为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

PAM8610规格书

2011-03-21 17页 pdf 327KB 310阅读

用户头像

is_178849

暂无简介

举报
PAM8610规格书 Typical Application Key Features Applications 10W@10%THD / Channel Output into a 8 Load at 13V Low Noise: -90dB Over 90% Efficiency 32Step DC Volume Control from -75dB to 32dB With Shutdown/Mute/Fade Function Over Current , Thermal and Short-Circuit Protection L...
PAM8610规格书
Typical Application Key Features Applications 10W@10%THD / Channel Output into a 8 Load at 13V Low Noise: -90dB Over 90% Efficiency 32Step DC Volume Control from -75dB to 32dB With Shutdown/Mute/Fade Function Over Current , Thermal and Short-Circuit Protection Low THD+N Low Quiescent Current Pop noise suppression Small Package Outlines: Thin 40-pin QFN 6mm*6mm Package Flat monitor /LCD TVS Multi-media speaker System DVD players, game machines Boom Box Music instruments Ω � � � � � General Description The PAM8610 is a 10W (per channel) stereo class-D audio amplifier with DC Volume Control which offers low THD+N (0.1%), low EMI, and g o o d P S R R t h u s h i g h - q u a l i t y s o u n d reproduction. The 32 steps DC volume control has a +32dB to -75dB range. The PAM8610 runs off of a 7V to 15V supply at much higher efficiency than competitors’ Ics. The PAM8610 only requires very few external components, significantly saving cost and board space. The PAM8610 is available in a 40pin QFN 6mm*6mm package. � � � � � � � � � � � Pb-Free Package (RoHS Compliant) PAM8610 10W Stereo Class-D Audio Power Amplifier with DC Volume Control 1 ,Power Analog Microelectronics Inc www.poweranalog.com 08/2008 Rev 1.2 RINN RINP AVDD VREF VOLUME REFGND AGND1 FADE LINP LINN L O U T N L O U T N B S L N B S L P L O U T P L O U T P P V C C L P G N D L VCLAMPL COSC ROSC AGND VCLAMPR MUTE AVCC V2P5 AGND SD P G N D R P V C C R R O U T P R O U T P B S R P B S R N P G N D R P V C C R R O U T N R O U T N P G N D L P V C C L RINN 1 Fμ 1 Fμ RINP 1 Fμ VOLUME GND FADE 1 Fμ LINN 1 Fμ LINP G N D 1 Fμ 10 Fμ 1 Fμ 1 Fμ P V C C L 1 Fμ 10 Fμ 1 Fμ GND 220pF GND GND MUTE VCC GND SHUTDOWN 1 Fμ GND GND G N D 1 Fμ 10 Fμ 1 Fμ1 Fμ P V C C R 1 Fμ 10 Fμ G N D PAM8610 GND 1 Fμ 10 Fμ 100nF 120K P V C C R G N D P V C C L 联系:13652437521 柯’R Administrator 日期图章 (红) Block Diagram 2 ,Power Analog Microelectronics Inc 08/2008 Rev 1.2 PVCCL LOUTN PGNDL PVCCL LOUTP PGNDL on/off Depop Short Circuit Protection Thermal BSLN BSLP AVCC AGND LINN LINP ROSC COSC osc Gain Adjust VOLUME FADE MUTE V2P5 _ + + _ PAM Modulation Driver Driver PVCCR ROUTN PGNDR PVCCR ROUTP PGNDR BSRN BSRP - + + - RINN RINP Feedback System AVDD SD Biases & ReferencesLDO _ + + _ PAM Modulation Driver Driver - + + - Feedback System PAM8610 10W Stereo Class-D Audio Power Amplifier with DC Volume Control www.poweranalog.com Pin Configuration & Marking Information 3 ,Power Analog Microelectronics Inc 08/2008 Rev 1.2 1 2 3 4 5 6 7 8 9 10 RINN RINP AVDD VREF VOLUME REFGND AGND1 FADE LINP LINN 13 14 15 16 17 18 19 20 L O U T N L O U T N B S L N B S L P L O U T P L O U T P P V C C L P G N D L 21 22 23 24 VCLAMPL COSC ROSC AGND VCLAMPR 25 26 27 28 29 30 313233343536 MUTE AVCC V2P5 AGND SD P G N D R P V C C R R O U T P R O U T P B S R P B S R N 37383940 P G N D R P V C C R R O U T N R O U T N 1 1 1 2 P G N D L P V C C L PAM8610 10W Stereo Class-D Audio Power Amplifier with DC Volume Control Top View 6mm*6mm QFN PAM8610 XATYWWLL X: Internal Code A: Assembly Code T: Testing Code Y: Year WW: Week LL: Internal Code www.poweranalog.com Pin Number Name Function 1 RINN Negative differential audio input for right channel 2 RINP Positive differential audio input for right channel 3 AVDD 5V Analog VDD 4 VREF Analog reference for gain control section 5 VOLUME DC voltage that sets the gain of the amplifier 6 REFGND Ground for gain control circuitry. Connect to AGND. If using a DAC to control the volume, connect the DAC ground to this terminal. 7 AGND1 Analog GND 8 FADE Input for controlling volume ramp rate when cycling SD or during power-up. A logic low on this pin places the amplifier in fade mode. A logic high on this pin allows a quick transition to the desired volume setting. 9 LINP Positive differential audio input for left channel 10 LINN Negative differential audio input for left channel 11,20 PGNDL Power ground for left channel H-bridge 12,19 PVCCL Power supply for left channel H-bridge, not connected to PVCCR or AVCC. 13,14 LOUTN Class-D 1/2-H-bridge negative output for left channel 15 BSLN Bootstrap I/O for left channel, negative high-side FET 16 BSLP Bootstrap I/O for left channel, positive high-side FET 17,18 LOUTP Class-D 1/2-H-bridge positive output for left channel 21 VCLAMPL Internally generated voltage supply for left channel bootstrap capacitors. 22 COSC I/O for charge/discharging currents onto capacitor for ramp generator triangle wave biased at V2P5 23 ROSC Current setting resistor for ramp generator. Nominally equal to 1/8*VCC 24,28 AGND Analog GND 25 MUTE A logic high on this pin disables the outputs and a logic low enables the outputs. 26 AVCC High-voltage analog power supply (7V to 15V) 27 V2P5 2.5V Reference for analog cells, as well as reference for unused audio input when using single-ended inputs. 29 SD Shutdown signal for IC (low= shutdown, high =operational). TTL logic levels with compliance to VCC. 30 VCLAMPR Internally generated voltage supply for right channel bootstrap capacitors. 31,40 PGNDR Power ground for right channel H-bridge 32,39 PVCCR Power supply for right channel H-bridge, not connected to PVCCL or AVCC. 33,34 ROUTP Class-D 1/2-H-bridge positive output for right channel 35 BSRP Bootstrap I/O for right channel, positive high-side FET 36 BSRN Bootstrap I/O for right channel, negative high-side FET 37,38 ROUTN Class-D 1/2-H-bridge negative output for right channel Pin Descriptions 4 ,Power Analog Microelectronics Inc 08/2008 Rev 1.2 PAM8610 10W Stereo Class-D Audio Power Amplifier with DC Volume Control www.poweranalog.com Absolute Maximum Ratings These are stress ratings only and functional operation is not implied Exposure to absolute maximum ratings for prolonged time periods may affect device reliability All voltages are with respect to ground . . . Recommended Operating Conditions Thermal Information 5 ,Power Analog Microelectronics Inc 08/2008 Rev 1.2 PAM8610 10W Stereo Class-D Audio Power Amplifier with DC Volume Control Parameter Package Symbol Maximum Unit Thermal Resistance (Junction to Case) QFN 6mm*6mm θJC 7.6 Thermal Resistance (Junction to Ambient) QFN 6mm*6mm θJA 18.1 °C/W www.poweranalog.com Supply Voltage V .........................-0.3V to16.5V Input Voltage Range V : MUTE,VREF,VOLUME, ................0V to 6.0V ....................................................-0.3V to V RINN,RINP,LINN,LINP......................-0.3V to 6.0V DD DD I FADE SD Junction Temperature Range,T ......-40°C to 125 Storage Temperature.....................-65 to150 Lead Temperature1,6mm(1/16 inch) from case for 5 seconds.................................................260 J °C °C °C °C Supply Voltage (V )............................7V to 15V Maximum Volume Control Pins, Input Pins Voltage................................................0V to 5.0V High Level Input Voltage: .................2.0V to V MUTE ...2.0V to 5V Low Level Input Voltage:DD DDSD , ...................0 to 0.3V , °C °C FADE SD FADEMUTE .....0 to 0.3V Ambient Operating Temperature......-20 to 85 The Exposed PAD must be soldered to a thermal land on the PCB. Parameter Symbol condition MIN TYP MAX Units Supply Voltage VDD 7.0 12 15 V THD+N=0.1%,f=1kHz,RL=8Ω 5 THD+N=1.0%,f=1kHz,RL=8Ω 8 THD+N=10%,f=1kHz,RL=8Ω, VDD=13V 10 Continuous Output Power Po THD+N=10%,f=1kHz,RL=4Ω(Note ) 15 W Total Harmonic Distortion plus Noise THD+N PO=5W, f=1kHz, RL =8Ω 0.1 % Quiescent Current IDD (no load) 20 30 mA Supply Quiescent Current in shutdown mode ISD SHUTDOWN=0V 4 10 μA High side 200 Low side 200 Drain-source on-state resistance rds(on) VCC=12V IO=1A TJ=25℃ Total 400 mΩ Power Supply Ripple Rejection Ratio PSRR 1VPP ripple, f=1kHz, Inputs ac-coupled to ground -60 dB Oscillator Frequency fOSC ROSC=120kΩ,CO S C =220pF 250 kHz Output Integrated Noise Floor Vn 20Hz to 22 kHz, A-weighting -90 dB Crosstalk CS PO=3W, RL=8Ω, f=1kHz -80 dB Signal to Noise Ratio SNR Maximum output at THD+N< 0.5%, f=1kHz 80 dB Output offset voltage (measured differentially) |VOS| INN and INP connected together 30 mV 2.5V Bias voltage V2P5 No Load 2.5 V Internal Analog supply Voltage AVDD VDD=7V to 15V 5 5.5 V Over Temperature Shutdown OTS 150 °C Thermal Hysteresis OTH 40 °C 6 ,Power Analog Microelectronics Inc 08/2008 Rev 1.2 Electrical Characteristic T =25 V =12V,R =8 (unless otherwise noted)A DD L, Ω°C PAM8610 10W Stereo Class-D Audio Power Amplifier with DC Volume Control www.poweranalog.com Note: Heat sink is required for high power output. 7 Table 1. DC Volume Control ,Power Analog Microelectronics Inc 08/2008 Rev 1.2 PAM8610 10W Stereo Class-D Audio Power Amplifier with DC Volume Control www.poweranalog.com Note: Volume: DC voltage on Volume pin Rf: Internal pre-amplifier feedback resistance Ri: Internal pre-amplifier input resistance Calculation Gain=20log (5XRf/Ri), there is one dB tolerance from device to device. Step Volume Gain (dB) Rf (kΩ) Ri (kΩ) 1 0.0 -75 0.40 200.00 2 0.1 -40 1.26 199.60 3 0.2 -30 3.92 198.74 4 0.3 -20 11.90 196.08 5 0.4 -10 20.22 188.10 6 0.5 -5 33.33 179.78 7 0.6 0 52.47 166.67 8 0.7 5 77.49 147.53 9 0.8 10 83.02 122.51 10 0.9 11 88.65 116.98 11 1.0 12 94.37 111.35 12 1.1 13 100.12 105.63 13 1.2 14 105.87 99.88 14 1.3 15 111.58 94.13 15 1.4 16 117.21 88.42 16 1.5 17 122.74 82.79 17 1.6 18 128.12 77.26 18 1.7 19 133.33 71.88 19 1.8 20 138.35 66.67 20 1.9 21 143.15 61.65 21 2.0 22 147.71 56.85 22 2.1 23 152.04 52.29 23 2.2 24 156.11 47.96 24 2.3 25 159.92 43.89 25 2.4 26 163.49 40.08 26 2.5 27 166.80 36.51 27 2.6 28 169.86 33.20 28 2.7 29 172.69 30.14 29 2.8 30 175.30 27.31 30 2.9 31 177.68 24.70 31 3.0 32 179.87 22.32 32 3.1 33 200.00 20.13 0.01 100 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 % 10m 1020m 50m 100m 200m 500m 1 2 5 W 0.03 10 0.05 0.1 0.2 0.5 1 2 5 % 20 20k50 100 200 500 1k 2k 5k 10k Hz 0.06 10 0.1 0.2 0.5 1 2 5 % 20 20k50 100 200 500 1k 2k 5k 10k Hz 0.04 10 0.1 0.2 0.5 1 2 5 % 20 20k50 100 200 500 1k 2k 5k 10k Hz 0.01 100 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 % 10m 1020m 50m 100m 200m 500m 1 2 5 W 0.01 100 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 % 10m 1020m 50m 100m 200m 500m 1 2 5 W Typical Performance Characteristics 8 ,Power Analog Microelectronics Inc 08/2008 Rev 1.2 PAM8610 10W Stereo Class-D Audio Power Amplifier with DC Volume Control www.poweranalog.com 1. THD vs. Power+N V =15VDD V =12VDD V =7VDD 2. THD vs. Power+N f=10kHz f=500Hz f=100Hz 3. THD vs. Power+N Gv=12dB Gv=18dB Gv=32dB 4. THD+N vs Frequency Po=5W Po=1W Po=3W 5. THD+N vs Frequency (Po=1W) V =15VDD V =12VDDV =7VDD V =12V,R =8 Gv=24dB, °C, unless otherwise noted.DD L Ω, Τ =25Α 6. THD+N vs Frequency (Po=3W) Gv=18dB Gv=32dB Gv=12dB Typical Performance Characteristics 9 ,Power Analog Microelectronics Inc 08/2008 Rev 1.2 PAM8610 10W Stereo Class-D Audio Power Amplifier with DC Volume Control www.poweranalog.com 7. THD vs. Power+N 8. THD vs. Power+N 9. THD vs. Power+N 10. THD+N vs Frequency 11. THD+N vs Frequency (Po=1W) V =12V,R =4 Gv=24dB, °C, unless otherwise noted.DD L Ω, Τ =25Α 12. THD+N vs Frequency (Po=3W) 0.02 10 0.05 0.1 0.2 0.5 1 2 5 % 20 20k50 100 200 500 1k 2k 5k 10k Hz Gv=18dB Gv=32dB Gv=12dB 0.05 10 0.1 0.2 0.5 1 2 5 % 20 20k50 100 200 500 1k 2k 5k 10k Hz Po=5W Po=1W Po=3W 0.05 10 0.1 0.2 0.5 1 2 5 % 20 20k50 100 200 500 1k 2k 5k 10k Hz V =15VDD V =12VDD V =7VDD 0.01 100 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 % 10m 3020m 50m 100m 200m 500m 1 2 5 10 20 W V =15VDD V =12VDD V =7VDD 0.01 100 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 % 10m 2020m 50m 100m 200m 500m 1 2 5 10 W Gv=12dB Gv=18dB Gv=32dB 0.01 100 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 % 10m 2020m 50m 100m 200m 500m 1 2 5 10 W f=10kHz f=500Hz f=100Hz -100 -50 -95 -90 -85 -80 -75 -70 -65 -60 -55 d B 20 20k50 100 200 500 1k 2k 5k 10k Hz T Typical Performance Characteristics 10 ,Power Analog Microelectronics Inc 08/2008 Rev 1.2 PAM8610 10W Stereo Class-D Audio Power Amplifier with DC Volume Control 14. Crosstalk 16. Noise Floor www.poweranalog.com 15. Frequency Response (Vo=1.0Vrms) -5 +5 -4 -3 -2 -1 +0 +1 +2 +3 +4 d B r A 20 30k50 100 200 500 1k 2k 5k 10k 20k Hz R to L L to R -150 +0 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 d B V 20 20k50 100 200 500 1k 2k 5k 10k Hz -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 d B 10 100k20 50 100 200 500 1k 2k 5k 10k 20k 50k Hz 13. Power Supply Ripple Rejection 17. CMRR -80 +0 -70 -60 -50 -40 -30 -20 -10 d B r A 20 20k50 100 200 500 1k 2k 5k 10k Hz V =12V,R =8 Gv=24dB, °C, unless otherwise noted.DD L Ω, Τ =25Α 18. Efficiency vs Power 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 8 9 10 Output Power(W) E ffi ci en cy (% ) 0 2 4 6 8 10 12 14 16 18 7 8 9 10 11 12 13 14 15 SupplyVoltage (V) O u tp u t P o w e r (W ) Typical Performance Characteristics 11 ,Power Analog Microelectronics Inc 08/2008 Rev 1.2 PAM8610 10W Stereo Class-D Audio Power Amplifier with DC Volume Control 19. Output Power vs Supply Voltage www.poweranalog.com 21.Gain vs DC voltage 0 0.5 1 1.5 2 2.5 3 3.5 4 0 3 6 9 12 Output Power (W) Two channels driven P o w e r D is si p a tio n (W ) Note: PCB information for power dissipation measurement. 1. The PCB size is 74mm 68mm with 1.2mm thickness, two layers and Fr4. 2. 16 vias at the thermal land on the PCB with 0.5mm diameter. 3. The size of exposed copper is 10mm*10mm with 3oz thickness. * V =12V,R =8 Gv=24dB, °C, unless otherwise noted.DD L Ω, Τ =25Α 20. Quesicent Current vs Supply Voltage 0 5 10 15 20 25 7 8 9 10 11 12 13 14 15 Supply Voltage (V) Q u ie s c e n t C u rr e n t (m A ) 22.Power Dissipation vs. Output Power 0 0.4 0.8 1.2 1.6 2 2.4 2.8 Volume Voltage (V) G a in (d B ) THD+N=1% THD+N=10% 12 ,Power Analog Microelectronics Inc 08/2008 Rev 1.2 PAM8610 10W Stereo Class-D Audio Power Amplifier with DC Volume Control www.poweranalog.com Application Information Power and Heat Dissipation Choose speakers that are able to stand large output power from the PAM8610. Otherwise, speaker may suffer damage. In operation, some of power is dissipated to the resistors. The PAM8610’s efficiency is 90% with 10W ouput and 8 load. The dissipation power is 2.22W. Thermal resistance of junction to ambient of the QFN package is 18.1°C/W and the junction temperature Tj=P * jA+Ta, where Ta is ambient temperature. If the ambient temperature is 85°C, the QFN’s junction temperature Tj=2.22*18.1+85=125°C which is lower than 150°C rated junct ion temperature. If the rated workable junction temperature is 150°C, the re la t ionsh ip between ambient temperature and permitted P is shown in below diagram. From the diagram, it can be found that when the device works at 10W/8 load the dissipation power is 1.1W per channel, 2.2W total, the permitted ambient temperature is over 100°C. This is proven by actual test. The PAM8610 can work in full output power under 85°C ambient temperature. Ω θ Ωloss loss Heat dissipation is very important when the device works in full power operation. Two factors affect the heat dissipation, the efficiency of the device that determines the dissipation power, and the thermal resistance of the package that determines the heat dissipation capability. Power Dissipation: P =(Po*(1- 2loss η)/η)* 0 1 2 3 4 5 6 7 8 9 10 0 20 40 60 80 100 Ta P l o s s ( W ) Notes 1. The AP AUX-0025 low pass filter is necessary for class-D amplifier measurement with AP analyzer. 2. Two 22μH inductors are used in series with load resistor to emulate the small speaker for efficiency measurement. Test Setup for Performance Testing AP System One Generator PAM8610 Demo Board +OUT Input Load AP Low Pass Filter AUX-0025 AP System One Analyzer GND -OUT VDD Power Supply 13 ,Power Analog Microelectronics Inc 08/2008 Rev 1.2 PAM8610 10W Stereo Class-D Audio Power Amplifier with DC Volume Control www.poweranalog.com Heat Dissipation in PCB design Dual-Side PCB 4-layer PCB Consideration for EMI Generally, class-D amplifiers are high efficiency and need no heat sink. For high power ones that has high dissipation power, the heat sink may also not necessary if the PCB is carefully designed to achieve good heat by the PCB itself. To achieve good heat , the PCB’s copper plate should be thicker than 0.035mm and both sides of the PCB should be utilized for heat sink. The thermal pad on the bottom of the device should be soldered to the plate of the PCB, and via holes, usually 9 to 16, should be drilled in the PCB area under the device and deposited copper on the vias should be thick enough so that the heat can be dissipated to the other side of the plate. There should be no insulation mask on the other side of the copper plate. It is better to drill more vias around the device if possible. If it is 4-layer PCB, the two middle layers of grounding and power can be employed for heat dissipation, isolating them into serval islands to avoid short between ground and power. dissipation dissipation the copper plate on on the PCB Filters are not required if the traces from the amplifier to the speakers are short (<20cm). But most applications require a ferrite bead filter as shown in below figure. The ferrite bead filter reduces EMI of around 1MHz and higher to meet t h e F C C a n d C E ' s r e q u i r e m e n t s . I t i s recommended to use a ferrite bead with very low impedances at low f requenc ies and high impedance at high frequencies (above 1MHz). The EMI characteristics are as follows after employing the ferrite bead. Vertical Polarization Horizontal Polarization 200pF 200pF OUT+ OUT- Ferrite Bead Ferrite Bead OUTP OUTN 14 ,Power Analog Microelectronics Inc 08/2008 Rev 1.2 PAM8610 10W Stereo Class-D Audio Power Amplifier with DC Volume Control www.poweranalog.com Volume Control FADE Operation MUTE Operation Shutdown Operation A DC volume control section is integrated in PAM8610, controlling via VREF, VOLUME and VREFGND terminals. The voltage on VOLUME pin, without exceeding VREF, determines internal amplifier gain as listed in Table 1. If a resistor divider is used to fix gain of the amplifier, the VREF terminal can be directly connected to AVDD and the resistor divider connected across VREF and REFGND. For fixed gain, the resistor divider values are to center the voltage given in the Table 1. The terminal is a logic input that controls the operation of the volume control circuitry during transitions to and from the shutdown state and during power-up. A logic low on this terminal will set the amplifier in fade mode. During power-up or recovery from the shutdown state (a logic high is applied to the terminal), the volume is smoothly ramped up from the mute state, -75dB, to the desired volume set by the voltage on the volume control terminal. Conversely, the volume is smoothly ramped down from the current state to the mute state when a logic low is applied to the terminal. A logic high on this pin disables the volume fade effect during transitions to and from the shutdown state and during power-up. During power-up or recovery from the shutdown state (a logic high is applied to the terminal), the transition from the mute state, -75dB, to the desired volume setting is less than 1ms. Conversely, the volume ramps down from current stat
/
本文档为【PAM8610规格书】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索