为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

大脑结缔细胞就像胶水-英语科普-

2017-12-19 3页 doc 15KB 12阅读

用户头像

is_037433

暂无简介

举报
大脑结缔细胞就像胶水-英语科普-大脑结缔细胞就像胶水-英语科普- 大脑结缔细胞就像胶水 更多英语科普-请点击这里获得 Glia cells, named for the Greek word for "glue," hold the brain's neurons together and protect the cells that determine our thoughts and behaviors, but scientists have long puzzled over their prominence(突出,显著) in the ac...
大脑结缔细胞就像胶水-英语科普-
大脑结缔细胞就像胶水-科普- 大脑结缔细胞就像胶水 更多英语科普-请点击这里获得 Glia cells, named for the Greek word for "glue," hold the brain's neurons together and protect the cells that determine our thoughts and behaviors, but scientists have long puzzled over their prominence(突出,显著) in the activities of the brain dedicated to learning and memory. Now Tel Aviv University researchers say that glia(神经胶质) cells are central to the brain's plasticity -- how the brain adapts, learns, and stores information. According to Ph.D. student Maurizio De Pittà of TAU's Schools of Physics and Astronomy and Electrical Engineering, glia cells do much more than hold the brain together. A mechanism within the glia cells also sorts information for learning purposes, De Pittà says. "Glia cells are like the brain's supervisors. By regulating the synapses, they control the transfer of information between neurons, affecting how the brain processes information and learns." De Pittà's research, led by his TAU supervisor Prof. Eshel Ben-Jacob, along with Vladislav Volman of The Salk Institute and the University of California at San Diego and Hugues Berry of the Université de Lyon in France, has developed the first computer model that incorporates the influence of glia cells on synaptic information transfer. Detailed in the journal PLoS Computational Biology, the model can also be implemented in technologies based on brain networks such as microchips and computer software, Prof. Ben-Jacob says, and aid in research on brain disorders such as Alzheimer's disease and epilepsy(癫痫) . Regulating the brain's "social network" The brain is constituted of two main types of cells: neurons and glia. Neurons fire off signals that dictate(口述,听写) how we think and behave, using synapses to pass along the message from one neuron to another, explains De Pittà. Scientists theorize that memory and learning are dictated by synaptic activity because they are "plastic," with the ability to adapt to different stimuli. But Ben-Jacob and colleagues suspected that glia cells were even more central to how the brain works. Glia cells are abundant in the brain's hippocampus(海马) and the cortex, the two parts of the brain that have the most control over the brain's ability to process information, learn and memorize. In fact, for every neuron cell, there are two to five glia cells. Taking into account previous experimental data, the researchers were able to build a model that could resolve the puzzle. The brain is like a social network, says Prof. Ben-Jacob. Messages may originate with the neurons, which use the synapses as their delivery system, but the glia serve as an overall moderator, regulating which messages are sent on and when. These cells can either prompt the transfer of information, or slow activity if the synapses are becoming overactive. This makes the glia cells the guardians of our learning and memory processes, he notes, orchestrating(精心安排) the transmission of information for optimal brain function. 本文章由顺道电子商务收集整理
/
本文档为【大脑结缔细胞就像胶水-英语科普-】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索