为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

模拟电子技术基础简明教程(第三版)杨素行__第二章

2021-03-15 91页 ppt 4MB 8阅读

用户头像 机构认证

爱赢

公司经营范围:网络软件设计、制作、图文设计、影视制作(编辑)

举报
模拟电子技术基础简明教程(第三版)杨素行__第二章第二章 放大电路的基本原理2.1 放大的概念2.2 单管共发射极放大电路2.3 放大电路的主要技术指标2.4 放大电路的基本分析方法2.5 工作点的稳定问题2.6 放大电路的三种基本组态2.7 场效应管放大电路2.8 多级放大电路2.1 放大的概念  本质:实现能量的控制。  在放大电路中提供一个能源,由能量较小的输入信号控制这个能源,使之输出较大的能量,然后推动负载。小能量对大能量的控制作用称为放大作用。放大的对象是变化量。元件:双极型三极管和场效应管。2.2 放大电路的主要技术指标图2.2.1 放大电路技术指标测试示意图1...
模拟电子技术基础简明教程(第三版)杨素行__第二章
第二章 放大电路的基本原理2.1 放大的概念2.2 单管共发射极放大电路2.3 放大电路的主要技术指标2.4 放大电路的基本分析方法2.5 工作点的稳定问题2.6 放大电路的三种基本组态2.7 场效应管放大电路2.8 多级放大电路2.1 放大的概念  本质:实现能量的控制。  在放大电路中提供一个能源,由能量较小的输入信号控制这个能源,使之输出较大的能量,然后推动负载。小能量对大能量的控制作用称为放大作用。放大的对象是变化量。元件:双极型三极管和场效应管。2.2 放大电路的主要技术指标图2.2.1 放大电路技术指标测试示意图1.放大倍数2.最大输出幅度  在输出波形没有明显失真情况下放大电路能够提供给负载的最大输出电压(或最大输出电流)可用峰-峰值表示,或有效值表示(Uom、Iom)。3.非线性失真系数D4.输入电阻Ri所有谐波总量与基波成分之比,即  从放大电路输入端看进去的等效电阻。5.输出电阻Ro  从放大电路输出端看进去的等效电阻。测量Ro:输出电阻愈小,带载能力愈强。6.通频带7.最大输出功率与效率输出不产生明显失真的最大输出功率。用符号Pom表示。:效率PV:直流电源消耗的功率fLfHfL:下限频率fH:上限频率图2.2.22.3 单管共发射极放大电路2.3.1 单管共发射极放大电路的组成VT:NPN型三极管,为放大元件;VCC:为输出信号提供能量;  RC:当iC通过Rc,将电流的变化转化为集电极电压的变化,传送到电路的输出端;  VBB、Rb:为发射结提供正向偏置电压,提供静态基极电流(静态基流)。2.3.2 单管共发射极放大电路的工作原理1.放大作用:图2.3.1 单管共射放大电路的原理电路2.组成放大电路的原则:  (1)外加直流电源的极性必须使发射结正偏,集电结反偏。则有:  (2)输入回路的接法应使输入电压u能够传送到三极管的基极回路,使基极电流产生相应的变化量iB。  (3)输出回路的接法应使变化量iC能够转化为变化量uCE,并传送到放大电路的输出端。3.原理电路的缺点:(1)双电源供电;(2)uI、uO不共地。4.单管共射放大电路图2.3.2 单管共射放大电路C1、C2:为隔直电容或耦合电容;RL:为负载电阻。该电路也称阻容耦合单管共射放大电路。2.4 放大电路的基本分析方法基本分析方法两种图解法微变等效电路法2.4.1 直流通路与交流通路2.4.2 静态工作点的近似计算硅管UBEQ=(0.6~0.8)V锗管UBEQ=(0.1~0.2)VICQIBQUCEQ=VCC–ICQRC【例】图示单管共射放大电路中,VCC=12V,Rc=3k,Rb=280k,NPN硅管的=50,试估算静态工作点。解:设UBEQ=0.7VICQIBQ=(500.04)mA=2mAUCEQ=VCC–ICQRc=(12-23)V=6V#12.4.3 图解法  在三极管的输入、输出特性曲线上直接用作图的方法求解放大电路的工作情况。1.图解的基本方法(1)图解分析静态①先用估算的方法计算输入回路IBQ、UBEQ。②用图解法确定输出回路静态值方法:根据uCE=VCC-iCRc式确定两个特殊点输出回路输出特性图2.4.3  由静态工作点Q确定的ICQ、UCEQ为静态值。  【例】图示单管共射放大电路及特性曲线中,已知Rb=280k,Rc=3k,集电极直流电源VCC=12V,试用图解法确定静态工作点。解:首先估算IBQ做直流负载线,确定Q点根据UCEQ=VCC–ICQRciC=0,uCE=12V;uCE=0,iC=4mA.0iB=0µA20µA40µA60µA80µA134224681012MIBQ=40µA,ICQ=2mA,UCEQ=6V.uCE/V由Q点确定静态值为:iC/mA图2.4.3(b)(二)图解分析动态1.交流通路交流通路的外电路是Rc和RL的并联,电容,电抗,电流源,电压源。2.交流负载线交流负载线斜率为:3.电压放大倍数  #2【例】用图解法求图示电路电压放大倍数。输入、输出特性曲线如下页图,RL=3k。uCE=(4.5–7.5)V=-3VuBE=(0.72–0.68)V=0.04V解:取iB=(60–20)A=40A则输入、输出特性曲线上有动态工作情况图解分析图2.4.5(a)输入回路工作情况图2.4.5(b)输出回路工作情况分析  单管共射放大电路当输入正弦波uI时,放大电路中相应的uBE、iB、iC、uCE、uO波形。图2.4.6 单管共射放大电路的电压电流波形二、图解法的应用(一)用图解法分析非线性失真  1.静态工作点过低,引起iB、iC、uCE的波形失真ibui结论:iB波形失真  ——截止失真iC、uCE(uo)波形失真NPN管截止失真时的输出uo波形。uo=uceOIB=0QtOOtiCuCE/VuCE/ViC/mAuo=uceib(不失真)ICQUCEQ2.Q点过高,引起iC、uCE的波形失真—饱和失真(二)用图解法估算最大输出幅度输出波形没有明显失真时能够输出最大电压。即输出特性的A、B所限定的范围。Q尽量设在线段AB的中点。则AQ=QB,CD=DE(三)用图解法分析电路参数对静态工作点的影响  1.改变Rb,保持VCC,Rc,不变;Rb增大,Rb减小,Q点下移;Q点上移;  2.改变VCC,保持Rb,Rc,不变;升高VCC,直流负载线平行右移,动态工作范围增大,但管子的动态功耗也增大。Q2图2.4.9(a)图2.4.9(b)  3.改变Rc,保持Rb,VCC,不变;  4.改变,保持Rb,Rc,VCC不变;  增大Rc,直流负载线斜率改变,则Q点向饱和区移近。Q2  增大,ICQ增大,UCEQ减小,则Q点移近饱和区。图2.4.9(c)图2.4.9(d)图解法小结  1.能够形象地显示静态工作点的位置与非线性失真的关系;  2.方便估算最大输出幅值的数值;  3.可直观表示电路参数对静态工作点的影响;  4.有利于对静态工作点Q的检测等。2.4.4 微变等效电路法  晶体管在小信号(微变量)情况下工作时,可以在静态工作点附近的小范围内用直线段近似地代替三极管的特性曲线,三极管就可以等效为一个线性元件。这样就可以将非线性元件晶体管所组成的放大电路等效为一个线性电路。微变等效条件研究的对象仅仅是变化量信号的变化范围很小一、简化的h参数微变等效电路(一)三极管的微变等效电路晶体管的输入特性曲线rbe:晶体管的输入电阻。在小信号的条件下,rbe是一常数。晶体管的输入电路可用rbe等效代替。1.输入电路Q点附近的工作段近似地看成直线可认为uBE与iB成正比图2.4.10(a)2.输出电路  假设在Q点附近特性曲线基本上是水平的(iC与uCE无关),数量关系上,iC比iB大倍;  从三极管输出端看,可以用iB恒流源代替三极管;该恒流源为受控源;为iB对iC的控制。图2.4.10(b)3.三极管的简化参数等效电路  注意:这里忽略了uCE对iC与输出特性的影响,在大多数情况下,简化的微变等效电路对于工程计算来说误差很小。图2.4.11 三极管的简化h参数等效电路4.电压放大倍数Au;输入电阻Ri、输出电阻RORi=rbe//Rb,Ro=Rc图2.4.12 单管共射放大电路的等效电路(二)rbe的近似估算公式rbb:基区体电阻。reb:基射之间结电阻。低频、小功率管rbb约为300。UT:温度电压当量。图2.4.13电流放大倍数与电压放大倍数之间关系  1.当IEQ一定时,愈大则rbe也愈大,选用值较大的三极管其Au并不能按比例地提高;因:  2.当值一定时,IEQ愈大则rbe愈小,可以得到较大的Au,这种方法比较有效。(三)等效电路法的步骤(归纳)  1.首先利用图解法或近似估算法确定放大电路的静态工作点Q。  2.求出静态工作点处的微变等效电路参数和rbe。  3.画出放大电路的微变等效电路。可先画出三极管的等效电路,然后画出放大电路其余部分的交流通路。  4.列出电路方程并求解。二、微变等效电路法的应用  例:接有发射极电阻的单管放大电路,计算电压放大倍数和输入、输出电阻。图2.4.14 接有发射极电阻的放大电路根据微变等效电路列方程若满足(1+)Re>>rbe2.放大电路的输入电阻  引入Re后,输入电阻增大了。3.放大电路的输出电阻  将放大电路的输入端短路,负载电阻RL开路,忽略c、e之间的内电阻rce。图2.4.14(b)引入Re后对输出电阻的影响。图2.4.15 求图2.4.14(a)电路输出电阻的等效电路如果Re=0,但考虑rce的作用,则显然,接入Re后,三极管集电极至公共端之间的等效电阻大大提高了。2.5 工作点的稳定问题2.5.1 温度对静态工作点的影响三极管是一种对温度十分敏感的元件。温度变化对管子参数的影响主要表现有:1.UBE改变。UBE的温度系数约为–2mV/C,即温度每升高1C,UBE约下降2mV。2.改变。温度每升高1C,值约增加0.5%~1%,温度系数分散性较大。3.ICBO改变。温度每升高10C,ICBQ大致将增加一倍,说明ICBQ将随温度按指数规律上升。温度升高将导致IC增大,Q上移。波形容易失真。T=20CT=50C图2.5.1 温度对Q点和输出波形的影响2.5.2 静态工作点稳定电路一、电路组成——分压式偏置电路  由于UBQ不随温度变化,——电流负反馈式工作点稳定电路  TICQIEQUEQUBEQ(=UBQ–UEQ)IBQICQ说明:  1.Re愈大,同样的IEQ产生的UEQ愈大,则温度稳定性愈好。但Re增大,UEQ增大,要保持输出量不变,必须增大VCC。  2.接入Re,电压放大倍数将大大降低。在Re两端并联大电容Ce,交流电压降可以忽略,则Au基本无影响。Ce称旁路电容  3.要保证UBQ基本稳定,IR>>IBQ,则需要Rb1、Rb2小一些,但这会使电阻消耗功率增大,且电路的输入电阻降低。实际选用Rb1、Rb2值,取IR=(5~10)IBQ,UBQ=(5~10)UBEQ。二、静态与动态分析静态分析由于IR>>IBQ,可得(估算)静态基极电流动态分析2.6 放大电路的三种基本组态三种基本接法共射组态共集组态共基组态2.6.1 共集电极放大电路(b)等效电路——为射极输出器图2.6.1 共集电极放大电路(a)电路图一、静态工作点由基极回路求得静态基极电流则(a)电路图图2.6.1 共集电极放大电路二、电流放大倍数所以三、电压放大倍数  结论:电压放大倍数恒小于1,而接近1,且输出电压与输入电压同相,又称射极跟随器。四、输入电阻输入电阻较大。Ri五、输出电阻输出电阻低,故带载能力比较强。Ro图2.6.2 求射极输出器Ro的等效电路2.6.2 共基极放大电路图2.6.3 共基极放大电路(a)原理电路  VEE保证发射结正偏;VCC保证集电结反偏;三极管工作在放大区。(b)实际电路  实际电路采用一个电源VCC,用Rb1、Rb2分压提供基极正偏电压。一、静态工作点(IBQ,ICQ,UCEQ)图2.6.3(b)实际电路二、电流放大倍数微变等效电路由图可得:所以  由于小于1而近似等于1,所以共基极放电电路没有电流放大作用。图2.6.4 共基极放大电路的等效电路三、电压放大倍数由微变等效电路可得  共基极放大电路没有电流放大作用,但是具有电压放大作用。电压放大倍数与共射电路相等,但没有负号,说明该电路输入、输出信号同相位。四、输入电阻暂不考虑电阻Re的作用五、输出电阻暂不考虑电阻Re的作用Ro=rcb.已知共射输出电阻rce,而rcb比rce大得多,可认为rcb(1+)rce  如果考虑集电极负载电阻,则共基极放大电路的输出电阻为Ro=Rc//rcbRc2.6.3 三种基本组态的比较2.6.3 三种基本组态的比较2.7 场效应管放大电路2.7.1 场效应管的特点1.场效应管是电压控制元件;2.栅极几乎不取用电流,输入电阻非常高;3.一种极性的载流子导电,噪声小,受外界温度及辐射影响小;4.制造工艺简单,有利于大规模集成;5.存放管子应将栅源极短路,焊接时烙铁外壳应接地良好,防止漏电击穿管子;6.跨导较小,电压放大倍数一般比三极管低。2.7.2 共源极放大电路图2.7.3 共源极放大电路原理电路与双极型三极管对应关系bG,eS,cD  为了使场效应管工作在恒流区实现放大作用,应满足:  图示电路为N沟道增强型MOS场效应管组成的放大电路。(UT:开启电压)一、静态分析两种方法近似估算法图解法(一)近似估算法  MOS管栅极电流为零,当uI=0时UGSQ=VGG而iD与uGS之间近似满足(当uGS>UT)式中IDO为uGS=2UT时的值。则静态漏极电流为(二)图解法图2.7.4 用图解法分析共源极放大电路的Q点VDDIDQUDSQQ利用式uDS=VDD-iDRD画出直流负载线。图中IDQ、UDSQ即为静态值。二、动态分析iD的全微分为上式中定义:——场效应管的跨导(毫西门子mS)。——场效应管漏源之间等效电阻。1.微变等效电路二、动态分析如果输入正弦信号,则可用相量代替上式中的变量。成为:根据上式做等效电路如图所示。图2.7.5 场效应管的微变等效电路由于没有栅极电流,所以栅源是悬空的。微变参数gm和rDS(1)根据定义通过在特性曲线上作图方法中求得。(2)用求导的方法计算gm在Q点附近,可用IDQ表示上式中iD,则  一般gm约为0.1至20mS。rDS为几百千欧的数量级。当RD比rDS小得多时,可认为等效电路的rDS开路。2.共源极放大电路的动态性能图2.7.6 共源极放大电路的微变等效电路将rDS开路而所以输出电阻Ro=RDMOS管输入电阻高达109。2.7.3 分压—自偏压式共源放大电路一、静态分析(一)近似估算法根据输入回路列方程图2.7.7 分压-自偏式共源放大电路解联立方程求出UGSQ和IDQ。列输出回路方程求UDSQUDSQ=VDD–IDQ(RD+RS)(二)图解法由式  可做出一条直线,另外,iD与uGS之间满足转移特性曲线的规律,二者之间交点为静态工作点。确定UGSQ,IDQ。根据漏极回路方程  在漏极特性曲线上做直流负载线,与uGS=UGSQ的交点确定Q,由Q确定UDSQ和IDQ值。UDSQuDS=VDD–iD(RD+RS)VDDQIDQQIDQUGSQUGQ图2.7.8 用图解法分析图2.7.7电路的Q点二、动态分析  微变等效电路入右图所示。图2.7.9 图2.7.7电路的微变等效电路  由图可知电压放大倍数输入、输出电阻分别为2.7.4 共漏极放大电路——源极输出器或源极跟随器图2.7.10 源极输出器  典型电路如右图所示。静态分析如下:  分析方法与“分压-自偏压式共源电路”类似,可采用估算法和图解法。动态分析1.电压放大倍数图2.7.11 微变等效电路而所以2.输入电阻Ri=RG+(R1//R2)3.输出电阻图2.7.11 微变等效电路因输入端短路,故则所以实际工作中经常使用的是共源、共漏组态。2.8 多级放大电路2.8.1 多级放大电路的耦合方式三种耦合方式阻容耦合直接耦合变压器耦合一、阻容耦合图2.8.1 阻容耦合放大电路第一级第二级优点:  (1)前、后级直流电路互不相通,静态工作点相互独立;  (2)选择足够大电容,可以做到前一级输出信号几乎不衰减地加到后一级输入端,使信号得到充分利用。不足:  (1)不适合传送缓慢变化的信号;  (2)无法实现线性集成电路。二、直接耦合图2.8.2 两个单管放大电路简单的直接耦合特点:  (1)可以放大交流和缓慢变化及直流信号;  (2)便于集成化。  (3)各级静态工作点互相影响;基极和集电极电位会随着级数增加而上升;  (4)零点漂移。1.解决合适静态工作点的几种办法改进电路—(a)  电路中接入Re2,保证第一级集电极有较高的静态电位,但第二级放大倍数严重下降。改进电路—(b)  稳压管动态电阻很小,可以使第二级的放大倍数损失小。但集电极电压变化范围减小。改进电路—(c)+VCC改进电路—(d)  可降低第二级的集电极电位,又不损失放大倍数。但稳压管噪声较大。  可获得合适的工作点。为经常采用的方式。(c)图2.8.3 直接耦合方式实例【例】     图示两级直接耦合放大电路中,已知:Rb1=240k,    Rc1=3.9k,Rc2=500,稳压管VDz的工作电压UZ=4V,三极管VT1的1=45,VT2的2=40,VCC=24V,试计算各级静态工作点。图2.8.4 例题的电路解:设UBEQ1=UBEQ2=0.7V,则  UCQ1=UBEQ2+Uz=4.7V                 如ICQ1由于温度的升高而增加1%,计算静态输出电压的变化。ICQ1=1IBQ1=4.5mAIBQ2=IRc1–ICQ1=(4.95–4.5)mA=0.45mAICQ2=2IBQ2=(40×0.45)mA=18mAUO=UCQ2=VCC–ICQ2RC2=(24–18×0.5)V=15VUCEQ2=UCQ2–UEQ2=(15–4)V=11V当ICQ1增加1%时,即ICQ1=(4.5×1.01)mA=4.545mAIBQ2=(4.95-4.545)mA=0.405mAICQ2=(40×0.405)mA=16.2mAUO=UCQ2=(24–16.2×0.5)V=15.9V比原来升高了0.9V,约升高6%。2.零点漂移  直接耦合时,输入电压为零,但输出电压离开零点,并缓慢地发生不规则变化的现象。  原因:放大器件的参数受温度影响而使Q点不稳定。图2.8.5 零点漂移现象  放大电路级数愈多,放大倍数愈高,零点漂移问题愈严重。抑制零点漂移的:(1)引入直流负反馈以稳定Q点;(2)利用热敏元件补偿放大器的零漂;(3)采用差分放大电路。三、变压器耦合  选择恰当的变比,可在负载上得到尽可能大的输出功率。图2.8.8 变压器耦合放大电路  第二级VT2、VT3组成推挽式放大电路,信号正负半周VT2、VT3轮流导电。优点:(1)能实现阻抗变换;(2)静态工作点互相独立。缺点:(1)变压器笨重;(2)无法集成化;(3)直流和缓慢变化信号不能通过变压器。三种耦合方式的比较阻容耦合直接耦合变压器耦合特点 各级工作点互不影响; 结构简单 能放大缓慢变化的信号或直流成分的变化;适合集成化 有阻抗变换作用; 各级直流通路互相隔离。存在问题不能反应直流成分的变化, 不适合集成化 有零点漂移现象; 各级工作点互相影响 不能反应直流成分的变化;不适合放大缓慢变化的信号; 不适合集成化适合场合 分立元件交流放大电路 集成放大电路,直流放大电路 低频功率放大,调谐放大2.8.2 多级放大电路的电压放大倍数和输入、输出电阻一、电压放大倍数总电压放大倍数等于各级电压放大倍数的乘积,即其中,n为多级放大电路的级数。二、输入电阻和输出电阻通常,多级放大电路的输入电阻就是输入级的输入电阻;输出电阻就是输出级的输出电阻。具体计算时,有时它们不仅仅决定于本级参数,也与后级或前级的参数有关。【例】图示电路中,Rb1=240k,Rc1=3.9k,以及输入、输出电阻Ri和Ro。  解:估算Au1时,应将第二级Ri2作为第一级的负载电阻。所以此下载可自行编辑修改,供参考!感谢您的支持,我们努力做得更好!
/
本文档为【模拟电子技术基础简明教程(第三版)杨素行__第二章】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索