为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

6万吨污水处理a2o工艺毕业设计

2012-02-14 39页 doc 912KB 51阅读

用户头像

is_753379

暂无简介

举报
6万吨污水处理a2o工艺毕业设计 目录 6第一章 设计概论 61.1 设计依据和任务 71.2 设计目的 8第二章 工艺流程的确定 8 2.1 工艺流程的比较 11 2.2 工艺流程的选择 13第三章 工艺流程设计计算 13 3.1 设计流量的计算 13 3.2 设备设计计算 13 3.2.1 格栅 14 3.2.2 提升泵房 15 3.2.3 沉砂池 16 3.2.4 初沉池 17 3.2.5 A2/O 23 3.2.6 二沉池 25 3.2.7 接触池和加氯间 26 3.2.8 污...
6万吨污水处理a2o工艺毕业设计
目录 6第一章 设计概论 61.1 设计依据和任务 71.2 设计目的 8第二章 工艺流程的确定 8 2.1 工艺流程的比较 11 2.2 工艺流程的选择 13第三章 工艺流程设计计算 13 3.1 设计流量的计算 13 3.2 设备设计计算 13 3.2.1 格栅 14 3.2.2 提升泵房 15 3.2.3 沉砂池 16 3.2.4 初沉池 17 3.2.5 A2/O 23 3.2.6 二沉池 25 3.2.7 接触池和加氯间 26 3.2.8 污泥处理构筑物的计算 29 3.3 构建筑物和设备一览表 31第四章 平面布置 31 4.1 污水处理厂平面布置 31 4.1.1平面布置原则 33 4.1.2具体平面布置 34 4.2污水处理厂高程布置 34 4.2.1主要任务 34 4.2.2高程布置原则 35 4.2.3高程布置结果 43第五章 参考文献 第一章 设计概论 1.1 设计依据和任务 设计原始资料: (一)排水体制:完全分流制 (二)污水量 1.规划区域设计人口 15万 人,居住建筑内设有室内给排水卫生设备和淋浴设备。 2.规划区域公共建筑污水量按城市生活污水量的30%计。 3.规划区域工业污水量为 30000 米3/平均日,其中包括工业企业内部生活淋浴污水。 4.城市混合污水变化系数:日变化系数K日= 1.1 ,总变化系数Kz= 1.36 。 (三)水质: 1.当地环保局监测工业废水的水质为: BOD5= 150 mg/L COD= 300 mg/L SS= 200 mg/L TN= 35 mg/L NH3-N= 28 mg/L TP= 5.0 mg/L PH=7~8 2.城市生活污水水质: COD= 250mg/L NH3-N= 28 mg/L TN= 35 mg/L TP= 3.0 mg/L 3.混合污水: (1)重金属及有毒物质:微量,对生化处理无不良影响; (2)大肠杆菌数:超标; (3)冬季平均污水水温16℃,夏季平均污水水温28℃ (四)处理厂处理程度及污水回用要求 项目建设的用地位于惠阳区淡水镇东门附近,淡水河与淡澳河汇接处东南角,出水水质处理程度为一级B标准。 污水处理厂出水水质满足《城镇污水处理厂污染物排放标准》(GB18918-2002)中一级标准中的B标准要求。 因此确定本污水厂出水水质控制为: CODCr≤60mg/L SS≤20mg/L BOD5≤20mg/L TN=20mg/L NH3-N=8(15)mg/L TP≤1mg/L 城市污水经处理后,50%作为城市景观环境用水,用于附近公园水源水。出水水质应执行《景观环境用水的再生水水质指标(GB/T 18921-2002)》要求。 (五)气象资料 1、气温:年均气温在21.1℃至22.2℃之间,1月平均气温在10℃以上,7月平均气温在29.5℃左右,无霜期每年长达360天左右。 2、降雨:惠阳城区雨量充沛、雨季长,年均降雨量在1545mm至1989mm之间。年际降雨变化率普遍较大,降雨量季节差异明显,4~9月份是降雨集中期,6月份降水量最多,且降雨强度大、暴雨多,易造成洪涝灾害。 3、湿度:年平均相对湿度78%。 4、蒸发量:年蒸发量为:1406.3~1779.2mm,夏秋蒸发量大于冬春,7月份蒸发量最大,2月最小。总体降水量大于蒸发量。 5、日照:太阳高度角大,年均日照时间为1964小时,太阳辐射能量丰富,年积温可达7950摄氏度,热量资源可供农作物一年三熟之需。 6、气温:年平均18.2℃,夏季平均28℃,冬季平均6℃ 7、常年主导风向:全年主导风向东北为最,东南次之 (六)水体资料 境内最大的河流为淡水河,另有一些较小的河流。淡水河由西至东北横贯城区、淡澳河由东北至东南流经惠阳区,淡水、淡澳两河在淡水河老虎沥断面处交汇,淡澳河为淡水河之分洪河。淡水河发源于深圳市梧桐山,属西枝江一级支流。流域集雨面积1308平方公里,干流河长95公里,河口在惠城区紫溪注入西枝江。淡水河老虎沥断面控制流域面积约740平方公里。在淡水河右岸、老虎沥上游有淡澳分洪河道,该河道全长约14公里,其中人工河道约9公里,河口在澳头注入南海大亚湾。排放水体五十年一遇水位高程为21.28米。 (七)工程地质资料 1、地基承载力特征值 130 KPa。 2、设计地震烈度6度。 3、土层构成:土质一般为砂质粘土。 (八) 厂区资料 厂区附近无大片农田,地势平坦,厂区内开阔利于远景规模扩大,地面标高为22.00m。 (九)污水处理厂进水干管数据 污水管进厂管内底标高16.5m,管径 mm 充满度 (十)进行污水处理厂运行成本。 五、设计任务安排 设计任务安排与资料查阅 1周 毕业实习 3周 设计计算 5周 绘图 5周 计算说明整理 1周 准备毕业答辩 1周 六、参考资料 1、执行的主要设计规范和标准 (1) 中华人民共和国国家标准,地表水环境质量标准 (GB3838-2002) (2) 中华人民共和国国家标准,城镇污水处理厂污染物排放标准(GB18918-2002) (3) 中华人民共和国国家标准,污水综合排放标准(GB8978-1996) (4) 中华人民共和国城镇建设行业标准,污水排入城市下水道水质标准(CJ3082-1999) (5) 中华人民共和国城镇建设行业标准,城镇污水处理厂附属建筑和附属设备设计标准(CJJ31-89) (6) 中华人民共和国城镇建设行业标准,城市污水处理厂污水污泥排放标准(CJ3025-93) (7) 中华人民共和国国家标准,给水排水制图标准(GB/T50106-2001) (8) 中华人民共和国国家标准,给水排水设计基本术语标准(GBJ125-89) (9) 中华人民共和国国家标准, 室外排水设计规范(GB50014-2006,2006年版) 2、主要参考书目 (1) 中国市政工程西南设计研究院主编.给水排水设计手册,第1册,常用资料,北京:中国建筑工业出版社,2000 (2) 北京市市政工程设计研究院主编.给水排水设计手册,第5册,城镇排水,北京:中国建筑工业出版社,2004 (3) 上海市政工程设计研究院主编.给水排水设计手册,第9册,专用机械,北京:中国建筑工业出版社,2000 (4) 中国市政工程西北设计研究院主编.给水排水设计手册,第11册,常用设备,北京:中国建筑工业出版社,2002 (5) 中国市政工程华北设计研究院主编.给水排水设计手册,第12册,器材与装置,北京:中国建筑工业出版社,2001 (6) 于尔捷,张杰主编. 给水排水工程快速设计手册(2.排水工程). 北京:中国建筑工业出版社. 1996 (7) 张自杰主编.废水处理理论与设计,北京:中国建筑工业出版社,2003 (8张智等.给水排水工程专业毕业设计指南,北京:中国水利水电出版社,2000 (9)周律主编.中小城市污水处理投资决策与工艺技术,北京:化学工业出版社,2002 (10)国家环境保护总局科技标准司,城市污水处理及污染防治技术指南,北京:中国环境科学出版社,2001 (11)张统等.污水处理工艺及工程设计,北京:中国建筑工业出版社,2002 (12)韩洪军主编.污水处理构筑物设计与计算,哈尔滨工业大学出版社,2002 (13)金兆丰,徐竟成主编.城市污水回用技术手册,北京:化学工业出版社,2004 (14)史惠祥主编.实用水处理设备手册,北京:化学工业出版社,2000 第二章 工艺流程的比较及选择 2.1 工艺流程的比较 根据《城市污水处理及污染防治技术政策》(建城[2000]124号),“在对氮、磷污染物有控制要求的地区,日处理能力在10万立方米以上的污水处理设施,一般选用A/O法、A/A/O法等技术,也可审慎选用其他的同效技术。日处理能力在10万立方米以下的污水处理设施,除采用A/O法、A/A/O法外,也可选用具有除磷脱氮效果的氧化沟法、SBR法、水解好氧法和生物滤池法等。” 以下是三种工艺流程的比较 (1)UCT工艺 A2/O法即厌氧、缺氧、好氧活性污泥法。污水在流经三个不同功能分区的过程中,在不同微生物菌群作用下,使污水中的有机物、氮和磷得到去除。 该工艺在系统上是最简单的同步除磷脱氮工艺,在厌氧(缺氧)、好氧交替运行的条件下可抑制丝状菌繁殖,克服污泥膨胀,SVI值一般小于100,有利于处理后污水与污泥的分离,运行中在厌氧和缺氧段内只需轻缓搅拌,运行费用低。由于厌氧、缺氧和好氧三个区严格分开,有利于不同微生物菌群的繁殖生长,因此脱氮除磷效果非常好,但对BOD5/N比值较敏感。为了解决回流污泥中过多的硝酸盐对厌氧释磷的影响,产生了UCT工艺,流程简图见下图。 与A2/O法相比,UCT工艺不同之处在于污泥先回流至缺氧池,而不是厌氧池,再将缺氧池部分混合液回流至厌氧池,从而减少了回流污泥中硝酸盐对厌氧释磷的影响。 UCT生物池由厌氧区、缺氧区、好氧区三个不同的功能区组合在一起的矩形池,中间由公用隔墙□隔成各个处理单元。利用不同的功能,进行生物脱氮除磷,同时去除BOD5。聚磷菌具有在好氧条件下过量摄取磷,在厌氧条件下释放磷的功能,生物除磷技术就是利用聚磷菌这一功能而开创的。利用厌氧、缺氧和好氧区的不同功能,进行生物脱氮除磷,同时去除BOD5。 好氧区采用微孔曝气。在厌氧反应区和好氧反应区分别设有排水坑和放空管,放空管上设有手动闸阀。 1.厌氧区 从沉砂池来的污水直接进入厌氧区,同步进入的缺氧池回流的混合液。在厌氧条件下,意味着没有游离态的氧以及硝酸盐,在此情况下,微生物中聚磷菌成为优势菌种,它会优先获得碳源并充分释放出体内的磷酸盐,并利用进水中的有机物快速增殖。此区主要功能是释放磷,同时部分有机物进行氨化。 厌氧区内的回流污泥通过共公隔墙上的孔口进入缺氧区,每个厌氧区设有4台水下推进器,使污泥处于悬浮状态。缺氧区至厌氧区的混合液回流比150%。 每座厌氧区都应能够通过PLC或现场控制水下搅拌器的开/停。 2.缺氧区 利用氮的循环原理在缺氧条件下,由反硝化菌作用,并用碳源提供能量,使硝酸盐氮变成氮气从污水中逸出,此阶段为缺氧反硝化。此区首要功能是脱氮,硝态氮通过内回流由好氧区送来。二沉池的活性污泥回流到缺氧池的前端。 厌氧区内的混合液通过厌氧区和缺氧区之间墙壁上的孔口进入缺氧区,好氧区内200%的混合液通过安装在缺氧区和好氧区之间共公隔墙上的2台国外进口螺旋桨循环泵(PP泵),进入缺氧区,每个缺氧区设有4台水下推进器,使污泥处于悬浮状态。 3.好氧区 好氧区内通过曝气系统使其成为一个完全混合系统,利用污水中的活性污泥去除碳源污染物,污泥中有过剩的磷,而污水中的氨氮,在好氧条件下由消化菌作用变成亚硝酸盐氮。此阶段为好氧硝化,这个单元是多功能的,去除碳源污染物,硝化和吸收磷等项反应都在此进行。 好氧区底部均安装有微孔曝气扩散器,采用硅橡胶膜微孔曝气系统,具有较好的弹性、抗腐蚀性、抗拉性和抗机械磨损能力可防止污泥堵塞,的出水通过公共隔墙底部的孔口进入主反应区。 好氧区溶解氧通过调节鼓风机的送风量,控制在2.0mg/L左右。当溶解氧浓度变化超出范围时,首先由溶解氧测定仪发出信号,启动供气管上的电动调节阀,气量的变化使管网压力发生变化,然后由压力传感器将信号传送到鼓风机的进风叶片启动器,调节导向叶片的角度,使供气管网压力回到最佳状态。 内设有DO计,温度计、pH计和污泥浓度计。主供气管上设有空气调节蝶阀,能根据监测DO的大小通过PLC控制调节蝶阀的开度大小或启闭。主供气管上还装有流量计。每个主反应区的空气立管上设有电动空气蝶阀,用于切换。 UCT流程简图 (2)SBR工艺 SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。 与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。它的主要特征是在运行上的有序和间歇操作,进水、反应、沉淀、排水及空载5个工序,依次在同一SBR反应池中周期运行, SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统,流程简单。 图1.1 SBR工艺流程简图 SBR工艺的一个完整的操作过程,亦即每个间歇反应器在处理废水时的操作过程包括五个阶段:①进水期;②反应期;③沉淀期;④排水排泥期;⑤闲置期。SBR的运行工况以间歇操作为特征。五个工序都在一个设有曝气或搅拌装置的反应器中依次进行,所以省去了传统活性污泥法中的沉淀池和污泥回流设施。在处理过程中,周而复始地循环这种操作周期,以实现污水处理的目的[3]。 SBR工艺的优点如下: 工艺流程简单,运转灵活,基建费用低; 处理效果好,出水可靠; 具有较好的脱氮除磷效果; 污泥沉降性能良好; 对水质水量变化的适应性强。 SBR工艺的缺点如下: ① 反应器容积利用率低; ② 水头损失大; ③ 不连续的出水,要求后续构筑物容积较大,有足够的接受能力; ④ 峰值需氧量高; ⑤ 设备利用率低; ⑥ 管理人员技术素质要求较高。 对于小型污水处理厂而言,SBR是一种系统简单、投资节省、处理效果较好的工艺,但是它用于大型污水处理厂就不太适合了。因为大型污水处理厂的进水量大,需要设计多个SBR反应池进行并联运行,个数增多,必定使操作管理变得复杂,运行费用也会提高。而且由于SBR法是一种设备利用率低的处理工艺,用于大型污水处理厂时,基建费用也高 (3)氧化沟工艺 氧化沟利用连续环式反应池(Cintinuous Loop Reator,简称CLR)作生物反应池,混合液在该反应池中一条闭合曝气渠道进行连续循环,氧化沟通常在延时曝气条件下使用。氧化沟使用一种带方向控制的曝气和搅动装置,向反应池中的物质传递水平速度,从而使被搅动的液体在闭合式渠道中循环。 氧化沟一般由沟体、曝气设备、进出水装置、导流和混合设备组成,沟体的平面形状一般呈环形,也可以是长方形、L形、圆形或其他形状,沟端面形状多为矩形和梯形。 氧化沟法由于具有较长的水力停留时间,较低的有机负荷和较长的污泥龄。因此相比传统活性污泥法,可以省略调节池,初沉池,污泥消化池,有的还可以省略二沉池。氧化沟能保证较好的处理效果,这主要是因为巧妙结合了CLR形式和曝气装置特定的定位布置,是式氧化沟具有独特水力学特征和工作特性: 氧化沟又称循环混合式活性污泥法。一般采用延时曝气,同时具有去除BOD5 和脱氮的功能,它采用机械曝气,一般不设初沉池和污泥消化池。氧化沟处理效率为:BOD5 和SS均为95%以上,总氮为70%~80%。氧化沟独特的水流状态,有利于活性污泥的生物凝聚作用,而且可以将其区分为富氧区、缺氧区,用以进行硝化和反硝化,取得脱氮的效应。常用的氧化沟系统由卡罗塞氧化沟、交替工作氧化沟及二沉池交替工作氧化沟。氧化沟工艺流程见图1.2: 图1.2 氧化沟工艺流程简图 氧化沟可分为连续工作式、交替工作式和半交替工作式。连续工作式氧化沟如帕斯韦尔(Pasveer)氧化沟、卡鲁赛尔(Carrousel)氧化沟。 普通卡鲁赛尔氧化沟处理污水的原理如下:氧化沟中的污水直接与回流污泥一起进入氧化沟系统。在充分掺氧的条件下,微生物得到足够的溶解氧来去除BOD;同时,氨也被氧化成硝酸盐和亚硝酸盐,此时,混合液处于有氧状态。在曝气机下游,水流由曝气区的湍流状态变成之后的平流状态,水流维持在最小流速,保证活性污泥处于悬浮状态。微生物的氧化过程消耗了水中溶解氧,直到DO值降为零,混合液呈缺氧状态。经过缺氧区的反硝化作用,混合液进入有氧区,完成一次循环。该系统中,BOD降解是一个连续过程,硝化作用和反硝化作用发生在一个池子内。由于结构的限制,这种氧化沟虽然可以有效去除BOD,但脱氮除磷的能力有限。 氧化沟的主要优点如下: 1: 氧化沟结合推流和完全混合的特点,有力于克服短流和提高缓冲能力,通常在氧化沟曝气区上游安排入流,在入流点的再上游点安排出流。入流通过曝气区在循环中很好的被混合和分散,混合液再次围绕CLR继续循环。这样,氧化沟在短期内(如一个循环)呈推流状态,而在长期内(如多次循环)又呈混合状态。这两者的结合,即使入流至少经历一个循环而基本杜绝短流,又可以提供很大的稀释倍数而提高了缓冲能力。同时为了防止污泥沉积,必须保证沟内足够的流速(一般平均流速大于0.3m/s),而污水在沟内的停留时间又较长,这就要求沟内由较大的循环流量(一般是污水进水流量的数倍乃至数十倍),进入沟内污水立即被大量的循环液所混合稀释,因此氧化沟系统具有很强的耐冲击负荷能力,对不易降解的有机物也有较好的处理能力。 2: 氧化沟具有明显的溶解氧浓度梯度,特别适用于硝化-反硝化生物处理工艺。 3: 氧化沟沟内功率密度的不均匀配备,有利于氧的传质,液体混合和污泥絮凝。 4: 氧化沟的整体功率密度较低,可节约能源。氧化沟的混合液一旦被加速到沟中的平均流速,对于维持循环仅需克服沿程和弯道的水头损失,因而氧化沟可比其他系统以低得多的整体功率密度来维持混合液流动和活性污泥悬浮状态。据国外的一些报道,氧化沟比常规的活性污泥法能耗降低20%-30%。 氧化沟的缺点如下: 1 单纯的氧化沟工艺的除磷效率很低,需要增设厌氧段才能达到一定的除磷效率。 2 虽然污泥产量少,耐冲击负荷,但是这是建立在该工艺很低的污泥负荷上的,且要求处理构筑物内水深要浅,而这又决定了在处理相同水质、水量污水的情况下,该工艺是最占土地的,也即增加了基建费用。 3 污泥膨胀问题 2.12工艺流程的选择 本项目污水处理的特点为:①污水以有机污染为主,BOD/COD =0.5,可生化性较好,重金属及其他难以生物降解的有毒有害污染物一般不超标;②污水中主要污染物指标BOD、COD、SS值为典型城市污水值。 针对以上特点,以及出水要求,现有城市污水处理技术的特点,以采用生化处理最为经济。由于将来可能要求出水回用,处理工艺尚应硝化,考虑到NH3-N出水浓度排放要求较低,不必完全脱氮。根据国内外已运行的中、小型污水处理厂的调查,要达到确定的治理目标,可采用“A2/O活性污泥法”的改进工艺UCT法。 第三章 工艺流程设计计算 3、1污水量的确定 1.规划区域设计人口 15万 人,居住建筑内设有室内给排水卫生设备和淋浴设备。 2.规划区域公共建筑污水量按城市生活污水量的30%计。 3.规划区域工业污水量为 30000 米3/平均日,其中包括工业企业内部生活淋浴污水。 4.城市混合污水变化系数:日变化系数K日= 1.1 ,总变化系数Kz= 1.36 5、生活污水按人均生活污水排放量140L/d.人 3.2污水量的计算 1、综合生活污水 Q1=1500000 1.1 0.14=23100m3 2、工业污水Q2=30000m3 公共建筑污水量Q3=Q1 30%=6930m3 4、进水口混合污水量 Q=Q1+Q2+Q3=60000m3 平均流量: =60000t/d≈60000m3/d=2500 m3/h=0.694 m3/s 总变化系数 Kz=1.36 设计流量 : EMBED Equation.DSMT4 1.36×60000=78600 m3/d=3275 m3/h=0.9097 m3/s 3.2 设备设计计算 3.2.1 格栅 格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道上、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物。一般情况下,分粗细两道格栅。 格栅型号:链条式机械格栅 设计流量 栅前流速 ,过栅流速 栅前部分长度0.5m,格栅倾角 ,单位栅渣量 确定栅前水深 则 栅前间隙数 (取58) 栅条有效宽度 设水渠渐宽部分展开角 则进水渠渐宽部分长度 格栅与出水渠道渐宽部分长度 过栅水头损失 ,取栅前渠道超高部分 则栅前槽总高度 栅后管总高度 格栅总长度 = =2.65m (8) 每日栅渣量 宜采用机械清渣 3.2.2 提升泵房 1、水泵选择 设计水量78600m3/d,选择用4台潜污泵(3用1备) 所需扬程6.0m 选择350QZ-100型轴流式潜水电泵 扬程/m 流量/(m3/h) 转速/(r/min) 轴功率/kw 叶轮直径/mm 效率/% 7.22 1210 1450 29.9 300 79.5 2、集水池 (1)、容积 按一台泵最大流量时6min的出流量设计,则集水池的有效容积 (2)、面积 取有效水深 ,则面积 (3)、泵位及安装 潜水电泵直接置于集水池内,电泵检修采用移动吊架 3.2.3 沉砂池 沉砂池的作用是从污水中去除砂子、煤渣等比重较大的颗粒,保证后续处理构筑物的正常运行。 选型:平流式沉砂池 设计参数: 设计流量 ,设计水力停留时间t=40s 水平流速v=0.25m/s 长度: 水流断面面积: 池总宽度: ,有效水深 沉砂斗容积: T=2d,X=30m3/106m3 每个沉砂斗得容积( ) 设每一分格有2格沉砂斗,则 (6) 沉砂斗各部分尺寸: 设贮砂斗底宽b1=0.5m;斗壁与水平面的倾角60°,贮砂斗高h’3=1.0m (7) 贮砂斗容积:(V1) > 符合要求 (8) 沉砂室高度:(h3) 设采用重力排砂,池底坡度i=6%,坡向砂斗,则 池总高度:(H) 设超高 , (10) 核算最小流速 3.2.4 初沉池 初沉池的作用室对污水仲密度大的固体悬浮物进行沉淀分离。 选型:平流式沉淀池 设计参数: (1) 池子总面积A,表明负荷取 (2) 沉淀部分有效水深h2 (3) 沉淀部分有效容积 (4) 池长L (5) 池子总宽度B (6) 池子个数,宽度取5m (7) 校核长宽比 (符合要求) (8) 污泥部分所需总容积V 已知进水SS浓度 =200mg/L 初沉池效率设计50%,则出水SS浓度 设污泥含水率97%,两次排泥时间间隔T=2d,污泥容重 (9) 每格池污泥所需容积 (10) 污泥斗容积V1, (11) 污泥斗以上梯形部分污泥容积V2 (12) 污泥斗和梯形部分容积 (13) 沉淀池总高度H 3.2.5 A2/O 设计参数 N=0.15KgBOD5/(kgMLSS.d) 1、设计最大流量 Q=60000m3/d 2、设计进水水质 COD=300mg/L;BOD5(S0)=150mg/L;SS=200mg/L;NH3-N=28mg/L 4、设计计算,采用A2/O生物除磷工艺 (1) BOD5污泥负荷N=0.15KgBOD5/(kgMLSS.d) (2) 回流污泥浓度XR=6 000mg/L (3) 污泥回流比R=100% (4) 混合液悬浮固体浓度 (5) 反应池容积V (6) 反应池总水力停留时间 (7) 各段水力停留时间和容积 厌氧:缺氧:好氧=1:1:3 厌氧池水力停留时间 ,池容 缺氧池水力停留时间 ,池容 好氧池水力停留时间 ,池容 (8) 反应池主要尺寸 反应池总容积 设反应池2组,单组池容 有效水深h=5.0m 单组有效面积 采用5廊道式推流式反应池,廊道宽 单组反应池长度 校核: (满足 ) (满足 ) 取超高为1.0m,则反应池总高 (9) 反应池进、出水系统计算 (1)进水管 单组反应池进水管设计流量 管道流速 管道过水断面面积 管径 取出水管管径DN800mm 校核管道流速 (2)回流污泥渠道。单组反应池回流污泥渠道设计流量QR 渠道流速 取回流污泥管管径DN800mm (3)进水井 反应池进水孔尺寸: 进水孔过流量: 孔口流速 孔口过水断面积 孔口尺寸取 进水竖井平面尺寸 (4)出水堰及出水竖井。按矩形堰流量公式 式中 ——堰宽, H——堰上水头高,m 出水孔过流量 孔口流速 孔口过水断面积 孔口尺寸取 进水竖井平面尺寸 (5)出水管。单组反应池出水管设计流量 管道流速 管道过水断面积 管径 取出水管管径DN1100mm 校核管道流速 (10) 曝气系统设计计算 (1)设计需氧量 其中:第一项为合成污泥需要量,第二项为活性污泥内源呼吸需要量,第三项为消化污泥需氧量,第四项为反硝化污泥需氧量 (2)的氨氮中被氧化后有90%参与了反硝化过程,有10%氮仍以 存在 (3)用于还原的 仍以 存在的 = (4)取 = + + =4809.6+5502+1620-414=11517.6 所以总需氧量为11517.6 =479.9 最大需要量与平均需氧量之比为1.4,则 去除1kgBOD5的需氧量 (5)标准需氧量 采用鼓风曝气,微孔曝气器。曝气器敷设于池底,距池底0.2m,淹没深度3.8m,氧转移效率EA=20%,计算温度T=25℃。 相应的 最大标准需氧量 最大时的供气量 (6)所需空气压力p 式中 曝气器数量计算(以单组反应池计算) 按供氧能力计算所需曝气器数量。 供风管道计算 供风干管道采用环状布置。 流量 流速 管径 取干管管径为DN600mm,单侧供气(向单侧廊道供气)支管 流速 管径 取支管管径为DN400mm 双侧供气 流速 管径 取支管管径DN500mm (11) 厌氧池设备选择(以单组反应池计算) 厌氧池设导流墙,将厌氧池分成3格。每格内设潜水搅拌机1台,所需功率按 池容计算。 厌氧池有效容积. 混合全池污水所需功率为 污泥回流设备 污泥回流比 回流污泥量 设混合液回流泵房2座,每座泵房内设3台潜污泵(2用1备) 单泵流量 水泵扬程根据竖向流程确定。 (12) 混合液回流设备 (1)混合液回流比 混合液回流量 设混合液回流泵房2座,每座泵房内设3台潜污泵(2用1备) 单泵流量 (2)混合液回流管。 混合液回流管设计 泵房进水管设计流速采用 管道过水断面积 取泵房进水管管径DN1000mm 校核管道流速: (3)泵房压力出水总管设计流量 设计流速采用 管道过水断面积 管径 取泵房压力出水管管径DN900mm 3.2.6 二沉池 设计参数 为了使沉淀池内水流更稳、进出水配水更均匀、存排泥更方便,常采用圆形辐流式二沉池。二沉池为中心进水,周边出水,幅流式沉淀池,共2座。二沉池面积按表面负荷法计算,水力停留时间t=2.5h,表面负荷为1.5m3/(m2•h-1)。 池体实际计算 (1)二沉池表面面积 (2)池体有效水深 (3)混合液的浓度 ,回流污泥浓度为 为保证污泥回流浓度,二沉池的存泥时间不宜小于2h, 二沉池污泥区所需存泥容积 采用机械刮吸泥机连续排泥,设泥斗的高度H2为0.5m。 (4)二沉池缓冲区高度H3=0.5m,超高为H4=0.3m,沉淀池坡度落差H5=0.63m 二沉池边总高度 (5) 校核径深比 二沉池直径与水深比为 进水系统计算 (1)进水管计算 单池设计污水流量 进水管设计流量 选取管径DN1200mm (2)进水竖井 进水竖井采用D2=1.5m,流速为0.1~0.2m/s 出水口尺寸0.5×1.5m²,共6个,沿井壁均匀分布。 出水口流速 (3)稳流筒计算 取筒中流速 稳流筒过流面积 稳流筒直径 (4)出水部分设计 单池设计流量 环形集水槽内流量 采用周边集水槽,单侧进水,每池只有一个总出水口,安全系数k取1.2 集水槽宽度 ,取b=0.5米 集水槽起点水深 集水槽终点水深 槽深取0.7m,采用双侧集水环形集水槽计算,取槽宽b=0.8m,槽中流速 设计取环形槽内水深为0.6m,集水槽总高为0.6+0.3(超高)=0.9m,采用90°三角堰。 出水溢流堰的设计 采用出水三角堰(90°),堰上水头(三角口底部至上游水面的高度)H1=0.05m(H2O)。 每个三角堰的流量 三角堰个数 三角堰中心距(单侧进水) (4) 排泥部分设计 (1)单池污泥量 总污泥量为回流污泥量加剩余污泥量 回流污泥量 剩余污泥量 (2)集泥槽沿整个池径为两边集泥 设计泥量为 集泥槽宽 ,取b=0.5m 起点泥深 终点泥深 3.2.7 接触池和加氯间 采用隔板式接触反应池 设计参数 设计流量: 水力停留时间: 设计投氯量: 平均水深: 隔板间隔: 设计计算 (1)每座接触池容积: 表面积 隔板数采用2个 则廊道总宽为 接触池长度 长宽比 实际消毒池容积 实际水深 径校核均满足有效停留时间 (2)加氯量的计算: 设计最大加氯量为 选用3台REGAL-2100型负压加氯机(2用1备),单台加氯量10kg/h 3.2.8 污泥处理构筑物的计算 (1)回流污泥泵房 二沉池活性污泥由吸泥管吸入,由池中心落泥管及排泥管排入池外套筒阀井中,然后由管道输送至回流泵房,其他污泥由刮泥板刮入污泥井中,再由排泥管排入剩余污泥泵房集泥井中。 设计回流污泥量为QR=RQ,污泥回流比R=50%-100%。按最大考虑。 回流污泥泵设计选型: (1)扬程: 设二沉池水面相对地面标高0.5m.套筒阀井泥面相对标高0.3m,回流污泥泵房泥面相对标高-0.6m,生物处理构筑物水面相对标高1.5m,则污泥回流泵所需提升高度2.1m (2)流量: 泵房回流污泥量 (3)选泵: 选用LXB-900螺旋泵6台(5用1备),单台提升能力为480m3/h,提升高度为2.0m-2.5m,电动机转速n=48r/min,功率N=55kW (2)剩余污泥泵房 (1)设计说明 二沉池产生的剩余活性污泥及其它处理构筑物排出污泥由地下管道自 流入集泥井,剩余污泥泵(地下式)将其提升至污泥浓缩池中。 (2)选泵:选用1PN污泥泵Q7.2-16 ,H=12-14m,N3kW (3)污泥浓缩池 采用两座幅流式圆形重力连续式污泥浓缩池,用带栅条的刮泥机刮泥,采用静压排泥,剩余污泥泵房将污泥送至浓缩池。 设计参数 设计流量 进泥浓度:6g/L 初层池污泥含水率95% 污泥含水率99%,浓缩后含水率97% 贮泥池出口污泥含水率92% 浓缩时间T=20h,浓缩池固体通量 浓缩池的尺寸 面积: 直径: 高度:工作高度 取超高 ,缓冲层高度 总高度 浓缩后污泥流量 (4)贮泥池 污泥量 浓缩后的污泥量853.3 ,含水率97% 初沉污泥量350 ,含水率95% 污泥量 贮泥池的容积 设贮泥时间为4h,则贮泥池的容积 贮泥池尺寸 取池深H=4m,则贮泥池面积 设计圆形贮泥池一座,直径D=5.4m. 搅拌设备 为防止污泥在贮泥池终沉淀,贮泥池内设置搅拌设备。设置液下搅拌机1台,功率10kw。 (5) 脱水间 压滤机选型:过滤流量 设计2台压滤机,每台每天工作7h,则每台压滤机处理量 ,选择DY15型带式压滤脱水机 加药量计算 设计流量 絮凝剂PAM 投加量,以干固体的0.4%计 3.3 构建筑物和设备一览表 序号 名称 规格 数量 设计参数 主要设备 1 格栅 L×B = 2.65m×1.73m 1座 设计流量 =60000m3/d 栅条间隙 栅前水深 过栅流速 HG-1200回旋式机械格栅1套 超声波水位计2套 螺旋压榨机(Φ300)1台 螺纹输送机(Φ300)1台 钢闸门(2.0X1.7m)4扇 手动启闭机(5t)4台 2 进水泵房 L × B = 20m× 13m 1座 设计流量Q=3215 m3/h 单泵流量Q= 350m3/h 设计扬程H=6mH2O 选泵扬程H= 7.22mH2O 1mH2O=9800 Pa 螺旋泵(Φ1500mm,N60kw)5台,4用1备 钢闸门(2.0mX2.0m)5扇 手动启闭机(5t)5台 手动单梁悬挂式起重机(2t,Lk4m)1台 3 平流沉砂池 L×B×H= 10m×4.6m×2.3m 1座 设计流量 Q=3275 m3/h 水平流速v= 0.25 m/s 有效水深H1= 0.8m 停留时间T= 40S 砂水分离器(Φ0.5m)2台 4 平流式初沉池 L×B×H= 21.6m×75.8m×8m 13座 设计流量Q= 3275 m3/h 表面负荷q= 2.0m3/(m2·h) 停留时间T= 2.0 d 全桥式刮吸泥机(桥长40m,线速度3m/min, N0.55X2kW) 2台 撇渣斗4个 5 曝气池 L×B×H = 70m×55m×4.5m 1座 BOD为150,经初沉池处理,降低25% 罗茨鼓风机(TSO-150,Qa15.9m3/min, P19.6kPa,N11kw)3台 消声器6个 6 辐流式二沉池 D×H= Φ32.6m×3.75m 2座 设计流量Q= 2500m3/h 表面负荷q= 1.5m3/(m2·h) 固体负荷 停留时间T= 2.5 h 池边水深H1=2 m 全桥式刮吸泥机(桥长40m,线速度3m/min, N0.55X2kW) 2台 撇渣斗4个 出水堰板1520mX2.0m 导流群板560mX0.6m 7 接触消毒池 L×B×H= 32.4m×3.6m×3m 1座 设计流量Q=3275 m3/h 停留时间T= 0.5 h 有效水深H1=2 m 注水泵(Q3~6 m3/h )2台 9 加氯间 L×B= 12m×9m 1座 投氯量 300 kg/d 氯库贮氯量按15d计 负压加氯机(GEGAL-2100)3台 电动单梁悬挂起重机(2.0t)1台 10 回流及剩 余污泥泵房(合建式) L×B= 10m×5m 1座 无堵塞潜水式回流污泥泵2台 钢闸门(2.0X2.0m)2扇 手动单梁悬挂式起重机(2t)1台 套筒阀DN800mm, Φ1500mm 2个 电动启闭机(1.0t)2台 手动启闭机(5.0t)2台 无堵塞潜水式剩余污泥泵3台 第四章 平面布置 在污水处理厂的厂区内有各处理单元的构筑物;连通各处理构筑物之间的管、渠极其他管线;辅助性建筑物;道路以及绿地等。因此,要对污水处理厂厂区内各种工程设施进行合理的平面规划。 4.1 污水处理厂平面布置 污水处理厂的平面布置包括:生产性的处理构筑物和泵房、鼓风机房、药剂间、化验室等辅助性建筑物以及各种管线等的布置。在厂区内还有道路系统、室外照明系统和美化的绿地设施。根据处理厂的规模大小,一般采用 比例尺的地形图绘制总平面图,常用比例尺为 。 4.1.1平面布置原则 1、污水厂的厂区面积,应按项目总规模控制,并作出分期建设的安排,合理确定近期规模,近期工程投入运行一年内水量宜达到近期设计规模的60%。 2、污水厂的总体布置应根据厂内各建筑物和构筑物的功能和流程要求,结合厂址地形、气候和地质条件,优化运行成本,便于施工、维护和管理等因素,经技术经济比较确定。 3、污水厂厂区内各建筑物造型应简洁美观,节省材料,选材适当,并应使建筑物和构筑物群体的效果与周围环境协调。 4、生产管理建筑物和生活设施宜集中布置,其位置和朝向应力求合理,并应与处理构筑物保持一定距离。 5、污水和污泥的处理构筑物宜根据情况尽可能分别集中布置。处理构筑物的间距应紧凑、合理,符合国家现行的防火规范的要求,并应满足各构筑物的施工、设备安装和埋设各种管道以及养护、维修和管理的要求。 6、污水厂的工艺流程、竖向设计宜充分利用地形,符合排水通畅、降低能耗、平衡土方的要求。 7、厂区消防的设计和消化池、贮气罐、污泥气压缩机房、污泥气发电机房、污泥气燃烧装置、污泥气管道、污泥干化装置、污泥焚烧装置及其他危险品仓库等的位置和设计,应符合国家现行有关防火规范的要求。 8、污水厂内可根据需要,在适当地点设置堆放材料、备件、燃料和废渣等物料及停车的场地。 9、污水厂应设置通向各构筑物和附属建筑物的必要通道,通道的设计应符合下列要求: 主要车行道的宽度:单车道为3.5~4.0m,双车道为6.0~7.0m,并应有回车道; 车行道的转弯半径宜为6.0~10.0m; 人行道的宽度宜为1.5~2.0m; 通向高架构筑物的扶梯倾角一般宜采用30°,不宜大于45°; 天桥宽度不宜小于1.0m; 车道、通道的布置应符合国家现行有关防火规范要求,并应符合当地有关部门的规定。 10、污水厂周围根据现场条件应设置围墙,其高度不宜小于2.0m。 11、污水厂的大门尺寸应能容运输最大设备或部件的车辆出入,并应另设运输废渣的侧门。 12、污水厂并联运行的处理构筑物间应设均匀配水装置,各处理构筑物系统间宜设可切换的连通管渠。 13、污水厂内各种管渠应全面安排,避免相互干扰。管道复杂时宜设置管廊。处理构筑物间输水、输泥和输气管线的布置应使管渠长度短、损失小、流行通畅、不易堵塞和便于清通。各污水处理构筑物间的管渠连通,在条件适宜时,应采用明渠。 管廊内宜敷设仪表电缆、电信电缆、电力电缆、给水管、污水管、污泥管、再生水管、压缩空气管等,并设置色标。 管廊内应设通风、照明、广播、电话、火警及可燃气体报警系统、独立的排水系统、吊物孔、人行通道出入口和维护需要的设施等,并应符合国家现行有关防火规范要求。 14、污水厂应合理布置处理构筑物的超越管渠。 15、处理构筑物应设排空设施,排出水应回流处理。 16、污水厂宜设置再生水处理系统。 17、厂区的给水系统、再生水系统严禁与处理装置直接连接。 18、污水厂的供电系统,应按二级负荷设计,重要的污水厂宜按一级负荷设计。当不能满足上述要求时,应设置备用动力设施。 19、污水厂附属建筑物的组成及其面积,应根据污水厂的规模,工艺流程,计算机监控系统的水平和管理体制等,结合当地实际情况,本着节约的原则确定,并应符合现行的有关规定。 20、位于寒冷地区的污水处理构筑物,应有保温防冻措施。 21、根据维护管理的需要,宜在厂区适当地点设置配电箱、照明、联络电话、冲洗水栓、浴室、厕所等设施。 22、处理构筑物应设置适用的栏杆,防滑梯等安全措施,高架处理构筑物还应设置避雷设施。 4.1.2具体平面布置 1、工艺流程布置 工艺流程布置根据设计任务书提供的面积和地形,采用直线型布置。这种布置方式生产联络管线短,水头损失小,管理方便,且有利于日后扩建。 2、构(建)筑物平面布置 按照功能,将污水处理厂布置分成三个区域: 1)污水处理区,由各项污水处理设施组成,呈直线型布置。包括:污水总泵站、格栅间、平流沉砂池、初沉池、 、沉淀池、消毒池、鼓风机房。 2)污泥处理区,位于厂区主导风向的下风向,由污泥处理构筑物组成,呈直线型布置。包括:污泥浓缩池、贮泥池等。 3)生活区,该区是将办公室、宿舍、食堂、锅炉房、浴房等建筑物组合的一个区, 位于主导风向的上风向。 3、污水厂管线布置 污水厂管线布置主要有以下管线的布置: 1)污水厂工艺管道 污水经总泵站提升后,按照处理工艺经处理构筑物后排入水体。 2)污泥工艺管道 污泥主要是剩余污泥,按照工艺处理后运出厂外。 3)厂区排水管道 厂区排水管道系统包括构筑物上清液和溢流管、构筑物放空管、各建筑物的排水管、厂区雨水管。对于雨水管,水质能达到排放标准,可以直接排放,而构筑物上清液和溢流管与构筑物放空管及各建筑物的排水管,这些污水的污染物浓度很高,水质达不到排放标准,不能直接排放,设计中把它们收集后接入泵前集水池继续进行处理。 4)空气管道 5)超越管道 6)厂区该水管道和消火栓布置 由厂外接入送至各建筑物用水点。厂区内每隔120.0m的检间距设置1个室外消火栓。 4、厂区道路布置 1)主厂道路布置 由厂外道路与厂内办公楼连接的带路为主厂道路,道宽6.0m,设双侧1.5m的人行道,并植树绿化。 2)车行道布置 厂区内各主要构(建)筑物布置车行道,道宽4.0m呈环状布置。 3)步行道布置 对于无物品、器材运输的建筑物,设步行道与主厂道或车行道相连。 5、厂区绿化布置 在厂区的一些地方进行绿化。 4.2污水处理厂高程布置 为使污水能在各处理构筑物之间通畅流动,以保证处理厂的正常运行,需进行高程布置,以确定各构筑物及连接管高程。 为降低运行费用和便于维护管理,污水在处理构筑物之间的流动已按重力流考虑为宜;污泥也最好利用重力流动,若需提升时,应尽量减少抽升次数。为保证污泥的顺利自流,应精确计算处理构筑物之间的水头损失,并考虑扩建时预留的储备水头。 4.2.1主要任务 污水处理厂污水处理流程高程布置的主要任务是: 1、确定各处理构筑物和泵房的标高; 2、确定处理构筑物之间连接管渠的尺寸及其标高; 3、通过计算确定各部分的水面标高,从而能够使污水沿处理流程在处理构筑物之间畅通地流动,保证污水处理厂的正常运行。 4.2.2高程布置原则 1、保证污水在各构筑物之间顺利自流。 2、认真计算管道沿程损失、局部损失,各处理构筑物、计量设备及联络管渠的水头损失;考虑最大时流量、雨天流量和事故时流量的增加,并留有一定的余地;还应考虑当某座构筑物停止运行时,与其并联运行的其余构筑物及有关的连接管渠能通过全部流量。 3、考虑远期发展,水量增加的预留水头。 4、选择一条距离最长,水头损失最大的流程进行水力计算。 5、计算水头损失时,一般应以近期最大流量作为构筑物和管渠的设计流量;计算涉及远期流量的管渠和设备时,应以远期最大流量为设计流量,并酌加扩建时的备用水头。 6、设置终点泵站的污水厂,水力计算常以接受处理后污水水体的最高水位作为起点,逆污水处理流程向上倒推计算,以防处理后的污水不能自由流出。二
/
本文档为【6万吨污水处理a2o工艺毕业设计】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索