的Sorbothane Tube Damper,简称STD,详见Stereophile Vo1.16 No.2, Dick Olsher的评论报告。每一STD看起来好像是一个很宽很厚的橡皮垫圈。此STD很容易和真空管结合一起,只要把STD套在真空管上,亦即好像替真空管上了厚厚的橡皮圈一样。根据AudioQuest公司的建议,每一对真空管可以套上两个STD,一个在顶部,一个在底部,如此最不会妨碍真空管之散热。不论如何,我试用的结果认为最好的抑振作用是把STD套在接近真空管中央的部位。6DJ8真空管向来有麦克风效应显著的名声;多年来我一直为每一支我所用的6DJ8穿上STD,而且我也为所有的phono级真空管穿上STD。许是因为个人的运气奇佳之缘故,不少真空管迷时常抱怨的麦克风效应问题,我几乎可说不曾遭遇过。然而,这应该归功于我所使用的STD。我认为只要用上STD,自然能够让这个恼人的问题迎刃而解。虽然我不敢说STD绝对可以完全防止麦克风效应,但是基於以往的经验,我深信对所有新的真空管我都应该虔诚恭敬地套上STD。唯一的限制是尺寸方面:Tube Damper只能用于小型真空管,例如6DJ8、12AX7等等. 第二个问题是STD通常无法循环使用,有时候会直接与真空管壁黏在一起,有时候甚至受热而融解。因为Sorbothane的融点很低,所以不能用于热度更高的功率真空管或输出真空管(例如6550、KT88等等)。真空管过热向来是影响真空管寿命的主要原因。有鉴于此,许多相关的产品应运而生,其中之一就是Perkins E1ectro-Acoustic Research Laboratory(简称PEARL)产制的「真空管冷却器」(Tube Cooler)。此Cooler据称可以明显降低真空管玻璃套的操作温度,从而大幅度延长真空管的寿命。详细的理论与解释文件可以直接向PEARL的Bill Perkins索取,他准备了一系列名为Audio Notes的研究论文提供有兴趣的人士参考。 与前述STD不同的是Tube Cooler备有各式各样的尺寸,可用于各种大小不同的真空管上。最常用的是小型的Small-Signal Cooler(适用于6DJ8,12AX7等)以及较大型的Power-Tube Cooler(适用于6550、KT88等)。由于不同工厂生产的真空管往往有不同的尺寸,因此PEARL真空管冷却器可依特定的尺寸制作恰好配合的尺寸。每一Cooler均由黑色坚硬的铜膜组成辐射状的鱼鳍型式,看起来与一般扩大机的散热片十分近似。真空管即插在此Cooler中央,由耐高热的弹性带紧紧圈住并且固定(每一Coo1er有两个矽质弹性圈),此时好像真空管长出向外辐射的鳍一样,每一片鳍均与真空管呈垂直型式。 由于是以铜金属制成,所以Cooler对于真空管内之静电磁场会有不可预测的变化。在某些应用里,有人说对音质产生负面影响。为了充分发挥应有之效用,PEARL公司特别提供周详的安装解说,每一Cooler可以用三种接地方式单独使用一条导线;接地线两端均接上电阻;或者利用电阻与一个小电容。只要给予接地处理,Cooler即能持续达到延长真空管寿命的目的,不会有任何负面的影响。又由于以金属制作,所以Cooler本身有可能受到振动。此时Cooler上的两个松松圈套一方面使Cooler紧密固定,另一方面又可以当作阻尼,阻止Cooler振动。我在SL-1 Signature以及Model 333高电平前级/ phono级组合里装上这种Cooler之後,得知并无任何明显机械性振动的现象,也没有发现任何内部静电磁场可能被改变而形成的异常效应,装上Cooler之前与之後两者的声音品质并无差异。当然这极可能与Cooler已有良好的接地处理有关,因而使得原本可能出现的负面影响消失于无形。 改善真空管音质与延长其寿命方面,目前最新上市的是来自Ensemble公司的Tubesox(同样由Dick Olsher在本刊vo1.16 No.2,p.176介绍过)。Tubesox与众不同的地方在于能够同时处理麦克风效应与热度的问题。每一Tubesox大约1.25寸长,看起来好像是以铜线与一种纤维物质紧密编织而成,而且很像「 中国式手铐」,亦即严刑逼供时用来夹紧犯人手指,使其痛苦不堪的那种刑具。Tubesox之编织结构对于真空管有阻尼作用(防振),其铜线部份则有助于协助真空管玻璃之散热。 Tubesox之纤维部份好象是麦杆纤维,让我有些担心,不知会不会被点燃而酿成火灾。我把我的顾虑告诉Melos公司的George Bischoff,他建议不妨拿一个Tubesox点火烧烧看。于是,我备妥一个烟灰缸,然後点燃火柴。把Tubesox移至火焰当中,奇怪的是Tubesox并未著火。结果发现其纤维乃是Kevlar,难怪老是烧不起来!与Tube Damper一样,Tubesox只能用于小型真空管,例如12AX7、6DJ8等:与STD不同的是Tubesox体积很小,小真空管不论如何安置都可以套上Tubesox ,相对之下,STD或者Cooler均须占用较大的空间,当真空管安置过于紧密时,往往只有Tubesox派得上用场。与STD功用相同的是Tubesox同样紧密地套住真空管,防止其发生机械性振动,因而可以减少那些令人困扰的麦克风效应。虽然Tubesox与Cooler同样利用铜金属当作散热媒介,但是其散热能力显然不如Cooler,毕竟Cooler完全以铜制成,散热面积远大於Tubesox .不过,我没有进行实验去求证上述说法。另一方面, Tubesox所用的铜金属由于份量不多,所以不太可能使真空管内的静电磁场产生任何不可预料的效应,而且也不可能引起共振现象。 以上三种产品均有助于改善真空管的声音品质,并且/或者延长真空管寿命,对于真空管机仍然有一些十分基本的处理事宜值得重视。首先要有良好的通风散热------过热的温度必然缩短真空管寿命。换句话说,真空管机周围要有适当的空间(尤其上方),才可能通风良好,可能的话,应该使用低噪音凉风扇协助散热。如果所用的真空管机有特殊预热装置的话,一定要用。如果没有的话, 不要急著输入音讯,应该先温机二十至三十分钟再使用。如果所用真空管机有特殊关机装置(例如更高速更吵杂的风扇散热),应该在关机前多加利用。此外,还有其他特殊的设计------例如Simply Physics Variac棗可以让电流缓慢递增. 事实上“真空管迷不必消极地承受真空管的麦克风效应与其夭折的寿命。Tube Damper、Tube Coo1er以及Tubesox提供了改善的方式,同时提高了真空管的使用期限。STD能够消除真空管的麦克风效应;Coo1er大幅度延长真空管的寿命;Tubesox则一方面降低真空管之麦克风效应,另一方面也加长真空管之寿命。 再谈TUBESOX Ensemble公司的Mrs Wagner看过我在中文版三月号(Vol.16 No.2,p.176)对于Tubesox之评论之後,打电话与我讨论了一些彼此不同的观点。首先,关于我所说单独一个尺寸不足以适用于各种真空管的说法------值得商榷。他指出Tubesox具有数毫米(mm)的伸缩幅度,所以稍加拉长或推挤无妨。我试看没有错,只要用手指简单地推拉。就能够把Tubesox套妥于各种尺寸的前级真空管上. 第二,关于温度测量的问题: 我发现真空管套上Tubesox之後,在真空管的顶端会有好几度延迟上升的温差。根据Wagner的测试资料,在接近管子插座处(Tubesox的下端)会有小量温度较低的情形。这意味的是虽然真空管平均温度与Tubesox的温度一同上升至某一程度,然而,真空管最热的部份正由Tubesox 散逸著。果真如此的话(我没有尝试重复Wagner的实验) 除了改善真空管音质以外,Tubesox还有延长真空管寿命的功能,在此我怎再度强调的是使用Tubesox主要目的在于改善真空管的声音品质,不在于延长使用寿命。装上Tubesox以後,普通的前级用真空管立即摇身一变提升为最高等级的真空管。 常用音频类接线、插头实物解说 一切尽在图中.......... *************************************** *************************** RCA转接XRL示意图: javascript:resizepic(this) border=0> 专业音响工程施工技术简介 1.工程技术的特点: 由于专业音响工程技术是汇集了多顶学科知识的一项综合技术,它随着专业音响相关技术的发展而发展的。尤其是音响灯光设备的性能和档次越来越高,专业音响工程技术的重要性就越来越强,作一个比喻:专业音响工程的施工好比裁缝在剪裁一件衣服,专业音响设备好比衣服的面料,市场上什么样的面料谁都可以买到,可是好的裁缝能将一般的面料发挥出它的最大特点,做成一件好衣服;而再好的面料拿给一个蹩脚的裁缝,他也做不出一件象样的衣服。专业音响工程的施工就好似这样,同样的造价,不同的设计,工程质量会有高低之分;同样的设备,不同的设施,工程质量也会有高低之分。 归纳起来音响工程的特点:工程量不大,但工程技术含量高;工程灵活性强,但承担的重。要说专业音响工作量,行内的技术人员都知道:一个中型的工程,顺利的话有一,二百个工时就足够了;稍大型的工程几百个工时也就能完成,所以相比于其他行业的工程来说工程量确实不大。但是在这不大的工程里却包含了较高的技术含量,需要严格的设计与选型,需要合格的预埋,穿管技术;需要可靠的焊接技术;需要科学的调试检测手段等等,要说工程的灵活性强也是事实,音响工程受客观因素的制约不是太大,反倒是用户或装饰单位一般要尽量的满足音响工程提出的要求,但是在这些灵活性里也包括了重大的责任,试想;动辄几十万上百万的工程交给你去施工,如果达不到要求或工程质量低劣,甚至留下工程隐患,那要负的一责任就大了。 2.工程技术的要求 作为技术含量高,承担较大责任的专业音响工程在施工技术上有着特殊的要求。首先,要拥有合格的施工队伍。国为音响工程的施工必须是高效而可靠的,如果没有一个合格的施工队伍,不光设计方案不能得到有效的实施,而且施工质量也难以得到保证,在这只队伍里应该有:具有相关技术许可证的电工,焊工以及电子技术员等,同时尽量是一些有音响工程施工经验的人员,这样的施工队伍才能保证工程顺利地完成。其次,工程的施工一定要严格按照设计进行。国为音响工程是一项复杂的工程受理论设计和施工技术的影响较大,如果在工程施工中凭想象凭经验地蛮干,肯定会带来不良的后果,而设计是在充分地了解了各种情况并进行了一系列计算后完成的,必须成为施工工作进行的依据。最后就是,工程必须按照相应的技术规范进行施工。音响工程在施工时会涉及到不同的工种,这些工种的施工技术要求和安全措施不尽相同,只有认真地执行这些技术规范,才能保证各个施工环节的质量,才能保证施工人员的安全,至于具体的技术细节和注意事项,笔者曾在《音响技术》杂志上专门进行过叙述,这里就不再另行分析。3.工程施工的步骤(1)首先要进行管线和挂接件的预埋。 管线和挂接件的预埋一般需要在工程项目确定后就应该马上开始,因为通常来讲,预埋的管线主要都在没有搭建的舞台里、或没有装饰的地面豚墙面里,如果不及时进行预埋,就很容易影响装饰工程的进度,同时必须引起重视的是预埋管线的出口一定要协同装饰部门处理,否则有可能由于处理不当而影响装饰的美观;挂接件的预埋位置和吊装强度一定要得到建筑技术人员确认,否则安全性无法得到保证,通常,需要埋设在水泥结构里的管线要选择质量好些的钢管,口径按照所穿的线缆多少来决定;穿过顶棚、装饰墙体的管线,一般选用铁制或防火PVC线槽,主要是穿线施工方便,容纳的线缆量较大,又能防火;对于埋设距离较长的管线,一定要在一定的距离开设检修口,最后必须注意的是,预埋管线的工作几乎是无法更改的,一旦决定了在什么地方,埋多少,怎么埋,而且预埋完工后,要想更改就不太可能了,所以预埋前一定要认真地分析设计,明确设备的数量、位置、供电情况及控制方式,在此基础上提出准确的管线数量、口径和走向。 (2)其次要进行各种棚,架的焊接和安装。 这项工作尽量与装饰工程交叉进行,因为在施工中难免开启一些孔洞以及对已有的装饰物产生破坏,这些都需要装饰部门协助完成,在焊接的过程中,一定要让具有焊接资格的工人操作,这样做除了方式安全的要求外,主要是焊接质量直接关系到棚架的吊装强度,不能马虎,同时,因为焊接施工通常都是与装饰工程同时进行的,现场会有一些易燃物,所以施工中一定要注意防火,待焊接牢固,油漆完成后,就应该开始这些棚安装了,安装的安全性同样非常重要,必须有建筑技术人员比较充足的时候才能开始吊装;最后就是,所有的安装件都必须增设可靠的保护措施,这样的安装才有安全的保证。 (3)再下面就要进行各种线缆的铺设。 这项工作虽然比较简单,但是也应该认真进行,特别是穿管这一项,容不得一点马虎,铺设线缆道德要掌握合理的方法,例如穿管时钢丝与要穿的线缆应该捆扎牢固,扎头要得减小阻力,必要时涂抹少量的润滑油;其次线缆损坏或错乱的麻烦;再者就是要在线缆铺设时认真对线缆进行检查,象外皮是否破裂,屏蔽层是否损坏以及芯线是否断裂等等;最后,一定要在铺设的线缆上做好明显的标记,以备安装设备和日后检修时使用。 (4)再后面应该进行各种设备的安装 设备的安装必须在装饰完工、线缆铺设正确后进行,国为音响灯光的设备不仅价格较贵,而且许多设备需要避免尘土的沾染,装饰工程凌乱的现场是不适合安装设备的,设备的安装首先应该注意开箱时要仔细检查,因为许多国外设备的包装非常规范,有一些重要的备件或说明书可能单独隔离在包装盒的底层,很容易在拆箱时随包装盒一起扔掉;其次设备安装前应该认真阅读产品说明书,以掌握正确的安装方法、步骤。例如;许多电脑灯的灯泡和镀膜玻璃都要求佩带棉线手套安装,不允许直接用手去接触;最后就是设备安装要牢固,保护措要完备,特别是灯光设备,位置高、重量大而且以常运动,一般又在舞台或舞池的上方,所以必须绝对确保安全。 (5)最后就是供电线路,控制线路和信号线路的连接。 这是一项需要细致认真和技术性的工作,所以应该由技术过硬责任心强的人员进行,在线路的连接时,首先要求方式必须确保在无电状态下进行,因为音响灯光设备的电源供应要求不尽相同,如果在安装时就提供电源,不仅安全性差,而且很容易损坏设备;其次,要求施工符合电器安装规范,因为电器安装规范是检验方式是否合理的标准,所以按照规范施工与否,达到期的工程质量是完全不同的,许多按照规范施工的正规的工程内行一看就知道活儿干得“漂亮”;再者,要求各种插接件,大型工程中需用要的各种二芯、三芯、莲花接头、卡侬插头、多芯插头的数量非党大,经常需要几个人同时制作很长时间才能完成,如果在焊接前不了解正确的连接方法和焊接方法,可想而知返起工来会有多么麻烦,所以一定要弄清楚,例如:欧洲的一些音响产品的卡侬脚和一般通用的编号不一样,千万不能焊错;一些灯光的控制线要求屏蔽较高,如果焊接不合理,就有可能使灯光产生误动作;最后要求线路中所有的火线,零线,地线及屏蔽线的连接必须准确无误,在电源供应方面,要注意的是:音响和灯光的某些设备使用的电源以常会引起误会,例如:有些设备使用110V的交流电,而随机的变压器是单独插接的,如果连接线路时将它遗忘,而直接将设备的电源插头插在于220V的电源上,后果就可想而知了;又比如:一些同边设备使用的是低压交流电,有的又使用低压直流电,它们的插头外形很相似,如果不注意的话,供上电后轻者导致声音反相低消,声压降低,音质变差的后果,同时也容易导致设备外壳带电,留下安全的隐患;从屏蔽来讲,系统网络抗干扰的能力,主要决定于系统屏蔽是否正确及屏蔽是者不工作,重者就会损坏设备,而供电线路相位的错误则可能会影响到音箱的相位,从而否正确及屏蔽质量的高低,常常在一些工程中发现:要么没有进行屏蔽,要么屏蔽层形成闭环回路;要么就是屏蔽线连接错误没有形成屏蔽网络抵抗不了干扰,甚至有些工程的施工人员将信号地和电源的零、地、屏蔽线和信号线这几个要领混淆,胡乱连接,不光抗不了干扰,还会带来大量的干扰,所以一定要先实实在在地把这些概念理解清楚。 (6)另外就是对安装、供电线路、连接情况的检查。 因为音响工程的整个系统涉及的连接点和插接件比较多,在安装时也有可能因为个别的原因发生错误,所以,细致的检查是有必要的,一般的检查包括设备安装安全性,供电线路是否合理,各插接件的连接是否正确等,另外还有一个重要的检查项目就是:仔细检查每一件设备的状态设置是否满足设计要求,这点绝对不能忘记,否则极易造成设备损坏,这些状态包括;功放在桥接要求时,桥接开关是否置位;各设备的电源选择开关是否合适;灯光设备是声控还是电控;电脑灯的地址码是否设置正确;投影机的输入方式设置等等。 (7)待以上施工步骤都确信完成后,就应该准备进行设备的调试了。 对于设备的调试,因为各个工程的情况不同,很难统一一个通用的方法,需要单独分类进行讨论,如果要想完整地全面地对所有类型的工程调试过程进行介绍,篇幅会太大,这里只就一般的工程设备调试简单进行介绍。 A.调试前的准备 音响工程的调试,是一项既需要技术和经验又需要认真和细致精神的工作,当设计和施工都符合要求时,调试不合理不细致,不仅不能达到工程的的设计效果,而且还有可能使设备工作在不正常状态。所以在调试前要充分认识到这项工作的重要性。调试前要仔细确认每一台设备是否安装、连接正确,认真向施工人员询问施工遗留的可能影响使用的有关问题;调试前要仔细确认每一台设备是否安装、连接正确,认真向施工人员询问施工遗留的可能影响使用的有关问题;调试前必须再次认真地阅读所有的设备说明书,仔细查阅设计图纸的标注和连接方式;调试前一定要确信供电线路和供电电压没有任何问题;调试前应该保证现场没有关人员;调试前还要准备相应的仪器和工具。 B. 音响系统的调试 音响系统的调试是工程调试的关键,音响系统涉及的设备最多,调试的部位也最多,遇到的问题也可能最多,所以要首先集中精力完成它。需要准备的仪器和工具:相位仪,噪声发生器,频谱仪(含声级计),万用表等。
/
本文档为【音响术语大全】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索