为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

2021年中考数学复习《探索二次函数综合型压轴题解题技巧》分类训练二:与角的度量有关的压轴题(含答案)

2021-02-19 11页 doc 871KB 26阅读

用户头像 个人认证

精品教育

江苏省优秀教师,连云港市优秀班主任,一线教师

举报
2021年中考数学复习《探索二次函数综合型压轴题解题技巧》分类训练二:与角的度量有关的压轴题(含答案)2021年中考数学复习《探索二次函数综合型压轴题解题技巧》分类训练二:与角的度量有关的压轴题方法提炼:1.将角的度量关系转化为边的数量,利用边的数量关系求解问题的答案。2.利用角的度量关系,寻找问题中的特殊角,结合三角函数求解。3.利用角的度量关系,构建图形的全等、相似,利用图形的全等、相似的性质求解典例引领:例:如图,抛物线y=ax2+3x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=4.(1)求该抛物线的函数解析式.(2)如图1,连接BC,点D是直线BC上方抛物线上的...
2021年中考数学复习《探索二次函数综合型压轴题解题技巧》分类训练二:与角的度量有关的压轴题(含答案)
2021年中考数学复习《探索二次函数综合型压轴题解题技巧》分类训练二:与角的度量有关的压轴题提炼:1.将角的度量关系转化为边的数量,利用边的数量关系求解问题的答案。2.利用角的度量关系,寻找问题中的特殊角,结合三角函数求解。3.利用角的度量关系,构建图形的全等、相似,利用图形的全等、相似的性质求解典例引领:例:如图,抛物线y=ax2+3x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=4.(1)求该抛物线的函数解析式.(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.OD交BC于点F,当S△COF:S△CDF=4:3时,求点D的坐标.(3)如图2,点E的坐标为(0,﹣2),点P是抛物线上的点,连接EB,PB,PE形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.1.解:(1)∵OB=OC=4,∴B(4,0),C(0,4),把B(4,0),C(0,4)代入y=ax2+3x+c,得,解得∴抛物线的函数解析式为y=﹣x2+3x+4;(2)如图1,设直线BC解析式为y=kx+b,则,解得∴直线BC解析式为y=﹣x+4,令点D、F的横坐标分别为xD,xF,∵S△COF:S△CDF=4:3,∴S△COF=S△COD,即OC•xF=×OC•xD,∴xD=xF,设点D横坐标为7t,点F横坐标为4t,∵点F在直线BC上,∴F(4t,4﹣4t),设直线OF解析式为y=k′x,则4﹣4t=4tk′,∴k′==,∴直线OF解析式为y=x,∵点D在直线OF上,∴D(7t,7﹣7t),将D(7t,7﹣7t)代入y=﹣x2+3x+4中,得7﹣7t=﹣(7t)2+3×7t+4,解得:t1=,t2=,∴D的坐标为(1,6)或(3,4);(3)①当∠PEB=2∠OBE,且点P在x轴上方时,如图2,作BE的垂直平分线交OB于F,连接EF,在∠BEO内部作射线EP交x轴于G,交抛物线于P,使∠PEB=∠EFO,过点G作GH⊥BE于H,则BF=EF,设BF=EF=m,∴OF=OB﹣BF=4﹣m在Rt△OEF中,∠EOF=90°,∵OE2+OF2=EF2∴22+(4﹣m)2=m2,解得:m=,∴BF=EF=,OF=4﹣=,∴tan∠OBE===,tan∠OFE===,∵BF=EF∴∠BEF=∠OBE∵∠OFE=∠BEF+∠OBE∴∠OFE=2∠OBE∵∠PEB=2∠OBE∴∠PEB=∠OFE∴tan∠PEB==tan∠OFE=,设GH=4a,则EH=3a,∴BE===2,BH=2﹣3a∵=tan∠∠OBE=,∴=,解得:a=,∴GH=,BH=∴BG==∴OG=OB﹣BG=4﹣=∴G(,0),设直线EG解析式为y=k″x+b″,则,解得∴直线EG解析式为y=x﹣2,联立方程组,解得:(舍去),,∴P(,),②当∠PEB=2∠OBE,且点P在x轴下方时,如图3,过点E作EF⊥y轴,作点B关于直线EF的对称点G,连接BG交EF于F,射线EG交抛物线于点P,∵E(0,﹣2),∴直线EF为:y=﹣2∵B(4,0),∴G(4,﹣4)∴直线EG解析式为y=﹣x﹣2,解方程组,得,(不符合题意,舍去),∴P(,);③当∠PBE=2∠OBE,且点P在x轴上方时,如图4,在y轴正半轴上截取OF=OE=2,作射线BF交抛物线于P,在△BOE和△BOF中,∴△BOE≌△BOF(SAS)∴∠PBO=∠OBE∴∠PBE=2∠OBE易求得直线PF解析式为y=﹣x+2,联立方程组,解得(不符合题意,舍去),,∴P(﹣,);④当∠PBE=2∠OBE,且点P在x轴下方时,如图5,过点E作EF⊥BE交直线BP于F,过F作FG⊥y轴于G,由①知:tan∠PBE==,BE=2∴EF=∵∠EGF=∠BOE=∠BEF=90°∴∠BEO+∠FEG=∠BEO+OBE=90°∴∠FEG=∠OBE∴△EFG∽△BEO∴==,即==∴FG=,EG=∴OG=OE+EG=2+=∴F(,﹣)易求得直线BF解析式为y=x﹣22,联立方程组,解得(舍去),∴∴P(﹣,﹣);综上所述,符合条件的点P的坐标为:(,)、(,)、(﹣,)、(﹣,﹣).跟踪训练:1.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点.(1)求该抛物线的解析式;(2)点P是抛物线上一点,且位于第一象限,当△ABP的面积为3时,求出点P的坐标;(3)过B作BC⊥OA于C,连接OB,点G是抛物线上一点,当∠BAG+∠OBC=∠BAO时,请直接写出此时点G的坐标.2.如图,抛物线y=ax2+bx+与x轴交于点A(﹣5,0),B(1,0),顶点为D,与y轴交于点C.(1)求抛物线的表达式及D点坐标;(2)在直线AC上方的抛物线上是否存在点E,使得∠ECA=2∠CAB,如果存在这样的点E,求出△ACE面积,如果不存在,请说明理由.3.如图1,抛物线y=﹣+bx+c经过原点(0,0),A(12,0)两点.(1)求b的值;(2)如图2,点P是第一象限内抛物线y=﹣+bx+c上一点,连接PO,若tan∠POA=,求点P的坐标;(3)如图3,在(2)的条件下,过点P的直线y=﹣x+m与x轴交于点F,作CF=OF,连接OC交抛物线于点Q,点B在线段OF上,连接CP、CB、PB,PB交CF于点E,若∠PBA=2∠PCB,∠BEF=2∠BCF,求点Q的坐标.4.如图,抛物线y=﹣+bx+c交x轴于点A、B(A在B左侧),交y轴于点C,直线y=﹣x+6经过点B、C.(1)求抛物线解析式;(2)点P为第一象限抛物线上一点,连接PA交BC于点D,设点P的横坐标为t,的值为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点E为线段OB上一点,连接CE,过点O作CE的垂线交BC于点G,连接PG并延长交OB于点F,若∠OGC=∠BGF,F为BE中点,求t的值.5.抛物线y=ax2+c经过点(0,﹣1),交x轴于A(﹣1,0),B两点,点P是第一象限内抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图1已知直线l的解析式为y=x﹣2,过点P作直线l的垂线,垂足为H,当PH=时,求点P的坐标;(3)如图2,当∠APB=45°时,求点P的坐标.6.已知抛物线y=x2﹣mx﹣m﹣1与x轴交于A、B两点,点A在点B的左边,与y轴交于点C(0,﹣3).(1)求点A、B的坐标;(2)点D是抛物线上一点,且∠ACO+∠BCD=45°,求点D的坐标;(3)将抛物线向上平移m个单位,交线段BC于点M,N,若∠MON=45°,求m的值.7.如图,在平面直角坐标系xOy中,已知点A(﹣1,0),D(﹣3,0),C(﹣4,3),四边形ABCD是平行四边形.现将▱ABCD沿x轴方向平移n个单位,得到▱A1B1C1D1,抛物线M经过点A1,C1,D1.(1)若抛物线M的对称轴为直线x=4,求抛物线M的解析式;(2)抛物线M的顶点为E,若以A,E,C1为顶点的三角形的面积等于▱ABCD的面积的一半,求n的值;(3)在(2)的条件下,在y轴上是否存在点P,使得∠C1PA=∠C1EA?若存在,请直接写出点P的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中抛物线y=ax2+bx+c交x轴于点A、B,交y轴于点C,A、B两点横坐标为﹣1和3,C点纵坐标为﹣4.(1)求抛物线的解析式;(2)动点D在第四象限且在抛物线上,当△BCD面积最大时,求D点坐标,并求△BCD面积的最大值;(3)抛物线的对称轴上是否存在一点Q,使得∠QBC=45°,如果存在,求出点Q的坐标,不存在说明理由.9.抛物线y=﹣x2+bx+c与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C.直线y=﹣2x+6经过B、C两点,连接AC.(1)求抛物线的解析式:(2)点P是第一象限抛物线上一点,P点横坐标为t,连接PC、PB,设△PBC的面积为S,求S与t之间的函数关系式(直接写出自变量t的取值范围):(3)在(2)问的条件下,当S=3且t<2时,连接PB,在抛物线上是否存在一点Q,使∠PBQ=∠ACB?若存在求出Q点坐标,若不存在,说明理由.10.如图,在平面直角坐标系中,抛物线与x轴交于A、B两点,与y轴交于C点,B点与C点是直线y=x﹣3与x轴、y轴的交点.D为线段AB上一点.(1)求抛物线的解析式及A点坐标.(2)若点D在线段OB上,过D点作x轴的垂线与抛物线交于点E,求出点E到直线BC的距离的最大值.(3)D为线段AB上一点,连接CD,作点B关于CD的对称点B′,连接AB′、B′D①当点B′落坐标轴上时,求点D的坐标.②在点D的运动过程中,△AB′D的内角能否等于45°,若能,求此时点B′的坐标;若不能,请说明理由.11.如图,在平面直角坐标系中,抛物线y=ax2+x+c交x轴于点A、点B,交y轴于点C.直线y=﹣x+2经过于点C、点B,(1)求抛物线的解析式;(2)点D为第一象限抛物线上一动点,过点D作y轴的平行线交线段BC于点E,交x轴于点Q,当DE=5EQ时,求点D的坐标;(3)在(2)的条件下,点M为第二象限抛物线上一动点,连接DM,DM交线段OC于点H,点F在线段OB上,连接HF、DF、DC、DB,当HF=,∠CDB=2∠MDF时,求点M的坐标.12.已知抛物线y=ax2+bx﹣3与x轴交于点A(﹣1,0)、B两点,与y轴交于点C,且过点P(5,12).(1)求抛物线的解析式.(2)如图,点Q为线段CP上一动点,过点Q作QF⊥x轴于点F,交抛物线于点D,连接CD,PD,若S△QDC:S△QDP=2:3,求直线PD的解析式.(3)过点B的直线交抛物线于M,是否存在点M使∠ABM=∠PCO,若存在,求出点M的坐标.若不存在,说明理由.13.如图1,抛物线C1:y=x2+(m﹣2)x﹣2m(m>0)与x轴交于点A、B(A在B的左侧),与y轴交于点C,连接AC、BC,S△ABC=3.(1)求m的值;(2)如图2,将射线BC绕点B顺时针方向旋转交抛物线C1第二象限的图象于点D,连接DC.当x轴恰好三等分△DBC的面积时,求此时点D的横坐标;(3)将抛物线C1向右平移,使新抛物线C2经过原点,如图3,C2的对称轴l交抛物线C2于E,交直线y=4于F,直线y=4交C2于点G、H(G在H的左侧),点M、N分别从点G、H同时出发,以1个单位长度/秒向点F运动.设点M运动时间为t(秒),点M、N到达F时,运动停止,点W在l上,WF=,连MW、NE.当∠MWF=3∠FEN时,求t的值.参考答案1.解:(1)将点A、B的坐标代入抛物线表达式并解得:a=﹣1,b=4,故抛物线的表达式为:y=﹣x2+4x…①;(2)过点P作直线m交x轴于点M,过点P作PH⊥AB于点H,过点A作AN⊥直线m,在AB下方作直线n距离直线AB的长度为PH,△ABP的面积S=AB×PH=×3×PH=3,解得:PH==AN,直线AB的倾斜角为45°,故直线m、n所在直线的k值为:﹣1,则AM=AH=2,故点M(6,0),则直线m的表达式为:y=﹣x+6…②,同理直线n的表达式为:y=﹣x+2…③,联立②①并解得:x=2或3,联立③①并解得:x=(舍去);综上,点P的坐标为:(3,3)或(2,4)或(,);(3)∵BC=AC=3,故∠BAO=45°=∠BAG+∠OBC,①当点G在AB上方时,如图2(左侧图),设抛物线对称轴交x轴于点M,连接BM,OC=OM=1,故∠CBM=∠OBC,则∠CAB=45°=∠CBM+∠MBA=∠OBC+∠ABM,而45°=∠BAG+∠OBC,故∠ABM=∠GAB,则AG∥BM,直线BM表达式中的k值为:3,故直线AG的表达式为:y=﹣3x+b,将点A的坐标代入上式并解得:直线AG的表达式为:y=﹣3x+12…④;联立①④并解得:x=3或4(舍去4);②当点G在AB下方时,如图2(右侧图),∠BAG+∠OBC=∠BAO=45°,而∠BAG+∠GAC=45°,∴∠OBC=∠GAC,而tan∠OBC===tan∠GAC,则直线AG的表达式为:y=﹣x+b′,将点A坐标代入上式并解得:直线AG的表达式为:y=﹣x2+…⑤,联立⑤①并解得:x=或4(舍去4).综上,点P的坐标为:(3,3)或(,).2.解:(1)∵抛物线y=ax2+bx+与x轴交于点A(﹣5,0),B(1,0),∴,∴∴抛物线的表达式为:y=﹣x2﹣2x+,∴顶点D(﹣2,)(2)如图,过点C作CM∥AB,过点E作EF⊥CM,设点E(m,﹣m2﹣2m+)∵y=﹣x2﹣2x+交y轴交于点C,∴点C(0,),∴OC=,∵CM∥AB,∴∠MCA=∠CAB,∵∠ECA=2∠CAB=∠ECF+∠MCA,∴∠ECF=∠CAB,且∠AOC=∠EFC=90°,∴△CEF∽△ACO,∴,∴=∴m=0(不合题意),m=﹣3,∴点E(﹣3,4),∴S△AEC=×(+4)×3+×4×2﹣×5×=.3.解:(1)∵抛物线y=﹣+bx+c经过原点(0,0),A(12,0)两点.∴c=0,0=﹣×144+12b+c∴b=;(2)如图2,过点P作PE⊥OA于点E,∵c=0,b=,∴抛物线解析式为:y=﹣+x∵点P是第一象限内抛物线y=﹣+x上一点,∴设点P(m,﹣m2+m),(m>0)∵tan∠POA==,∴=,∴m=8,∴点P(8,4);(3)连接OP,∵直线y=﹣x+m过点P(8,4),∴m=,∴直线解析式为y=﹣x+,当y=0,x=,∴点F(,0),∵∠BEF=∠BCF+∠PBC,且∠BEF=2∠BCF,∴∠PBC=∠BCF,∵∠PBA=2∠PCB,∠BEF=2∠BCF,∴∠EFB=180°﹣2∠PCB﹣2∠PBC,∵OF=CF,∴∠COF=∠PCB+∠PBC=∠OCF,∵∠CPB=180°﹣∠BCP﹣∠PBC,∴∠CPB+∠COF=180°,∴点O,点B,点P,点C四点共圆,∴∠PBA=∠OCP,∠OCB=∠OPB,∠BCP=∠BOP,∵∠PBA=2∠PCB,∠PBA=∠OCP=∠OCB+∠BCP,∴∠OCB=∠BCP,∴∠BPO=∠POB,∴OB=PB,设点B(a,0)∴OB=BP=a,∴a=∴a=7∴点B(7,0)设过点O,点B,点P,点C四点的圆的圆心M(,y),∵MO=MP,∴()2+y2=(8﹣)2+(4﹣y)2,∴y=,∴M(,),设点C(a,n)∵MO=MC,OF=CF,∴(a﹣)2+(b﹣)2=()2+()2①,(a﹣)2+b2=()2②,∴由①②组成方程组可求b=a,设直线OC解析式为:y=kx,且过点C(a,b)∴b=ka,∴k=∴直线OC解析式为:y=x,∴x=﹣+x∴x1=0(不合题意舍去),x2=4,∴点Q(4,4)4.解:(1)直线y=﹣x+6经过点B、C,则点B、C的坐标分别为:(6,0)、(0,6),则c=6,将点A的坐标代入抛物线表达式并解得:b=2,故抛物线的表达式为:y=﹣x2+2x+6…①;(2)点P(t,﹣t2+2t+6),将点P、A的坐标代入一次函数表达式:y=kx+b并解得:直线AP的表达式为:y=﹣(t﹣6)x+(6﹣t),将上式与直线BC的表达式联立并解得:x=,故点D(,+6),则=,则d==﹣1=﹣t2+t(0<t<6);(3)设OE=a,则点E(a,0),设OG交CE于点H,∵∠ECO+∠COH=90°,∠COH+∠HOE=90°,∴∠HOE=∠OCH,tan∠OCH===tan∠HOE,则直线OH的表达式为:y=x…②,联立①②并解得:x=,故点G(,),则BG==,则CG=BC﹣BG=,∵OB=OC=6,故∠OCB=∠OBC=45°,而∠OGC=∠BGF,则△CGO∽△BGF,即:,即:,解得:BF=a,F为BE中点,则OE=EF=FB,故a=2,故点F(4,0),点G(,);将点F、G的坐标代入一次函数表达式并解得:直线FG的表达式为:y=3x﹣12…③,联立①③并解得:x=﹣1(舍去负值),故t=﹣1+.5.解:(1)∵抛物线y=ax2+c经过点(0,﹣1),A(﹣1,0),∴,∴,∴抛物线的解析式的解析式为y=x2﹣1;(2)过点P作y轴的平行线交直线l于点M,∵直线l的解析式为y=x﹣2,∴直线与y轴的夹角为45°,∴∠PMH=45°,∵PH⊥MH,PH=,∴PM=7,设P(a,a2﹣1),则M(a,a﹣2),∴PM=a2﹣1﹣a+2=7,∴a1=3,a2=﹣2(舍去),∴P(3,8);(3)如图2,在y轴上取点D(0,1),则△ABD为等腰直角三角形,∵AO=BO=1,∠ADB=90°,∴=,以点D为圆心、AD长为半径画圆,则点P在优弧AB上时总有∠APB=45°,连结PD,设P点坐标为(m,m2﹣1),∴PD==,∴m2+(m2﹣2)2=2,解得:,(舍去),m3=1(舍去),m4=﹣1(舍去),∴P(,1).6.解:(1)﹣m﹣1=﹣3,解得:m=2,故抛物线的表达式为:y=x2﹣2x﹣3…①,令y=0,解得:x=3或﹣1,故点A、B的坐标分别为:(﹣1,0)、(3,0);(2)①当点D在BC下方时,∵∠ACO+∠BCD=45°,则AC⊥CD,则直线CD的表达式为:y=x﹣3…②,联立①②并解得:x=0或,故点D(,﹣);②当点D(D′)在BC上方时,过点D作DE⊥BC交BC于点H,交CD′于点E,直线BC的表达式为:y=x﹣3…③则ED的表达式为:y=﹣x+…④,联立③④并解得:x=,故点H(,﹣),点E的坐标为:(,﹣),则直线CE的表达式为:y=3x﹣3…⑤,联立①⑤并解得:x=0或5(舍去0),故点D(D′)的坐标为:(5,12),综上,点D的坐标为:(,﹣)或(5,12);(3)如图2,抛物线平移后的图象为虚线部分,则抛物线的表达式为:y=x2﹣2x﹣3+m(m>0),设点M、N的坐标分别为:(x1,y1)、(x2、y2),则x1+x2=3,x1x2=m,x2=,∵∠MON=45°=∠OCM,∠ONM=∠ONM,∴△NOM∽△NCO,∴NO2=MN•CN,而NO2=(x22+y22),MN=(x2﹣x1),CN=x22,即(x22+y22)=2x2(x2﹣x1),即2x1x2=x22﹣y22,而y2=x2﹣3,故=+m,解得:m=(﹣1+)(不合题意的值已舍去).7.解:(1)四边形ABCD是平行四边形,则点B的坐标为:(﹣2,3),即点B在AD的中垂线上,过点A、D的二次函数表达式为:y=a(x+1)(x+3)=a(x2+4x+3),将点C的坐标代入上式并解得:a=1,则过A、C、D的抛物线为:y=x2+4x+3=(x+2)2﹣1,抛物线M的对称轴为直线x=4,相当于将上述抛物线向右平移了6个单位,故抛物线M的表达式为:y=(x﹣4)2﹣1;(2)将▱ABCD沿x轴方向平移n个单位,则点C1、E的坐标分别为:(n﹣4,3)、(n﹣2,﹣1),点A(﹣1,0),连接C1E交x轴于点M,将点C1、E的坐标代入一次函数表达式:y=kx+b并解得:直线C1、E的表达式为:y=﹣2x+(2n﹣5),则点M的坐标为:(,0),S△AEC1=×AM×(yC1﹣yE)=(+1)×4=S▱ABCD=×2×3=3,解得:n=3;(3)存在,理由:由(2)知点C(﹣1,3),点A(﹣1,0),则AC⊥x轴,故点A、C1、E作圆Q,则点Q在AC1的中垂线上,设点Q(m,),则此时,∠C1PA=∠C1EA,由QC1=QE得:(m+1)2+(3﹣)2=(m﹣1)2+(1+)2,解得:m=1,则点Q(1,),设点P(0,t),由QP=QE得:1+(﹣t)2=()2,解得:t=,故点P的坐标为:(0,).8.解:(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣4,解得:a=,故抛物线的表达式为:y=x2﹣x﹣4;(2)过点D作y轴的平行线交BC于点N,由B、C的坐标可得直线BC的表达式为:y=x﹣4,设点D(x,x2﹣x﹣4),点N(x,x﹣4),S△BCD=×OB×ND=3×(x﹣4﹣x2+x+4)=﹣2x2+6x,∵﹣2<0,故S有最大值,此时,x=,点D(,﹣5);(3)存在,理由:直线BC的表达式为:y=x﹣4,抛物线的对称轴为:x=1,故点H(1,﹣),过点Q作QM⊥BC于点M,tan∠OCB==tanα,∠QBC=45°,设QM=3x,则HM=4x,MB=3x,BH=HM+MB=7x==,解得:x=,QH=5x=,则yQ=yH+=﹣,故点Q(1,).9.解:(1)直线y=﹣2x+6经过B、C两点,则点B、C的坐标为:(3,0),(0,6),将点B、C的坐标代入抛物线表达式并解得:b=1,c=6,故抛物线的表达式为:y=﹣x2+x+6…①;(2)过点P作y轴的平行线交BC于点H,设点P(t,﹣t2+t+6),则点H(t,﹣2t+6),S=×PH×OB=(﹣t2+t+6+2t﹣6)=﹣t2+t(0<t<3);(3)S=3,即:﹣t2+t=3,解得:t=1或2(舍去2),故点P(1,6),而点B(0,3),则直线PB的表达式为:y=﹣x+9,则点M(0,9),tan∠BMO=,过点A作AL⊥BC于点L,S△ABC=OC×AB=×BC×AL,即3×5=×AL×3,解得:AL=,sin∠ACB==,则∠ACB=45°=∠MBQ,设BQ交y轴于点H,过点H作HN⊥MB于点N,tan∠BMO=,∠MBQ=45°,设:HN=x,则BN=x,MN=3x,MB=4x=,解得:x=,HB=x=,则OH2=BH2﹣OB2=,则点H(0,),则BH的函数表达式为:y=﹣x+…②,联立①②并解得:x=﹣(不合题意值已舍去),则点Q(﹣,).10.解:(1)∵B点与C点是直线y=x﹣3与x轴、y轴的交点.∴B(3,0),C(0,﹣3),∴,解得:,∴抛物线的解析式为,令y=0,,解得x1=﹣2,x2=3,∴A(﹣2,0),(2)设E点到直线BC的距离为d,E点横坐标为m,F(m,m﹣3),∵B(3,0),C(0,﹣3),∴∠OBC=45°,如图1,过点E作EH⊥BC于点H,则△EFH为等腰直角三角形,∴EH=,EF=yF﹣yE=m﹣3﹣(,=(0≤m≤3),=,当时,EF的最大值为,∴d=EF==.即E到BC的最大距离为.(3)①点B′在以C为圆心,CB为半径的圆C上;(Ⅰ)当B′点落在x轴上时,D1(0,0);(Ⅱ)当B′点落在y轴上时,如图2,CB′=CB=3,∵∠OB′D=45°∴OD=OB'=3﹣3,∴;②分别画出图形进行讨论求解:(Ⅰ)∠B′DA=45°时,如图2,OB′=3﹣3,B′(0,3﹣3)(Ⅱ)如图3,连接CB′,∠B′DA=∠CBD=45°,∴DB′∥BC,可得四边形DB′CB是菱形,B′(﹣3,﹣3).(Ⅲ)∠B′AD=45°,如图4,连接CB′,过点B′分别作坐标轴的垂线,垂足为E、F,设线段FB'的长为m,B′E=AE=2﹣m,可得CF=5﹣m,在直角三角形CFB'中,m2+(5﹣m)2=(3)2,解得m=,故B′(),(Ⅳ)如图5,∠AB′D=45°,连接CB',过点B′作y轴的垂线,垂足为点F,由轴对称性质可得,∠CB′D=∠CBD=45°,所以当∠AB′D=45°时,点A在线段CB′上,∴,设线段FB′的长为2m,FC=3m,(2m)2+(3m)2=(3,解得:m=,B′(﹣,综合以上可得B′坐标为(0,)或或()或(﹣).11.解:(1)针对于直线y=﹣x+2,令x=0,则y=2,∴C(0,2),令y=0,则0=﹣x+2,∴x=4,∴B(4,0),将点B,C坐标代入抛物线y=ax2+x+c中,得∴,∴抛物线的解析式为y=﹣x2+x+2;(2)如图1,由(1)知,抛物线的解析式为y=﹣x2+x+2,设点D坐标为(m,﹣m2+m+2),∵DE⊥x轴交BC于E,直线BC的解析式为y=﹣x+2,∴D(m,﹣m+2),∴DE=﹣m2+m+2﹣(﹣m+2)=﹣m2+m,DQ=﹣m+2,∵DE=5EQ,∴﹣m2+m=5(﹣m+2),∴m=3或m=4(点B的横坐标,舍去),∴D(3,3);(3)如图2,由(2)知,D(3,3),由(1)知,B(4,0),C(0,2),∴DB=,DC=,BC=2,∴DC=DB,DB2+DC2=BC2,∴△BDC是等腰直角三角形,∴∠BDC=90°,∵BDC=2∠FDM=90°,∴∠FDM=45°,过点D作DP⊥y轴于P,则DQ=DP,OP=3,∴CP=1=BQ,∴△DPC≌△DQB(SAS),在CP的延长线取一点G,使PG=QF=n,∴OF=3﹣n,OG=3+n,∴△DPG≌△DQF(SAS),∴DG=DF,∠PDG=∠QDF,∴∠FDG=∠PDG+∠PDF=∠QDF+∠PDG=∠PDQ=90°∴∠GDM=90°﹣∠FDM=45°=∠GDM,∵DH=DH,∴△GDH≌△FDH(SAS),∴GH=FH=,∴OH=OG﹣GH=3+n﹣=n+,在Rt△HOF中,根据勾股定理得,(n+)2+(3﹣n)2=,∴n=1或n=(此时,OH=n+=2,所以点H与点C重合,舍去),∴H(0,),∵C(3,3),∴直线CH的解析式为y=x+①,∵抛物线的解析式为y=﹣x2+x+2②,联立①②解得,或(由于点M在第二象限,所以舍去),∴M(﹣,).12.解:(1)∵抛物线y=ax2+bx﹣3过点A(﹣1,0)、P(5,12)两点,∴,解得:,∴抛物线的解析式为y=x2﹣2x﹣3;(2)如图1,过点P作PN⊥y轴,QM⊥y轴,∵S△QDC:S△QDP=2:3,∴,∴,∵PN⊥y轴,QM⊥y轴,∴QM∥PN,∴△CQM∽△CPN,∴,∵PN=5,∴QM=2,∵QF⊥x轴于点F,交抛物线于点D,∴D点的横坐标为2,把x=2代入y=x2﹣2x﹣3=4﹣4﹣3=﹣3,∴D(2,﹣3),设直线PD的解析式为y=kx+b,∴,解得:,∴直线PD的解析式为y=5x﹣13;(3)如图2,过点P作PN⊥y轴,∵P(5,12),C(0,﹣3),∴CN=OC+ON=12+3=15,PN=5,∴,∵∠ABM=∠PCO,∴,如图2,若点M在x轴上方,∵OB=3,∴在y轴上取E(0,1),tan∠OBE=,设直线BE的解析式为y=mx+n,∴,解得:m=﹣,∴直线BE的解析式为y=﹣,∴,解得:x1=3,,∴M(﹣),如图3,当点M在x轴下方,同理取点D(0,﹣1),求得直线BD的解析式为y=x﹣1,∴,解得:,∴M(﹣,﹣),综合以上可得M点的坐标为(﹣或(﹣).13.解:(1)在y=x2+(m﹣2)x﹣2m(m>0)中,令x=0,得y=﹣2m,∴C(0,﹣2m),令y=0,得x2+(m﹣2)x﹣2m=0,解得:x1=2,x2=﹣m,∴A(﹣m,0),B(2,0),∴AB=2﹣(﹣m)=m+2,OC=2m∵S△ABC=3∴(m+2)•2m=3,解得:m1=1,m2=﹣3(不符合题意)∴m=1;∴抛物线C1:y=x2﹣x﹣2(2)如图2,设D(t,t2﹣t﹣2),CD交x轴于K,作DT⊥x轴于T,由(1)得:B(2,0),C(0,﹣2)∵当x轴恰好三等分△DBC的面积时,有S△BDK=S△BCD或S△BDK=S△BCD∴=或=,①当=时,=∴DT=OC∴t2﹣t﹣2=×2,解得:t1=,t2=,∵点D在第二象限,∴t<0∴t=,②当=时,=2∴DT=2OC∴t2﹣t﹣2=2×2,解得:t1=3,t2=﹣2,∵t<0∴t=﹣2综上所述,当x轴恰好三等分△DBC的面积时,点D的横坐标为或﹣2;(3)如图3,取WE中点T,过点T作TR⊥EF交EN于点R,连接WR,WN,由题意知:抛物线C1:y=x2﹣x﹣2=﹣,将抛物线C1向右平移,使新抛物线C2经过原点,∴新抛物线C2解析式为y=(x﹣)2﹣=x2﹣3x,对称轴为:直线x=,顶点E(,﹣),∴F(,4),EF=在y=x2﹣3x中,令y=4,则4=x2﹣3x,解得:x1=﹣1,x2=4∴G(﹣1,4),H(4,4)∴GH=5∵GM=NH=t,WF=,∴MF=NF=﹣t,WE=﹣=5,WT=TE=WE=,∵∠EFM=∠EFN=90°,WF=NF∴△MWF≌△NWF(SAS)∴∠MWF=∠NWF∵∠MWF=3∠FEN∴∠NWF=3∠FEN∵∠NWF=∠FEN+∠ENW∴∠ENW=2∠FEN∵WT=ET,TR⊥EF∴RW=RE∴∠FEN=∠EWR∴∠NRW=2∠FEN∴∠ENW=∠NRW∴RW=WN∴RE=WN由勾股定理得:EN2=EF2+NF2=+,WN2=WF2+NF2=+,∵△ERT∽△ENF∴=,即ER=EN∴ER2=EN2=[+],∴[+]=+,解得:t1=(不符合题意,舍去),t2=,故t=(秒).
/
本文档为【2021年中考数学复习《探索二次函数综合型压轴题解题技巧》分类训练二:与角的度量有关的压轴题(含答案)】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索