为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

军用设备的海中投放问题的分析

2017-11-13 9页 doc 24KB 117阅读

用户头像

is_036899

暂无简介

举报
军用设备的海中投放问题的分析军用设备的海中投放问题的分析 军用设备的海中投放问题的分析 摘要: 对第二问,我们在不考虑洋流和海浪的影响的情况下,我们通过设备在空中和在海水中的水平运动轨迹,知道了设备在海面上的位置(从空投设备时竖直向下的点距设备停在海平面的点)为1048.99m。 第三问通过对空中和海里的两种情况的分析建立了轨迹方程,运用MATLAB软件分别绘制出了球型设备在空中和海里的运动轨迹。 关键词:投放;运动轨迹;微分方程;位置(高度) 1 一、 问题的提出 随着科技的发展,尤其是近几年来,我国的军事发生的翻天覆地的变化,使得我们对...
军用设备的海中投放问题的分析
军用设备的海中投放问题的分析 军用设备的海中投放问题的分析 摘要: 对第二问,我们在不考虑洋流和海浪的影响的情况下,我们通过设备在空中和在海水中的水平运动轨迹,知道了设备在海面上的位置(从空投设备时竖直向下的点距设备停在海平面的点)为1048.99m。 第三问通过对空中和海里的两种情况的分析建立了轨迹方程,运用MATLAB软件分别绘制出了球型设备在空中和海里的运动轨迹。 关键词:投放;运动轨迹;微分方程;位置(高度) 1 一、 问题的提出 随着科技的发展,尤其是近几年来,我国的军事发生的翻天覆地的变化,使得我们对一些未知、不确定的因素(定点空投、定点发射)有了更准确、更接近我们的要求、更满足我们的需求的分析和预测。如何建立模型,才能达到我们的期望值,使我们的目标更精确,这是我们研究的主要问题。 现有一军方需要用轰炸机定点空投一军用球型设备到某海域,飞机速度为100米/秒,球型设备半径为0.1米,密度为0.85,当地海水密度为1.03,若此设备在水中的摩擦力与速度相反,且成正比,比例系数=0.5公斤.米/秒,(g=9.8).刚看到题目,我们就在想最后球型设备停在海面上的位置,它的轨迹及飞机的飞行高度等。这就需要建立数学模型来分析研究问题,我们要考虑的问题是: (1)球型设备不要落入比65米还深的海水里,飞机当时应飞行的高度。 (2)分析球型设备停在海面上是的位置。 (3)描述球型设备的轨迹特征,并给出球型设备的轨迹图 二、模型的假设 1 假设投放时天空中没有风及湿度的影响,忽略球型设备的大小(将其看成质点),不考虑空气给球型设备的摩擦阻力。 2假设球型设备瞬间进入海里(不考虑水面对球类设备的冲量使其速度改变)。 3 假设当时海面上没有大浪。 4 不考虑洋流对球型设备的影响。 5 飞机飞行时与海平面水平,不倾斜。 6 球类设备一旦接触水面就认为其完全浸入水中(只要与水接触时就认为其完全浸入水中)。 三、符号的说明 k、f摩擦力:设备在水中的摩擦系数、所受的摩擦力 1、 0:海水、球型设备的密度 G、F浮力、G0:设备所受的重力、设备完全浸入水中所受的浮力、类似重力 2 g、g0:物体的重力加速度、类似重力加速度 V、r、m:球型设备的体积、半径、质量 v0、v1:球型设备水平初速度、进入水面瞬间竖直向下的速度 S(t)、H(t):设备空中飞行(水面以上)的水平方向、竖直方向的位移 l(t)、v2:物体有初速度的减速运动的位移、在t=0时(进入水面时)的速度 s(t):设备在海平面以下水平方向的位移 h(t)、h3(t):设备在水面以下向下运动、向上运动的位移 s0、s1、s2:设备在空中飞行的水平距离、水面以下运动的水平距离 、停在水面上的水平距离 (t)、h3 (t):设备在水面以下最深处向上运动时的加速度、速度 h3 h (t)、h (t):设备在竖直方向运动的加速度、速度 s (t)、s (t):设备在水面以下水平方向的加速度、速度 l (t)、l (t):物体运动时的加速度、速度 T、t1、t2、t3、H0:设备从水面到水下最深处的时间、在空中飞行的时间、设备在水中的运动时间、设备从落入水中到最后飘在水面上的时间、轰炸机飞行的高度 四、问题的分析与模型的建立 对于军用设备海中投放问题分析,主要分设备在空中飞行时(水面以上)及在水面以下的运动情况分别建立两个模型。 对问题一: 在空中飞行时(水面以上)时设备由于半径比较小,与空气接触面积很小,其受的空气阻力远小于其自身的重力,在此不予考虑其所受的空气阻力,则其受力如图一所示,将设备在空中飞行时(水面以上)看成初速度为v0的平抛运动,建立一个有初速度的加速模型。 有初速度的加速模型如下: 3 S(t) v0t 12 H(t) H,gt (1) 02 v gt 其中:S(t)为设备在空中飞行(水面以上)的水平方向的位移,v0为水平初 速度,t为设备从空投到接触水面间的时间点,H(t)为设备在空中飞行(水面以上)的竖直方向的位移 。 图一 在水面以下运动情况受其重力、浮力及水对设备的摩擦力的影响,则其受力分析如图二所示,由于重力及设备所受的浮力(设备完全在水中)是恒力,其大小及方向是恒定的,均不受其他因素的影响特别是速度,在此将两个恒力合并成一个类似重力“G0”,同引入一个类似重力加速度“g0”。 水对设备的摩擦力同 时是受速度的影响(与速度成正,且方向与速度相反),由于速度是时刻变化的,设备所受的摩擦力也是个变力,将此变力按水平方向和竖直方向进行分解,x轴为水平方向,y轴为竖直方向(如图三所示)。将摩擦力分解后,其水平方向的分量可以看成只受水平速度的影响,其竖直方向的分量只受竖直方向速度的影响。将设备在水中运动情况分成水平运动和竖直运动,两者是独立的,互不影响。在这里,将设备的水平运动看成一个初速度为v0的减速运动,建立微分方程进行求解。设备的竖直运动可以看成为v1的减速运动(这里只分析设备向下运动,当其从水下向上运动时由于对问题的求解无影响在此不予分析和考虑),建立微分方程进行求解。他们可以统称为一个有初速度的减速运动模型。 通过解微分方程可以的得到设备在竖直方向的运动曲线及水平方向的运动曲线,这样通过竖直方向的运动曲线h(t),可以求出设备从水面到水下最深处的时间t , 对其进行求导可以 得到竖直方向的速度曲线h (t),将t带入h (t)可以求出 4 设备进水瞬间的竖直速度v1。同理水平方向上的运动曲线s(t),对其进行求导得到是水平方向的速度曲线s (t),可以求得设备从初速度v0运动到停止时的距离s1。 有初速度的减速运动模型如下: kgl (t) )l(t) ,a, l(t 其中,m ) l(t l(0) l;l(0) v02 h((竖直方向)t),s,((水平方向)t) ;(竖直方向加速度常量) g ; (2) a 0 0(水平方向加速度常量) 其中:l(t)为物体有初速度的减速运动的位移,l(0)是物体在t=0时的位移为l0,l (0)时物体在t=0时的速度为v2,l (t)为物体运动时的加速度,l (t)为物体运动时的速度,a为物体运动时的加速度常量(大小),g为物体的重力加速度,m物体(球型设备)的质量,k为设备在水中的摩擦系数。 h(t)为设备在水面以下向下运动时竖直方向的位移,s(t)为设备在水面以下运动时水平方向的位移,g0为设备在水面以下向下运动时竖直方向的加速度常量(大小)。 图二 5 图三 对问题二: 通过问题一中的求解,可以得到在水面以上的水平运动距离s0,同时也可以 到水面以下的水平运动距离为s1,这样就可确定设备停在海面上的位置s2 s0,s1 。 对问题三: 通过问题一及问题二的求解所得曲线方程,同时由于作图需要设备从最深处向上运动的轨迹方程,所以我们建立了从水下向水上的微分方程: kgh’(t) h’’(t) g,0 0v h(T) ,65T为设备从水面到水下最深处的时间 h’(T) 0 求出在上升时的方程为: h3(t) 70.8 ,1.376t,1.508t,70.65 再根据不同时间段的规矩方程,运用Matlab工具分别对水面以上、水面以下设备运动的轨迹进行画图。 6 五、模型的求解 问题一的求解: 由于设备在水面以下运动是有初速度的减速运动,由于初速度未知,仅知道位移,在此将其运动反过来看成初速度为0的加速运动。求出其曲线h(t),然后将其最深的位移h=65带入解出的曲线h(t)中,求出时间t,后通过对h(t)求导得h (t)计算出其在浸入水里的瞬时速度v1,再带入方程组(1)就可以求得在空中 飞行的时间t1,从而算出轰炸机飞行的高度H(t1)。 根据方程组(2)的模型对竖直方向的微分方程如下: kgh (t) h(t) g,0 m h(0) 0,h (0) 0 F,G 1gV,mg g0 浮力 mm m 0V, ;其中 43 (3) V r 3 其中:h (t)为设备竖直方向运动的加速度;h (t)为设备竖直方向运动时的速度;h(0)为设备在t=0时的位移为0;h (0)为设备在t=0时的速度为0;F浮力为设备完全浸入水中所受的浮力;G为设备所受的重力; 1、 0分别为海水的密度、球型设备的密度;V、r分别为球型设备的体积、半径。 已知数据如下表: 利用Matlab程序对微分方程组(3)进行求解得: h(t) 1.096e1.376t,1.508t,1.096 (4) 对h(t)进行求导得h (t)为: h (t) 1.508e1.376t,1.508 (5) 7 令h=65代入方程(4)求的时间t即为: 1.096e1.376t,1.508t,1.096 65 得:T 3.0275s 将其代入方程(5)可得此时刻得速度为v1; v1 h (3.0275) 95.6804m/s 将求得v1代入方程组(1)中求得: t1 v1/g 95.6804/9.8 9.7633s 同时可以求得设备在空中飞行的水平距离s0和轰炸机当时应飞行的高度 H0; 由H(t1) H0, 得: H0 12gt1 0 212gt1 0.5 9.8 9.76332 467.0779m 2 s0 v0t1 100 9.7633 976.33m 求得的H0为轰炸机高度是相对于海平面而言的,即当时飞机飞行的高度距 海平面的距离为467.0779m 对问题二的求解: 通过问题一中的求解,可以得到在水面以上的水平运动距离s0,同理根据方程组(2)得模型可以对水平运动列出微分方程,在此将其看成初速度为v0,位移为0的减速运动,可以到水面以下的水平运动距离为s1,这样就可确定设备停在海面上的位置s s,s。 根据方程组(2)的模型对水平方向的微分方程如下: kgs (t) s(t) , (6) m s(0) 0,s(0) 100 其中:s (t)为设备在水面以下水平方向的加速度; s (t)为设备在水面以下 8 水平方向的速度;s(0)是设备在t=0时(设备在入水瞬间)的位移为0;s (0)是设备在t=0时(设备在入水瞬间)的速度v0为100m/s; 利用Matlab程序对微分方程组(6)进行求解如下: s(t) 72.66,72.66e,1.376t (7) 对s(t)进行求导得s (t)为: s (t) 100e,1.376t (8) 令方程s (t) 0,得: 在时间t2时设备的水平方向的速度趋向为0,后求得在t2时设备得水平位移为s(t2) s (t2) 100e,1.376t2 0,得 e,1.376t2 0 t2 3.302s7 5 s(t2) 72.66,72.66e,1.376t2 72.66m s2 s0,s1 976.33,72.66 1048.99m 求得的s2是对轰炸机从空投设备时竖直向下的点距设备停在海平面的点的距离为1048.99m。 对问题三的求解: 从最深处向上运动的轨迹方程,在此将其看成初速度为0,位移为0的加速运动。 根据方程组(一)的加速模型建立微分方程如下: (t)kgh3 (t) g0,h3 (9) m (3.0275) 0 h3(3.0275) ,65,h3 (t)为设备在水面以下最深处向上运动时的加速度;h3 (t)为设备水 其中:h3 面以下最深处向上运动时的速度;h3(3.0275)是设备在t=3.0275s时的位移为 9 (3.0275)是设备在t=3.0275时的竖直速度为0。 ,65m;h3 利用Matlab程序对微分方程组(6)进行求解如下: h3(t) 70.80e,1.376t,1.508t,70.66 令h3(t)=0求得时间t3 46.85s 由问题一和问题二的求得的,在空中(水面以上)飞行的有初速度的平抛运动的轨迹方程和在水面以下设备运动的轨迹方程,通过Matlab程序进行作图,分别如图四和图五。 其中图四为空中运动的轨迹,图五为水面以下设备运动的轨迹。 作图得如下(图四): 图四 作图得如下(图五): 10 图五 六、模型的评价与改进 模型很好的描述了军用球类设备在空中及水中的运动情况,可以比较精确的预测及求得球类设备的位移、速度及加速度,同时也能精确的求得设备在具体时刻的位置。对运用到定点空投、定点射击等问题中有很好的指导和说明的作用。 模型优点:1、建立过程中忽略球型设备在海平面以上运动时所受到的空气阻力的影响,使问题的处理变得简单、明了。2、通过物理知识对关于位移、速度、加速度的问题建立微分方程将其联系起来,并将其解决,过程很容易理解。3、描述球型设备的轨迹特征,画出轨迹图,更直观、方便、清晰。4、将球类设备运动看成质点的运动,给问题的分析求解带来了方便;5、在分析球类设备运动时,有些运动是有初速度的减速运动初始条件不多给问题求解带来不便,将看成初速度为0,位移为0的加速运动,这样问题就比较方便的解决了;6、在求解分析过程中对物体的受力进行了分析并将其受力图形化比较直观,便于理解分析。 模型的缺点:模型建立对许多因素进行简化和忽略,比如空气阻力、 11
/
本文档为【军用设备的海中投放问题的分析】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索