为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

多相流模型经验谈修订稿

2021-10-16 20页 doc 576KB 13阅读

用户头像 个人认证

雪宇

本人自毕业后,先后从事仓库管理、物控管理、企划计划排配等工作。性格开朗,爱学习分享工作中的问题及见解。

举报
多相流模型经验谈修订稿WEIHUAsystemofficeroom【WEIHUA16H-WEIHUAWEIHUA8Q8-WEIHUA1688】多相流模型经验谈多相流模型经验谈多相流的介绍:Currentlytherearetwoapproachesforthenumericalcalculationofmultiphaseflows:theEuler-LagrangeapproachandtheEuler-Eulerapproach.TheEuler-LagrangeApproach:TheLagrangiandiscretephasemodeli...
多相流模型经验谈修订稿
WEIHUAsystemofficeroom【WEIHUA16H-WEIHUAWEIHUA8Q8-WEIHUA1688】多相流模型经验谈多相流模型经验谈多相流的介绍:Currentlytherearetwoapproachesforthenumericalcalculationofmultiphaseflows:theEuler-LagrangeapproachandtheEuler-Eulerapproach.TheEuler-LagrangeApproach:TheLagrangiandiscretephasemodelinFLUENTfollowstheEuler-Lagrangeapproach,thisapproachisinappropriateforthemodelingofliquid-liquidmixtures,fluidizedbeds,oranyapplicationwherethevolumefractionofthesecondphaseisnotnegligible.TheEuler-EulerApproach:InFLUENT,threedifferentEuler-Eulermultiphasemodelsareavailable:thevolumeoffluid(VOF)model,themixturemodel,andtheEulerianmodel.1)TheVOFModel:itisdesignedfortwoormoreimmisciblefluidswherethepositionoftheinterfacebetweenthefluidsisofinterest.ApplicationsoftheVOFmodelincludestratifiedflows,free-surfaceflows,filling,sloshing,themotionoflargebubblesinaliquid,themotionofliquidafteradambreak,thepredictionofjetbreakup(surfacetension),andthesteadyortransienttrackingofanyliquid-gasinterface.2)Mixturemodel:Applicationsofthemixturemodelincludeparticle-ladenflowswithlowloading,bubblyflows,sedimentation,andcycloneseparators.Themixturemodelcanalsobeusedwithoutrelativevelocitiesforthedispersedphasestomodelhomogeneousmultiphaseflow.3)ApplicationsoftheEulerianmultiphasemodelincludebubblecolumns,risers,particlesuspension,andfluidizedbeds.离散相模型(离散相的装载率10~12%)求解参数的设定:OptionsforInteractionwithContinuousPhase:Forsteady-statesimulations,increasingtheNumberofContinuousPhaseIterationsperDPMIterationwillincreasestabilitybutrequiremoreiterationstoconverge.UpdateDPMSourcesEveryFlowIterationisrecommendedwhendoingunsteadysimulations;ateveryDPMIteration,theparticlesourcetermsarerecalculated.LengthScale:controlstheintegrationtimestepsizeusedtointegratetheequationsofmotionforthesmallervaluefortheLengthScaleincreasestheaccuracyofthetrajectoryandheat/masstransfercalculationsforthediscretephase.LengthScalefactor:AlargervaluefortheStepLengthFactordecreasesthediscretephaseintegrationtimestep.颗粒积分方法:numerics叶中trackingscheme选项1)implicitusesanimplicitEulerintegrationofEquationwhichisunconditionallystableforallparticlerelaxationtimes.2)trapezoidalusesasemi-implicittrapezoidalintegration.(梯形积分)3)analyticusesananalyticalintegrationofEquationwheretheforcesareheldconstantduringtheintegration.4)runge-kuttafacilitatesa5thorderRungeKuttaschemederivedbyCashandKarp[47].Youcaneitherchooseasingletrackingscheme,orswitchbetweenhigherorderandlowerordertrackingschemesusinganautomatedselectionbasedontheaccuracytobeachievedandthestabilityrangeofeachscheme.Max.Refinementsisthemaximumnumberofstepsizerefinementsinonesingleintegrationstep.Ifthisnumberisexceededtheintegrationwillbeconductedwiththelastrefinedintegrationstepsize.AutomatedTrackingSchemeSelectionprovidesamechanismtoswitchinanautomatedfashionbetweennumericallystablelowerorderschemesandhigherorderschemes,whicharestableonlyinalimitedrange.Insituationswheretheparticleisfarfromhydrodynamicequilibrium,anaccuratesolutioncanbeachievedveryquicklywithahigherorderscheme,sincetheseschemesneedlesssteprefinementsforacertaintolerance.Whentheparticlereacheshydrodynamicequilibrium,thehigherorderschemesbecomeinefficientsincetheirsteplengthislimitedtoastablerange.Inthiscase,themechanismswitchestoastablelowerorderschemeandfacilitateslargerintegrationsteps.IncludingaCoupledHeat-MassSolutionontheParticles:Thisincreasedaccuracy,however,comesattheexpenseofincreasedcomputationalexpense.非稳态跟踪1)连续相稳态离散相非稳态:yousimplyentertheParticleTimeStepSizeandtheNumberofTimeSteps,thustrackingparticleseverytimeaDPMiterationisconducted.WhenyouincreasetheNumberofTimeSteps,thedropletspenetratethedomainfaster.2)连续离散相都为非稳态:Whensolvingunsteadyequationsforthecontinuousphase,youmustdecidewhetheryouwanttoUseFluidFlowTimeSteptoinjecttheparticles,orwhetheryoupreferaParticleTimeStepSizeindependentofthefluidflowtimestep.Withthelatteroption,youcanusetheDiscretePhaseModelincombinationwithchangesinthetimestepforthecontinuousequations,asitisdonewhenusingadaptiveflowtimestepping.随机轨道模型的参数:numberoftries:AninputofzerotellsFLUENTtocomputetheparticletrajectorybasedonthemeancontinuousphasevelocityfield(Equation,ignoringtheeffectsofturbulenceontheparticletrajectories.Aninputof1orgreatertellsFLUENTtoincludeturbulentvelocityfluctuationsintheparticleforcebalanceasinEquation.Ifyouwantthecharacteristiclifetimeoftheeddytoberandom(Equation,enabletheRandomEddyLifetimeoption.YouwillgenerallynotneedtochangetheTimeScaleConstant(CLinEquationfromitsdefaultvalueof,unlessyouareusingtheReynoldsStressturbulencemodel(RSM),inwhichcaseavalueofisrecommended.液滴颗粒碰撞与破碎碰撞:破碎:有两种模型,TAB模型适合低韦伯数射流雾化以及低速射流进入标态空气中的情况。对韦伯数大于100的情况,波动模型适应性较好。在高速燃料射流雾化中,波动模型应用甚广。对于TAB模型,用户需要在y0文本框中设定y0的值。Thedefaultvalue(y0=0)isrecommended.对于Y波动模型,需要输入B0与B1,youwillgenerallynotneedtomodifythevalueofB0,asthedefaultvalueisacceptablefornearlyallcases.AvalueofisrecommendedforB1.颗粒类型中的燃烧类型燃烧(``combusting'')颗粒是一种固体颗粒,它遵从由方程所确定的受力平衡、由定律1所确定的加热冷却过程、由定律4所确定的挥发份析出过程(节)以及由定律5所确定的异相面反应机制(节)。最后,当颗粒的挥发份完全析出之后,非挥发份的运动、变化由定律6所确定。在SetInjectionPropertiespanel面板中选定WetCombustion选项,用户可以在燃烧颗粒中包含有可蒸发物质。这样,颗粒的可蒸发物质可在挥发份开始析出之前,经历由定律2、3所确定的蒸发与沸腾过程.若定义的是Combusting燃烧类型颗粒,可在DevolatilizingSpecies下拉列表框下选定由挥发份析出定律4确定的气相组分,参与焦炭表面燃烧反应(定律5)的气相组分列于OxidizingSpecies(氧化剂组分)列表中,有表面反应生成的气相组分则列于ProductSpecies(生成物组分)列表中。需要注意的是,对于选定的燃烧颗粒介质,如果燃烧模型为multiple-surface-reaction多表面异相反应模型,那么,由于化学反应计量比在混合介质中已经被确定,所以OxidizingSpecies与ProductSpecies列表将变灰(不可选)。液滴喷射类型平面雾化模型的输入l位置:在X-,Y-,andZ-Position文本框区可以设定射流的沿直角坐标的三向位置(在三维情况下才会有Z-Position出现)l速度:在X-,Y-,andZ-Velocity文本框区可以设定射流初始速度沿直角坐标的三向分量(在三维情况下才会有Z-Velocity出现)l轴的方向(仅适用于三维):设定确定喷嘴轴线方向的三个分量,在X-Axis,Y-Axis,andZ-Axis区设定。l温度:在Temperature区可设定喷射颗粒流的初始颗粒(绝对)温度。l质量流率:可在FlowRate区设定喷嘴的的颗粒质量流量。l射流持续时间:对于非稳态颗粒跟踪计算(请参阅节),在StartTime和StopTime区设定喷射的开始于结束时间。l蒸气压:设定控制通过喷嘴内部流动的蒸气压(表中的pv),在VaporPressure区设定。l直径:设定喷嘴直径(表中的d),在InjectorInnerDiam.区设定。l喷嘴长度:设定喷嘴的长度(表中的L),在OrificeLength区设定。l内台阶角半径(导角半径):设定喷嘴内台阶处的导角半径(表中的r),在CornerRadiusofCurv.区设定。l喷嘴参数:设定射流角修正系数(方程中的CA),在ConstantA区设定。{CA=3+L/d,喷射角度的大小强烈依赖于喷嘴的内部流动。因此,对于空穴喷嘴,用户设定的CA值应该比单相流的要小才可以。CA的常见取值范围为~。返流喷嘴的喷射角度更小}l方位角:设定三维情况下的喷嘴方位开始角与结束角,在AzimuthalStartAngleandAzimuthalStopAngle区设定。压力-旋流雾化喷嘴的点属性设定(气体透平工业的人把它称作单相喷嘴(simplexatomizer)。这种喷嘴,然后流体通过一个称作旋流片的喷头被加速后,进入中心旋流室。在旋流室内,旋转的液体被挤压到固壁,在流体中心形成空气柱,然后,液体以不稳定的薄膜状态从喷口喷出,破碎成丝状物及液滴。)l射流角:在SprayHalfAngle区下设定射流喷射半角(方程中的θ)。l压力:在UpstreamPressure区下设定喷嘴上游压力(表中的p1)。l液膜破碎常数:设定确定液膜破碎时形成的线状液膜长度的一个经验常数(方程中的ln(ηb/η0),在SheetConstant设定。{ln(ηb/η0)为3~12的经验常数。这个值必须由用户设定,其缺省值为12withexperimentalsheetbreakuplengthsoverarangeofWebernumbersfrom2to200.}l线状液膜直径:对于短波,确定液膜破碎波长与线状液膜半径之间的线形比例关系的比例常数,在LigamentConstant区设定。{whereCL,ortheligamentconstant,isequaltobydefault.}空气辅助雾化喷嘴的点属性设定(为了加速液膜的破碎,喷嘴经常会添加上辅助空气。液体通过喷座的作用形成液膜,空气则直接冲击液膜以加速液膜的破碎。)l喷嘴外半径:在InjectorOuterDiam.区下设定射流的外部半径。此数值与喷嘴内部半径共同确定了液膜厚度(方程中的t)。l射流角:设定射流离开喷口时的液膜初始轨道(方程中的θ),在SprayHalfAngle区设定。l相对速度:设定液膜与空气之间的最大相对速度,在RelativeVelocity区设定。l液膜破碎常数:设定确定液膜破碎时形成的线状液膜长度的一个经验常数(方程中的ln(ηb/η0)),在SheetConstant区设定。l线状液膜直径:对于短波,确定液膜破碎波长与线状液膜半径之间的线形比例关系的比例常数,在LigamentConstant区设定。{whereCL,ortheligamentconstant,isequaltobydefault.}平板扇叶雾化喷嘴的点属性设定(液体从宽而薄的喷口出来后形成平面液膜,继而破碎成液滴。只有在三维的情况下才可以使用这个模型)l扇叶中心点:设定射流源起始位置的三向坐标值(请参阅图),在X-Center,Y-Center,andZ-Center区设定。l虚点位置:设定喷嘴扇叶的各边的虚拟交叉点(请参阅图),在X-VirtualOrigin,Y-VirtualOrigin,andZ-VirtualOrigin区设定。l垂直方向:设定垂直扇叶的向量的各个分量,在X-FanNormalVector,Y-FanNormalVector,andZ-FanNormalVector区设定。l温度:设定颗粒流的温度,在Temperature区设定。l质量流量:设定喷嘴的质量流量,在FlowRate区设定。l射流持续时间:对于非稳态颗粒跟踪计算(请参阅节),在StartTime和StopTime区设定喷射的开始于结束时间。l射流角:在SprayHalfAngle区下设定射流喷射半角。l喷口宽度:设定喷口垂直方向的宽度,在OrificeWidth区设定。l液膜破碎常数:设定确定液膜破碎时形成的线状液膜长度的一个经验常数(请参阅方程的ln(ηb/η0)),在FlatFanSheetConstant区设定。气泡雾化喷嘴的点属性设定(,液体中混合了过热液体或者类似的介质。当挥发性液体从喷口喷出时,迅速发生相变。相变使流体迅速以很大的分散角破碎成小液滴。此模型也适用于热流体射流。)混合情况参数:设定射流中液-气混合物中已蒸发的液滴质量分数(方程中的x),在MixtureQuality区设定。l饱和温度:设定可挥发成分的饱和温度,在SaturationTemp.区设定。l液滴扩散系数:设定控制液滴在空间扩散性能的扩散系数(方程中的Ceff),在DispersionConstant区设定。l射流角:设定液膜离开喷口时的初始轨道方向角,在MaximumHalfAngle区设定。通用多相流模型mixturemodelVSeulermodel1)Ifthereisawidedistributionofthedispersedphases.,iftheparticlesvaryinsizeandthelargestparticlesdonotseparatefromtheprimaryflowfield),themixturemodelmaybepreferable.,lesscomputationallyexpensive).Ifthedispersedphasesareconcentratedjustinportionsofthedomain,youshouldusetheEulerianmodelinstead.Ifinterphasedraglawsthatareapplicabletoyoursystemareavailable(eitherwithinFLUENTorthroughauser-definedfunction),theEulerianmodelcanusuallyprovidemoreaccurateresultsthanthemixturemodel.Eventhoughyoucanapplythesamedraglawstothemixturemodel,asyoucanforanon-granularEuleriansimulation,iftheinterphasedraglawsareunknownortheirapplicabilitytoyoursystemisquestionable,themixturemodelmaybeabetterchoice.Formostcaseswithsphericalparticles,thentheSchiller-Naumannlawismorethanadequate.Forcaseswithnon-sphericalparticles,thenauser-definedfunctioncanbeused.加快收敛求解策略Youcanincreasethesizeofthetimestepafterperformingafewtimesteps.Forsteadysolutionsitisrecommendedthatyoustartwithasmallunder-relaxationfactorforthevolumefraction,Anotheroptionistostartwithamixturemultiphasecalculation,andthenswitchtotheEulerianmultiphasemodel.VOF模型界面之间的scalar梯度不要太大界面插值:therearefourschemeforinterfaceinterpolation:geometricreconstruction,donor-acceceptor,eulerexplicit,inexplicit,Thegeometricreconstructionschemerepresentstheinterfacebetweenfluidsusingapiecewise-linearapproach.InFLUENTthisschemeisthemostaccurateandisapplicableforgeneralunstructuredmeshes.thedonor-acceptorschemecanbeusedonlywithquadrilateralorhexahedralimplicitschemecanbeusedforbothtime-dependentandsteady-statecalculations.Eulermodel中的附加作用力LiftForces:Inmostcases,theliftforceisinsignificantcomparedtothedragforce,sothereisnoreasontoincludethisextraterm.Iftheliftforceissignificant.,ifthephasesseparatequickly),itmaybeappropriatetoincludethisterm.Thevirtualmasseffectissignificantwhenthesecondaryphasedensityismuchsmallerthantheprimaryphasedensity.,foratransientbubblecolumn).Bydefault,virtualmasseffectisnotincluded.多相湍流模型k-emodelk-emixturemodel(default)itisapplicablewhenphasesseparate,forstratified(ornearlystratified)multiphaseflows,andwhenthedensityratiobetweenphasesiscloseto1.,它应用于相分离,分层(或接近分层)的多相流,和相之间的密度比接近1。Thedispersedturbulencemodelistheappropriatemodelwhentheconcentrationsofthesecondaryphasesaredilute.Inthiscase,interparticlecollisionsarenegligibleandthedominantprocessintherandommotionofthesecondaryphasesistheinfluenceoftheprimary-phaseturbulence.当明显地有一个主连续相和其它的是分散稀释的第二相时,这个模型是适用的。Thedriftvelocityresultsfromturbulentfluctuationsinthevolumecorrectionisnotincluded,bydefault,butyoucanenableitduringtheproblemsetup(define---model---multiphases-option).k-eTurbulenceModelforEachPhase:Thisturbulencemodelistheappropriatechoicewhentheturbulencetransferamongthephasesplaysadominantrole.RSMmodelMultiphaseturbulencemodelingtypicallyinvolvestwoequationmodelsthatarebasedonsingle-phasemodelsandoftencannotaccuratelycapturetheunderlyingflowaretwooptionsforRsmmodel,mixtureanddispersedturbulencemodel.WetSteamModel通用多相流模型的输入:1)vofmodelnumberofphases:VOFformulation:1)Time-dependentwiththegeometricreconstructioninterpolationscheme:Thisformulationshouldbeusedwheneveryouareinterestedinthetime-accuratetransientbehavioroftheVOFsolution.2)Time-dependentwiththedonor-acceptorinterpolationscheme:Thisformulationshouldbeusedinsteadofthetime-dependentformulationwiththegeometricreconstructionschemeifyourmeshcontainshighlytwistedhexahedralcells.Forsuchcases,thedonor-acceptorschememayprovidemoreaccurateresults.3)Time-dependentwiththeEulerexplicitinterpolationscheme:Sincethedonoracceptorschemeisavailableonlyforquadrilateralandhexahedralmeshes,itcannotbeusedforahybridmeshcontainingtwistedhexahedralcells.Forsuchcases,youshouldusethetime-dependentEulerexplicittheEulerexplicittime-dependentformulationislesscomputationallyexpensivethanthegeometricreconstructionscheme,theinterfacebetweenphaseswillnotbeassharpasthatpredictedwiththegeometricreconstructionscheme.Toreducethisdiffusivity,itisrecommendedthatyouusethesecond-orderdiscretizationschemeforthevolumefractionequations.4)Time-dependentwiththeimplicitinterpolationscheme:Thisformulationcanbeusedifyouarelookingforasteady-statesolutionandyouarenotinterestedintheintermediatetransientflowbehavior,butthefinalsteady-statesolutionisdependentontheinitialflowconditionsand/oryoudonothaveadistinctinflowboundaryforeachphase.5)Steady-statewiththeimplicitinterpolationscheme:Thisformulationcanbeusedifyouarelookingforasteady-statesolution,youarenotinterestedintheintermediatetransientflowbehavior,andthefinalsteady-statesolutionisnotaffectedbytheinitialflowconditionsandthereisadistinctinflowboundaryforeachphase.NotethattheimplicitmodifiedHRICschemecanbeusedasarobustalternativetotheexplicitgeometricreconstructionscheme.IncludingBodyForces:Inmanycases,themotionofthephasesisdue,inpart,togravitationaleffects.Toincludethisbodyforce,turnonGravityintheOperatingConditionspanelandspecifytheGravitationalAcceleration.ForVOFcalculations,youshouldalsoturnontheSpecifiedOperatingDensityoptionintheOperatingConditionspanel,andsettheOperatingDensitytobethedensityofthelightestphase.Ifanyofthephasesiscompressible,settheOperatingDensitytozero.ModelingOpenChannelFlows:FLUENTcanmodeltheeffectsofopenchannelflow.,rivers,dams,andsurfacepiercingstructuresinunboundedstream)usingtheVOFformulationandtheopenchannelboundarycondition.thestepstoopenopenchannelflowsare:1.Turnongravity2.EnablethevolumeoffluidmodelandselectOpenChannelFlow.boundaryconditionssettingforopenchannelflow:1)DeterminingtheFreeSurfaceLevel(ylocal)Wecansimplycalculatethefreesurfacelevelintwosteps:1.Determinetheabsolutevalueofheightfromthefreesurfacetotheorigininthedirectionofgravity.2.Applythecorrectsignbasedonwhetherthefreesurfacelevelisaboveorbelowtheorigin.Iftheliquid'sfreesurfacelevelliesabovetheorigin,thentheFreeSurfaceLevelispositive(seeFigureLikewise,iftheliquid'sfreesurfacelevelliesbelowtheorigin,thentheFreeSurfaceLevelisnegative.2)DeterminingtheBottomLevel(ybottom):Wecansimplycalculatethebottomlevelintwosteps:1.Determinetheabsolutevalueofdepthfromthebottomleveltotheorigininthedirectionofgravity.2.Applythecorrectsignbasedonwhetherthebottomlevelisaboveorbelowtheorigin.3)SpecifyingtheTotalHeightytot=ylocal+V*V/2/g4)DeterminingtheVelocityMagnitude(appearinthepressureinlet)Thisistobespecifiedasthemagnitudeoftheupstreaminletvelocityintheflow5)DeterminingtheSecondaryPhasefortheInletConsideraprobleminvolvingathree-phaseflowconsistingofairastheprimaryphase,andoilandwaterasthesecondaryphases.Consideralsothattherearetwoinletgroups:1.waterandair2.oilandair;Forthefirstinletgroup,youwouldchoosewaterasthesecondaryphase.Forthesecondinletgroup,youwouldchooseoilasthesecondaryphase.liminationsofchannelflow:Limitations:Thefollowinglistsummarizessomeissuesandlimitationsassociatedwiththeopenchannelboundarycondition.1.TheconservationoftheBernoulliintegraldoesnotprovidetheconservationofmassflowrateforthepressureboundary.Inthecaseofacoarsermesh,therecanbeasignificantdifferenceinmassflowratefromtheactualmassflowrate.Forfinermeshes,themassflowratecomesclosertotheactualvalue.So,forproblemshavingconstantmassflowrate,themassflowrateboundaryconditionisabetteroption.Thepressureboundaryshouldbeselectedwhensteadyandnon-oscillatingdragisthemainobjective.2.Specifyingthetopboundaryasthepressureoutletcansometimesleadtoadivergentsolution.Thismaybeduetothecornersingularityatthepressureboundaryintheairregionorduetotheinabilitytospecifylocalflowdirectioncorrectlyiftheairentersthroughthetoplocally.3.Onlytheheavierphaseshouldbeselectedasthesecondaryphase.4.Inthecaseofthree-phaseflows,onlyonesecondaryphaseisallowedtoenterthroughoneinletgroup.Thatmeans,themixedinflowofdifferentsecondaryphasesisnotallowed.DefiningPhasesfortheVOFModel:1)Ingeneral,youcanspecifytheprimaryandsecondaryphaseswhicheverwayyouprefer.Itisagoodidea,especiallyinmorecomplicatedproblems,toconsiderhowyourchoicewillaffecttheeaseofproblemsetup.Forexample,ifyouareplanningtopatchaninitialvolumefractionof1foronephaseinaportionofthedomain,itmaybemoreconvenienttomakethatphaseasecondaryphase.Also,ifoneofthephasesisacompressibleidealgas,itisrecommendedthatyouspecifyitastheprimaryphasetoimprovesolutionstability.IncludingSurfaceTensionandWallAdhesionEffects(SurfacetensioneffectscanbeneglectedifCa》1orWe》1.Forcalculationsinvolvingsurfacetension,itisrecommendedthatyoualsoturnontheImplicitBodyForcetreatmentfortheBodyForceFormulationintheMultiphaseModelpanel.Thistreatmentimprovessolutionconvergencebyaccountingforthepartialequilibriumofthepressuregradientandsurfacetensionforcesinthemomentumequations):youmustspecifysurfacetensioncoefficient.youcanconsideringwalladhesionbyturningonwalladhesioninphasesinteractionpanel.youmustinputthecontactangleinthewallboundarycondition.Thedefaultvalueforallpairsis90degrees,whichisequivalenttonowalladhesioneffects.,theinterfaceisnormaltotheadjacentwall).Acontactangleof45degree,forexample,correspondstowatercreepingupthesideofacontainer,asiscommonwithwaterinaglass.timedependentsolutionIfyouwantFLUENTtosolvethevolumefractionequation(s)ateveryiterationwithinatimestep,turnontheSolveVOFEveryIterationoptionunderVOFParameters.Thischoiceisthelessstableofthetwo,andrequiresmorecomputationaleffortpertimestepthanthedefaultchoice.库兰数的设定:ifthemaximumallowedCourantnumberis(thedefault),thetimestepwillbechosentobeatmostone-fourththeminimumtransittimeforanycellneartheinterface.2)mixturemodel的输入numberofphases:asaboveIncludingBodyForces:asabovewhetherornottocomputetheslipvelocities:bydefault,fluentturnonthecomputetheslipvelocities,ifyouareDefiningaHomogeneousMultiphaseFlow,turnoffthecomputeslipvelocities.DefiningaGranularSecondaryPhase:PackingLimitspecifiesthemaximumvolumefractionforthegranularphase.Formonodispersedspheres,thepackinglimitisabout,whichisthedefaultvalueinFLUENT.Inpolydispersedcases,however,smallerspherescanfillthesmallgapsbetweenlargerspheres,soyoumayneedtoincreasethemaximumpackinglimit.IncludingCavitationEffects:Toenablethecavitationmodel,turnontheCavitationoptionintheMasstabofthePhaseInteractionpanel.youmustsettheVaporizationPressure,theSurfaceTensionCoefficient,andthemassfractionofNonCondensableGas.Whenmultiplespeciesareincludedinoneormoresecondaryphases,ortheheattransferduetophasechangeneedstobetakenintoaccount,themasstransfermechanismmustbedefinedbeforeturningontheCavitationoption.Itmaybenoted,however,thatforcavitationproblems,atleasttwomasstransfermechanismsaredefined:1.Masstransferfromliquidtovapor.2.Masstransferfromvaportoliquid.3)eulermodel输入numberofphases:asaboveIncludingBodyForces:asaboveDefiningaGranularSecondaryPhase:GranularTemperatureAlgebraicformulation(thedefault).Itisobtainedbyneglectingconvectionanddiffusioninthetransportequation,Equation[340].PartialDifferentialEquation.ThisisgivenbyEquationanditisallowedtochoosedifferentoptionsforitproperties.ConstantGranularTemperature.Thisisusefulinverydensesituationswheretherandomfluctuationsaresmall.PackingLimitspecifiesthemaximumvolumefractionforthegranularphase.Formonodispersedspheres,thepackinglimitisabout,whichisthedefaultvalueinFLUENT.Inpolydispersedcases,however,smallerspherescanfillthesmallgapsbetweenlargerspheres,soyoumayneedtoincreasethemaximumpackinglimit.DefiningtheInteractionBetweenPhasesdefinethedragfuction:Selectschiller-naumanntousethefluid-fluiddragfunction.TheSchillerandNaumannmodelisthedefaultmethod,anditisacceptableforgeneraluseinallfluid-fluidmultiphasecalculations.Selectmorsi-alexandertousethefluid-fluiddragfunction.TheMorsiandAlexandermodelisthemostcomplete,adjustingthefunctiondefinitionfrequentlyoveralargerangeofReynoldsnumbers,butcalculationswiththismodelmaybelessstablethanwiththeothermodels.Selectsymmetrictousethefluid-fluiddragfunction.Thesymmetricmodelisrecommendedforflowsinwhichthesecondary(dispersed)phaseinoneregionofthedomainbecomestheprimary(continuous)phaseinanother.Forexample,ifairisinjectedintothebottomofacontainerfilledhalfwaywithwater,theairisthedispersedphaseinthebottomhalfofthecontainer;inthetophalfofthecontainer,theairisthecontinuousphase.Selectwen-yutousethefluid-soliddragfunction.TheWenandYumodelisapplicablefordilutephaseflows,inwhichthetotalsecondaryphasevolumefractionissignificantlylowerthanthatoftheprimaryphase.Selectgidaspowtousethef
/
本文档为【多相流模型经验谈修订稿】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索