为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

衡水中学学年高一数学上学期期末试卷含解析精编版

2021-09-24 19页 doc 336KB 1阅读

用户头像

is_572621

暂无简介

举报
衡水中学学年高一数学上学期期末试卷含解析精编版MQSsystemofficeroom【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】衡水中学学年高一数学上学期期末试卷含解析精编版衡水中学高一(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在下列四个选项中,只有一个是符合题目要求的)1.若角α与角β终边相同,则一定有(  )A.α+β=180°B.α+β=0°C.α﹣β=k360°,k∈ZD.α+β=k360°,k∈Z2.已知集合M={x|≤1},N={x|y=lg(1﹣x)},则下列关系中正确的是(  )A.(?RM)∩N=...
衡水中学学年高一数学上学期期末试卷含解析精编版
MQSsystemofficeroom【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】衡水中学学年高一数学上学期期末试卷含解析精编版衡水中学高一(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在下列四个选项中,只有一个是符合题目要求的)1.若角α与角β终边相同,则一定有(  )A.α+β=180°B.α+β=0°C.α﹣β=k360°,k∈ZD.α+β=k360°,k∈Z2.已知集合M={x|≤1},N={x|y=lg(1﹣x)},则下列关系中正确的是(  )A.(?RM)∩N=?B.M∪N=RC.M?ND.(?RM)∪N=R3.设α是第二象限角,且cos=﹣,则是(  )A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.下列四个函数中,既是(0,)上的增函数,又是以π为周期的偶函数的是(  )A.y=tanxB.y=|sinx|C.y=cosxD.y=|cosx|5.已知tanα=﹣,且tan(α+β)=1,则tanβ的值为(  )A.﹣7B.7C.﹣D.6.将函数y=sin2x的图象向左平移个单位,向上平移1个单位,得到的函数解析式为(  )A.y=sin(2x+)+1B.y=sin(2x﹣)+1C.y=sin(2x+)+1D.y=sin(2x﹣)+17.函数y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的部分图象如图所示,则函数达式(  )A.y=﹣4sin(x﹣)B.y=4sin(x﹣)C.y=﹣4sin(x+)D.y=4sin(x+)8.在△ABC中,已知lgsinA﹣lgcosB﹣lgsinC=lg2,则三角形一定是(  )A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形9.已知函数f(x)=loga(x+b)的大致图象如图,其中a,b为常数,则函数g(x)=ax+b的大致图象是(  )A.B.C.D.10.若定义在区间D上的函数f(x)对于D上任意n个值x1,x2,…xn总满足≤f(),则称f(x)为D的凸函数,现已知f(x)=sinx在(0,π)上是凸函数,则三角形ABC中,sinA+sinB+sinC的最大值为(  )A.B.3C.D.311.已知O为△ABC内任意的一点,若对任意k∈R有|﹣k|≥||,则△ABC一定是(  )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定12.△ABC的内角A、B、C的对边分别为a,b,c,且a:b:c=:4:3,设=cosA,=sinA,又△ABC的面积为S,则=(  )A.SB.SC.SD.S二、填空题(本大题共4小题,每小题5分,共20分)13.设是奇函数,则a+b的取值范围是      .14.函数y=3sin(x+10°)+5sin(x+70°)的最大值为      .15.已知奇函f(x)数满足f(x+1)=﹣f(x),当x∈(0,1)时,f(x)=﹣2x,则f(log210)等于      .16.给出下列命题:①存在实数x,使得sinx+cosx=;②函数y=2sin(2x+)的图象关于点(,0)对称;③若函数f(x)=ksinx+cosx的图象关于点(,0)对称,则k=﹣1;④在平行四边形ABCD中,若|+|=|+|,则四边形ABCD的形状一定是矩形.则其中正确的序号是      (将正确的判断的序号都填上)三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.已知cos(α﹣)=,sin(+β)=,且β∈(0,),α∈(,),求sin(α+β)的值.18.设幂函数f(x)=(a﹣1)xk(a∈R,k∈Q)的图象过点.(1)求k,a的值;(2)若函数h(x)=﹣f(x)+2b+1﹣b在上的最大值为3,求实数b的值.19.锐角三角形ABC的三内角A、B、C所对边的长分别为a、b、c,设向量,且(1)求角B的大小;(2)若b=1,求a+c的取值范围.20.已知函数f(x)=2﹣2cos2(+x)﹣cos2x(1)求函数f(x)在x∈时的增区间;(2)求函数f(x)的对称轴;(3)若方程f(x)﹣k=0在x∈[,]上有解,求实数k的取值范围.21.如图,△ABC中,sin=,AB=2,点D在线段AC上,且AD=2DC,BD=.(Ⅰ)求:BC的长;(Ⅱ)求△DBC的面积.22.已知=(sinωx,cosωx),=(cosωx,cosωx)其中ω>0,若函数f(x)=﹣的图象上相邻两对称轴间得距离为2π(1)求方程f(x)﹣=0在区间内的解;(2)若=+,求sinx;(3)在△ABC中,a,b,c分别是角A,B,C的对边,且满足(2a﹣c)cosB=bcosC,求函数f(A)的值域.2015-2016学年河北省衡水中学高一(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在下列四个选项中,只有一个是符合题目要求的)1.若角α与角β终边相同,则一定有(  )A.α+β=180°B.α+β=0°C.α﹣β=k360°,k∈ZD.α+β=k360°,k∈Z【考点】终边相同的角.【专题】计算题;转化思想;定义法;三角函数的求值.【分析】根据终边相同的角的表示,直接判断即可.【解答】解:角α与角β终边相同,则α=β+k360°,k∈Z,故选:C.【点评】本题是基础题,考查终边相同的角的表示方法,定义题.2.已知集合M={x|≤1},N={x|y=lg(1﹣x)},则下列关系中正确的是(  )A.(?RM)∩N=?B.M∪N=RC.M?ND.(?RM)∪N=R【考点】交、并、补集的混合运算.【专题】集合.【分析】求出M中不等式的解集确定出M,求出N中x的范围确定出N,即可做出判断.【解答】解:M中的不等式,当x>0时,解得:x≥1;当x<0时,解得:x≤1,即x<0,∴M=(﹣∞,0)∪=0,可得(﹣2)×+φ=kπ,k∈z,再结合|φ|<,∴φ=,∴y=4sin(x+),故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,属于基础题.8.在△ABC中,已知lgsinA﹣lgcosB﹣lgsinC=lg2,则三角形一定是(  )A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形【考点】三角形的形状判断.【专题】计算题.【分析】由对数的运算性质可得sinA=2cosBsinC,利用三角形的内角和A=π﹣(B+C)及诱导公式及和差角公式可得B,C的关系,从而可判断三角形的形状【解答】解:由lgsinA﹣lgcosB﹣lgsinC=lg2可得∴sinA=2cosBsinC即sin(B+C)=2sinCcosB展开可得,sinBcosC+sinCcosB=2sinCcosB∴sinBcosC﹣sinCcosB=0∴sin(B﹣C)=0∴B=C∴△ABC为等腰三角形故选:A【点评】本题主要考查了对数的运算性质及三角函数的诱导公式、和差角公式的综合应用,属于中档试题.9.已知函数f(x)=loga(x+b)的大致图象如图,其中a,b为常数,则函数g(x)=ax+b的大致图象是(  )A.B.C.D.【考点】对数函数的图象与性质.【专题】压轴题.【分析】由函数f(x)=loga(x+b)的图象可求出a和b的范围,再进一步判断g(x)=ax+b的图象即可.【解答】解:由函数f(x)=loga(x+b)的图象为减函数可知0<a<1,f(x)=loga(x+b)的图象由f(x)=logax向左平移可知0<b<1,故函数g(x)=ax+b的大致图象是B故选B【点评】本题考查指对函数的图象问题,是基本题.10.若定义在区间D上的函数f(x)对于D上任意n个值x1,x2,…xn总满足≤f(),则称f(x)为D的凸函数,现已知f(x)=sinx在(0,π)上是凸函数,则三角形ABC中,sinA+sinB+sinC的最大值为(  )A.B.3C.D.3【考点】函数的值.【专题】转化思想;函数的性质及应用;三角函数的求值;不等式的解法及应用.【分析】由凸函数的性质可得:sinA+sinB+sinC≤3,即可得出.【解答】解:由凸函数的性质可得:sinA+sinB+sinC≤3==,当且仅当A=B=C=时取等号.∴sinA+sinB+sinC的最大值为.故选:C.【点评】本题考查了凸函数的性质、三角形内角和定理、不等式的性质,考查了推理能力与计算能力,属于中档题.11.已知O为△ABC内任意的一点,若对任意k∈R有|﹣k|≥||,则△ABC一定是(  )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定【考点】三角形的形状判断.【专题】计算题;数形结合.【分析】根据题意画出图形,在边BC上任取一点E,连接AE,根据已知不等式左边绝对值里的几何意义可得k=,再利用向量的减法运算法则化简,根据垂线段最短可得AC与EC垂直,进而确定出三角形为直角三角形.【解答】解:从几何图形考虑:|﹣k|≥||的几何意义表示:在BC上任取一点E,可得k=,∴|﹣k|=|﹣|=||≥||,又点E不论在任何位置都有不等式成立,∴由垂线段最短可得AC⊥EC,即∠C=90°,则△ABC一定是直角三角形.故选A【点评】此题考查了三角形形状的判断,涉及的知识有:平面向量的减法的三角形法则的应用,及平面几何中两点之间垂线段最短的应用,利用了数形结合的思想,要注意数学图形的应用可以简化基本运算.12.△ABC的内角A、B、C的对边分别为a,b,c,且a:b:c=:4:3,设=cosA,=sinA,又△ABC的面积为S,则=(  )A.SB.SC.SD.S【考点】余弦定理;正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】由题意,利用比例的性质及余弦定理可求cosA=,结合A的范围可求A的值,利用三角形面积公式可求三角形面积,由已知可求向量,,利用平面向量的数量积的运算化简即可得解.【解答】解:由题意可设:a=x,b=4x,c=3x,x>0,则由余弦定理可得:cosA===,结合A∈(0,π),可得A=.从而解得△ABC的面积为S=||||sinA=||||,可得:=cosA=,=sinA=,可得:=||||cosA=||×||×=||||=S,故选:D.【点评】本题主要考查了比例的性质,余弦定理,三角形面积公式,平面向量的数量积的运算在解三角形中的应用,考查了计算能力和转化思想,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.设是奇函数,则a+b的取值范围是  .【考点】奇函数.【专题】计算题.【分析】由题意和奇函数的定义f(﹣x)=﹣f(x)求出a的值,再由对数的真数大于零求出函数的定义域,则所给的区间应是定义域的子集,求出b的范围进而求出a+b的范围.【解答】解:∵定义在区间(﹣b,b)内的函数f(x)=是奇函数,∴任x∈(﹣b,b),f(﹣x)=﹣f(x),即=﹣,∴=,则有,即1﹣a2x2=1﹣4x2,解得a=±2,又∵a≠2,∴a=﹣2;则函数f(x)=,要使函数有意义,则>0,即(1+2x)(1﹣2x)>0解得:﹣<x<,即函数f(x)的定义域为:(﹣,),∴(﹣b,b)?(﹣,),∴0<b≤∴﹣2<a+b≤﹣,即所求的范围是;故答案为:.【点评】本题考查了奇函数的定义以及求对数函数的定义域,利用子集关系求出b的范围,考查了学生的运算能力和对定义的运用能力.14.函数y=3sin(x+10°)+5sin(x+70°)的最大值为 7 .【考点】三角函数的化简求值.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】分别把(x+10°)与(x+70°)化为(x+40°﹣30°)与(x+40°+30°),展开两角和与差的三角函数,整理后利用辅助角公式化积,则答案可求.【解答】解:y=3sin(x+10°)+5sin(x+70°)=3sin(x+40°﹣30°)+5sin(x+40°+30°)=3+5=[sin(x+40°)﹣cos(x+40°)]+[sin(x+40°)+cos(x+40°)]=4sin(x+40°)+cos(x+40°)=7[sin(x+40°)+cos(x+40°)]=7sin≤7.故答案为:7.【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,训练了辅助角公式的应用,是中档题.15.已知奇函f(x)数满足f(x+1)=﹣f(x),当x∈(0,1)时,f(x)=﹣2x,则f(log210)等于  .【考点】函数的值.【专题】函数思想;综合法;函数的性质及应用.【分析】利用奇偶性与条件得出f(x)的周期,根据函数奇偶性和周期计算.【解答】解:∵f(x+1)=﹣f(x),∴f(x+2)=﹣f(x+1)=f(x),∴函数f(x)是以2为周期的奇函数,∵3<log210<4,∴﹣1<﹣4+log210<0,∴0<4﹣log210<1.∴f(log210)=f(﹣4+log210)=﹣f(4﹣log210)=2==.故答案为:.【点评】本题考查了函数奇偶性与周期性的应用,找到函数周期是解题关键.16.给出下列命题:①存在实数x,使得sinx+cosx=;②函数y=2sin(2x+)的图象关于点(,0)对称;③若函数f(x)=ksinx+cosx的图象关于点(,0)对称,则k=﹣1;④在平行四边形ABCD中,若|+|=|+|,则四边形ABCD的形状一定是矩形.则其中正确的序号是 ③④ (将正确的判断的序号都填上)【考点】命题的真假判断与应用.【专题】探究型;简易逻辑;推理和证明.【分析】根据正弦型函数的图象和性质,可判断①②③,根据向量模的几何意义,可判断④.【解答】解:sinx+cosx=sin(x+)∈,?,故①为假命题;当x=时,2x+=,此时函数取最大值,故函数y=2sin(2x+)的图象关于直线x=对称,故②为假命题;若函数f(x)=ksinx+cosx的图象关于点(,0)对称,则,解得:k=﹣1,故③为真命题;在平行四边形ABCD中,若|+|=|+|,即平行四边形ABCD的两条对角线长度相等,则四边形ABCD的形状一定是矩形,故④为真命题;故答案为:③④【点评】本题考查的知识点是和差角(辅助角)公式,三角函数的对称性,向量的模,向量加法的三角形法则,难度中档.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.已知cos(α﹣)=,sin(+β)=,且β∈(0,),α∈(,),求sin(α+β)的值.【考点】两角和与差的正弦函数.【专题】计算题;整体思想;数学模型法;三角函数的图像与性质.【分析】由α、β的范围求出的范围,结合已知求出sin(α﹣)和cos(+β)的值,则sin(α+β)的值可求.【解答】解:∵α∈(,),∴,又cos(α﹣)=,∴,又∵β∈(0,),∴,sin(+β)=,∴,则sin(α+β)=sin=sin()cos()+cos()sin()=.【点评】本题考查两角和与差正弦、余弦,关键是“拆角、配角”思想方法的运用,是中档题.18.设幂函数f(x)=(a﹣1)xk(a∈R,k∈Q)的图象过点.(1)求k,a的值;(2)若函数h(x)=﹣f(x)+2b+1﹣b在上的最大值为3,求实数b的值.【考点】二次函数的性质;幂函数的单调性、奇偶性及其应用.【专题】分类讨论;换元法;函数的性质及应用.【分析】(1)根据幂函数的定义和性质进行求解即可求k,a的值;(2)若函数h(x)=﹣f(x)+2b+1﹣b在上的最大值为3,利用换元法转化一元二次函数,利用一元二次函数的性质即可求实数b的值.【解答】解:(1)设幂函数f(x)=(a﹣1)xk(a∈R,k∈Q)的图象过点.则a﹣1=1,即a=2,此时f(x)=xk,即=2,即=2,解得k=4;(2)∵a=2,k=4,∴f(x)=x4,则h(x)=﹣f(x)+2b+1﹣b=﹣x4+2bx2+1﹣b=﹣(x2﹣b)2+1﹣b+b2,设t=x2,则0≤t≤4,则函数等价为g(t)=﹣(t﹣b)2+1﹣b+b2,若b≤0,则函数g(t)在上单调递减,最大值为g(0)=1﹣b=3,即b=﹣2,满足条件.若0<b≤4,此时当t=b时,最大值为g(b)=1﹣b+b2=3,即b2﹣b﹣2=0,解得b=2或b=﹣1(舍).若b>4,则函数g(t)在上单调递增,最大值为g(4)=3b﹣15=3,即3b=18,b=6,满足条件综上b=﹣2或b=2或b=6.【点评】本题主要考查幂函数的定义和性质的应用以及一元二次函数的性质,利用换元法结合一元二次函数的性质是解决本题的关键.注意要进行分类讨论.19.锐角三角形ABC的三内角A、B、C所对边的长分别为a、b、c,设向量,且(1)求角B的大小;(2)若b=1,求a+c的取值范围.【考点】余弦定理的应用;平面向量共线(平行)的坐标表示;正弦定理.【专题】计算题;函数思想.【分析】(1)首先运用向量的平行的充要条件得出边a、b、c的一个等,通过变形为分式再结合余弦定理可得cosB=,结合B∈(0,π)得B=;(2)根据正弦定理将a+c变形为关于角A的一个三角函数式,再结合已知条件得出A的取值范围,在此基础上求关于A的函数的值域,即为a+c的取值范围.【解答】解:(1)∵∴(c﹣a)c﹣(b﹣a)(a+b)=0∴a2+c2﹣b2=ac即三角形ABC中由余弦定理,得cosB=,结合B∈(0,π)得B=(2)∵B=∴A+C=由题意三角形是锐角三角形,得∴再由正弦定理:且b=1∴a+c==∵∴∴2∴【点评】本题综合了向量共线与正、余弦定理知识,解决角的取值和边的取值范围等问题,考查了函数应用与等价转化的思想,属于中档题.20.已知函数f(x)=2﹣2cos2(+x)﹣cos2x(1)求函数f(x)在x∈时的增区间;(2)求函数f(x)的对称轴;(3)若方程f(x)﹣k=0在x∈[,]上有解,求实数k的取值范围.【考点】三角函数中的恒等变换应用;正弦函数的图象.【专题】计算题;函数思想;综合法;空间位置关系与距离.【分析】(1)由条件化简得到f(x)=1+2sin(2x﹣),求出f(x)的单调递增区间,得出结论.(2)根据对称轴的定义即可求出.(3)由题意可得函数f(x)的图象和直线y=k在x∈[,]上有交点,根据正弦函数的定义域和值域求出f(x)的值域,可得k的范围.【解答】解:(1)f(x)=2﹣2cos2(+x)﹣cos2x=1+2sin(2x﹣),由2x﹣∈,k∈Z,得x∈,k∈Z,可得函数f(x)在x∈时的增区间为,[,π],(2)由2x﹣=kπ+,k∈Z,∴得函数f(x)的对称轴为x=+,k∈Z,(3)∵x∈[,],∴≤2x﹣≤,即2≤1+2sin(2x﹣)≤3,要使方程f(x)﹣k=0在x∈[,]上有解,只有k∈.【点评】本题主要考查三角函数的化简,正弦函数的图象的对称性、单调性,正弦函数的定义域和值域,属于中档题.21.如图,△ABC中,sin=,AB=2,点D在线段AC上,且AD=2DC,BD=.(Ⅰ)求:BC的长;(Ⅱ)求△DBC的面积.【考点】解三角形.【专题】计算题.【分析】(Ⅰ)由sin的值,利用二倍角的余弦函数公式即可求出cos∠ABC的值,设BC=a,AC=3b,由AD=2DC得到AD=2b,DC=b,在三角形ABC中,利用余弦定理得到关于a与b的关系式,记作①,在三角形ABD和三角形DBC中,利用余弦定理分别表示出cos∠ADB和cos∠BDC,由于两角互补,得到cos∠ADB等于﹣cos∠BDC,两个关系式互为相反数,得到a与b的另一个关系式,记作②,①②联立即可求出a与b的值,即可得到BC的值;(Ⅱ)由角ABC的范围和cos∠ABC的值,利用同角三角函数间的基本关系求出sin∠ABC的值,由AB和BC的值,利用三角形的面积公式即可求出三角形ABC的面积,由AD=2DC,且三角形ABD和三角形BDC的高相等,得到三角形BDC的面积等于三角形ABC面积的,进而求出三角形BDC的面积.【解答】解:(Ⅰ)因为sin=,所以cos∠ABC=1﹣2=1﹣2×=.在△ABC中,设BC=a,AC=3b,由余弦定理可得:①在△ABD和△DBC中,由余弦定理可得:,.因为cos∠ADB=﹣cos∠BDC,所以有,所以3b2﹣a2=﹣6②由①②可得a=3,b=1,即BC=3.(Ⅱ)由(Ⅰ)知cos∠ABC=,则sin∠ABC==,又AB=2,BC=3,则△ABC的面积为ABBCsin∠ABC=,又因为AD=2DC,所以△DBC的面积为×2=.【点评】此题考查学生灵活运用同角三角函数间的基本关系及余弦定理化简求值,灵活运用三角形的面积公式化简求值,是一道中档题.22.已知=(sinωx,cosωx),=(cosωx,cosωx)其中ω>0,若函数f(x)=﹣的图象上相邻两对称轴间得距离为2π(1)求方程f(x)﹣=0在区间内的解;(2)若=+,求sinx;(3)在△ABC中,a,b,c分别是角A,B,C的对边,且满足(2a﹣c)cosB=bcosC,求函数f(A)的值域.【考点】平面向量数量积的运算;三角函数中的恒等变换应用;余弦定理.【专题】综合题;函数思想;整体思想;综合法;三角函数的图像与性质.【分析】(1)由数量积的坐标表示结合倍角公式、两角和的正弦化简f(x)的解析式,再由已知求得ω,最后求解三角方程得答案;(2)由=+,得,进一步得,转化为倍角的余弦求解;(3)由已知等式结合正弦定理求得B,由三角形内角和定理得到A的范围,则函数f(A)的值域可求.【解答】解:(1)=,∵函数f(x)的图象上相邻两对称轴间得距离为2π,∴,T=,得,∴f(x)=,由f(x)﹣=0,得=,即,∴,或.在区间内的解为;(2)若=+,则,得,∴cos(x+)=,得sinx=;(3)∵(2a﹣c)cosB=bcosC,∴由正弦定理得cosB=,则B=,∴A∈(0,),则,故函数f(A)的值域为(,].【点评】本题考查三角函数中的恒等变换应用,考查了平面向量的数量积运算,考查余弦定理在解三角形中的应用,是中档题.
/
本文档为【衡水中学学年高一数学上学期期末试卷含解析精编版】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索