为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > [光纤收发器的作用]光纤收发器应用简要介绍

[光纤收发器的作用]光纤收发器应用简要介绍

2017-10-07 9页 doc 23KB 20阅读

用户头像

is_511210

暂无简介

举报
[光纤收发器的作用]光纤收发器应用简要介绍[光纤收发器的作用]光纤收发器应用简要介绍 [光纤收发器的作用]光纤收发器应用简要介 绍 篇一 : 光纤收发器应用简要介绍 光纤收发器应用简要介绍 一、多模光纤收发器、多模光纤 光纤收发器是一种将以太网的电信号和光信号进行互换的以太网传输媒质转换设备,而在网络上传输数据的光纤分为多模光纤和单模光纤,多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,与相对应的单模光纤的纤芯直径为8.3μm,包层外直径125μm。[)但是这些技术数据对于我们来说不是很直观,其实要区别多模光纤与单模光纤,看颜色就可以。多模光纤...
[光纤收发器的作用]光纤收发器应用简要介绍
[光纤收发器的作用]光纤收发器应用简要介绍 [光纤收发器的作用]光纤收发器应用简要介 绍 篇一 : 光纤收发器应用简要介绍 光纤收发器应用简要介绍 一、多模光纤收发器、多模光纤 光纤收发器是一种将以太网的电信号和光信号进行互换的以太网传输媒质转换设备,而在网络上传输数据的光纤分为多模光纤和单模光纤,多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,与相对应的单模光纤的纤芯直径为8.3μm,包层外直径125μm。[)但是这些技术数据对于我们来说不是很直观,其实要区别多模光纤与单模光纤,看颜色就可以。多模光纤的尾纤的颜色是桔红色,如图1所示 图1 而单模光纤的尾纤的颜色为黄色,如图2所示: 图2 从组网应用上,由于多模光纤无法进行长距离的传输,一般只能用于楼宇内部及楼宇间的联网,但由于多模光纤及对应的光纤收发器比较便宜,所以还是在一定范围内得到了应用。比如祥子所在单位的办公大楼内综合布线采用的就是多模光纤,另外,很多学校组建内部的校园网时也是使用的多模光纤。 二、单模光纤收发器系列 随着技术的进步,单模光纤开始进入长距离的组网操作,而且发展势头非常迅猛,没几年的时间,从就高端应用进入了寻常百姓家,从祥子所从事的工程来看,现在某些重点客户家里开通网络时都是直接使用的光纤收发器,使用光纤收发器组网已经成为广电开展增值业务非常普遍的一种形式。下面介绍的各种型号的光纤收发器,都是基于单模光纤的。 双纤单网口 所谓双纤单网口光纤收发器,就是利用两根光纤,一组光纤收发器实现电信号至光信号、光信号再到电信号的转换,设备通常如图3所示: 图3 记得应该是2000年左右,祥子开始接触光纤收发器,当时这种设备还是一种高端设备,一对光纤收发器要几千元,但是能够实现长距离传输很神奇,而且相比电缆传输有抗干扰能力强,信号质量好的特点,所以在开通业务时特别受用户的欢迎,当时听到用户对于光纤联网的肯定,我们作为工程技术人员心里也是美滋滋的。一般来说,使用光纤收发器进行联网,网络拓扑如图4所示: 1 图4 这里的网络设备可能是交换机,也可能是服务器,那么光纤收发器输出的那根网线,究竟是直通线还是交叉线呢,这个问当时可 算是一个大问题,祥子每次都要翻阅说明书,查看说明书里面介绍的这款型号具体对于服务器还是交换机是直通线还是交叉线,但是后来随着组网经验的积累,发现了一个规律,那就是可以将光纤收发器当作一台PC机看,PC机与交换机相连是直通线,PC机与服务器相连是交叉线,那么光纤收发器与交换机相连就是直通线,与服务器相连就是交叉线。,)当然,现在随着技术进步,光纤收发器的网口也一般做成了自适应模式,工程使用时也相应方便了很多。 另外,从图4所示我们也可以看出,光纤收发器联网一般是点对点方式,还有一点,当时的时侯光纤收发器的厂家很多,祥子的单位就试用了很多厂家的光纤收发器,这么几年,大浪淘沙,有一些品牌消失了,也有一些产品质量好,售后服务佳的的品牌成长起来,成为了我们长期的合作伙伴。 单纤单网口 随着业务的不断发展,我们面临着一个不可回避的问题,那就是光纤资源紧张,有些单位要联网,但是线路上只有一根可用的光芯了,这个时侯怎么办,好在随着技术的进步,厂家也开发出了新的产品,那就是单纤光纤收发器,即在一根光芯上实现收、发两路操作,这类产品采用了波分复用的技术,使用的波长多为1310nm和1550nm,即一端用1310nm波长的光代表发,用1550nm波长的光代表收,另一端用1310nm?波长的光代表收,用1550nm波长的光代表发。 图5 图5所示的是一种一体机,还有一种模块化的,即光纤收发器模块和电源机框是可以分离的,光纤收发器模块如图6所示 图6 一般来说,如果是光纤收发器是放置在机房的话,我们是倾向于选择这种光纤收发器,一来这种结构质量比较稳定,二来这种模块式的结构,可以通过在机房中放置机框来实现光纤收发器的集中放置,比如一个16槽的机框就可以一次放置16个光纤收发器,如图7所示。 2 图7 这种集中式的装置就为我们利用光纤收发器大规模组网提供了条件,实际上我们为本地的教育、公安、银行等单位组网,在中心机房都是使用的这种机框式的光纤收发器。单纤双网口 这种设备如图8所示: 图8 随着业务的发展,有些单位对于利用光纤收发器组网提出了更高的要求,比如我们为本地某银行提供的组网,银行要求我们提供两条严格隔离以太网线路。使用的光纤收发器设备技术上要成熟、安全的、可以简化网络结构、节约设备投资,并且要实现通过一根光纤接入两个有严格隔离安全要求的业务网络,最大程度的节约光纤资源。设备以太网电口为10/100M自适应的端口,光路可实现以太网链路 最远60公里的接入能力,支持局端网管功能。在网管平台下,可实现对局端设备全面的监测与配置,及光路收、发双向中断告警等监控功能。 该单位需要从中心机房至各个分理处都需要两条线路以实现环路备份,每个分理处既有办理银行业务的专网,又有内部办公网络,为了满足需要,我们利用交换机的生成树功能和单纤双网口光纤收发器,组了一个环网,网络拓扑如图9所示: 3 图, 大家从图,可以看出,这种组网结构在A处和B处都实际上与交换机人为的组成了一个环路,但是由于交换机支持生成树功能,当环路出现后,会自动选择一路作为工作线路,而将另一路断开作为备用,当工作线路由于线路上断纤而不能正常工作时,备用线路会自动启用,变成工作线路。单从图9就可以看出这种组网方式很复杂,实际的工程中的组网比这更复杂,全市有二十多个分理处,都是采用这种模式,好在我们和工程部的同事一齐努力把这个工程完成了。 三、千兆光纤收发器及集成光纤接口的交换机 使用光纤收发器进行联网,优点除了稳定,还有什么,那就是速度~100M全双工,甚至比100全双工更高的速度:1000M全双工。比如我们本地的一家工程机械制造企业,原来是租用我们提供的,,,,线路进行联网,但是由于业务发展的需要,所以需要我们提供更高速度的联网线路,好在技术的进步也为我们提供了相应的产品,即 千兆光纤收发器,如图10所示。 图10 从外观上看,这与百兆光纤收发器也没有什么区别,是的,我们使用的某品牌的千兆光纤收发器的模块是可以直接插到原来的电源机框里的,也就是只需要更换一下光纤收发器模块,不需要改动,就可以平滑的将网络带宽由百兆升级到千兆,非常方便,从我们的工程实践上来看,现在也渐渐的有一个趋势,即从百兆升级到千兆。 另外,我们发现教育行业比较喜欢使用集成了千兆光纤接口的交换机,如华为3528千 4 兆交换机,如图11所示: 即在前面板上可集成了光纤接口,可以提供千兆的传输速率。 总结: 以上就是祥子在工程中使用的光纤收发器产品的一些心得,合理的使用光纤收发器,既可以组点对点的网络,也可以组环型自愈的网络,希望这些经验可以为大家提供在组网时提供一些参考。 网线的价格一般不是问题 还是关心一下怎样挑一个好的网线! 在组建局域网的过程中,人们往往会不惜重金去购买高档网卡、交换机、路由器,而忽略了这“不起眼”的网线质量。其实网线的质量对局域网的传输性能影响最直接,因此对网线进行测试是选购网线过程中的一个很重要的环节,只有多看、多测试才能在鱼龙混杂的网线市场中选到真正令自己放心的产品,也只有多测试,大家才能获得对网线的真实感受,为此笔者就和大家详细谈一谈如何对网线进行 全方位测试。 1、测试网线的速度 对网线的传输速度进行测试是鉴别网线质量真伪的最有效手段;测试时为了更贴近实际使用环境,同时减少外界干扰环节,笔者建议采用双机直联的方式进行。同时为了保证测试的准确性,尽量使用质量好的品牌网卡,保证测试时不会发生硬件瓶颈现象;同时也要保证计算机系统干净、整洁,运行速度快,不然计算机本身的运行速度会影响网线传输速度。此外,在做连接网线时,尽量使用质量好的水晶头,也要保证线头做得规范,只有这样才能将外界因素对网线传输速度的影响降低到最小程度。 2、检查网线柔韧性 品质良好的网线在时考虑到布线的方便性,尽量做到很柔韧,无论怎样弯曲都很方便,而且不容易被折断。而目前市场上有许多奸商为了能获得高额销售利润,在本来是纯铜质量的网线中参入了其他廉价的金属成分,这样网线的成本就会下降,但网线本身的质量和性能却大不一样,表现出来的现象是网线线缆的质地不再那么柔软,网线的传输速度也大打折扣。要是在布线的过程中,反复弯曲这样的网线的话,网线里面的铜线缆可能就会被折断。当然如果发现网线太柔软的话,也要注意它可能是假冒伪劣产品。 3、测试网线的可燃烧性 一般来说组成网线的材料必须要求有抗燃烧性,不然的话出现个火灾什么的话,那就损失惨重了。因此大家在选择网线时,一定要 检查网线外皮的可燃烧性,以辨别真伪。在具体测试时,大家可以先用剪刀切取2厘米左右长度的网线外皮,然后用打火机对着外皮燃烧,正品网线的外皮会在焰火的烧烤之下,逐步被熔化变形,但外皮肯定不会自己燃烧起来;要是发现网线的外皮禁不住烈火的考验,一点就燃烧起来的话,那网线的传输速度再怎么高也应该放弃选择,毕竟这样的网线在布线工程中是很不安全的,使用它会留下很大的安全隐患。笔者曾经找来一段正品网线与伪劣网线,并同时用打火机点燃它们,发现6秒钟后,正品网线只是冒白烟并随着时间推移,逐步熔化变形,而伪劣网线不到2秒钟,就被轻易点燃了,而且伴有大量黑烟产生。 4、测试网线的抗温性 布线工程中对网线抵抗外界温度的变化有相当高的要求,不说能抵抗任何环境变化吧,至少网线不能在高温或者低温环 5 境下被软化或者被冻裂。()为了保证在高温环境下网线的性能不受影响,正品网线采用的外皮材料可以抵抗高达50度左右的高温考验,不会出现类似网线被软化或者变形的现象发生。如果截取一小段网线外皮,放在火炉旁边一段时间,发现该外皮比正常的外皮变软的话,就说明该网线的质量肯定不过硬。 5、识别网线外皮上的标志 在实际挑选网线的时候,有时缺少测试的环境或者条件,无法通过上面的对网线的质量或者材料进行测试时,大家不妨通过观察网线外皮上的标识来鉴别网线的真伪。通常情况下,正规品牌的网 线外皮上都有网线的种类标识以及厂家的商标,例如CAT5标识是表示该网线是五类线,CAT6标识就代表网线是六类线;如果网线的外皮什么标识也没有的话,大家就应该提高警惕,想办法创造条件,来按照上面的方法对网线进行测试鉴别。 6、测试网线的绕距 大家知道普通的双绞线是由四组相互缠绕的网线连接在一起的。所谓网线的绕距其实就是网线纽饶一节的长度,通常人们使用绕距来表示每对线对相互缠绕的紧密程度,而且为了能将每对线对相互之间产生的串扰程度降低到最小,常常将线对按逆时针方向紧密地缠绕在一起,而且每对线对采用的绕距是不应该相同的。但许多生产网线的奸商为了减少制作环节、降低成本,常常将四对线对按照同一绕距进行缠绕,甚至许多劣质网线的绕距竟然高达几个厘米,这样线对之间的串扰就大增,严重影响了网线的性能。 7、测试外皮的伸展性 考虑到网线在布线时经常需要弯曲,因此许多正规厂商在制作网线都给外皮留有了一定的伸展性,以保证网线在弯曲时不受损伤。因此大家双手用力拉正规网线时,发现外皮都具有伸展性。如果用力将网线外皮拉断,或者外皮在外力作用下,有裂缝现象的话,就说明该网线的质量有问题。 6 篇二 : 光纤收发器的分类和作用 光纤收发器是一种将短距离的双绞线电信号和长距离的光信 号进行互换的以太网传输媒体转换单元,在很多地方也被称之为光电转换器。产品一般应用在以太网电缆无法覆盖、必须使用光纤来延长传输距离的实际网络环境中,且通常定位于光纤宽带城域网的接入层应用;同时在帮助把光纤最后一公里线路连接到城域网和更外层的网络上也发挥了巨大的作用。 光纤收发器分类: 按光纤性质分类: 单模光纤收发器:传输距离20公里至120公里 多模光纤收发器:传输距离2公里到5公里 按光纤来分,可以分为多模光纤收发器和单模光纤收发器。由于使用的光纤不同,收发器所能传输的距离也不一样,多模收发器一般的传输距离在2公里到5公里之间,而单模收发器覆盖的范围可以从20公里至120公里。需要指出的是因传输距离的不同,光纤收发器本身的发射功率、接收灵敏度和使用波长也会不一样。 如5公里光纤收发器的发射功率一般在-20,-14db之间,接收灵敏度为-30db,使用1310nm的波长;而120公里光纤收发器的发射功率多在-5,0dB之间,接收灵敏度为-38dB,使用1550nm的波长。 按所需光纤分类: 单纤光纤收发器:接收发送的数据在一根光纤上传输 双纤光纤收发器:接收发送的数据在一对光纤上传输 顾名思义,单纤设备可以节省一半的光纤,即在一根光纤上实现数据的接收和发送,在光纤资源紧张的地方十分适用。这类产品采 用了波分复用的技术,使用的波长多为1310nm和1550nm。但由于单纤收发器产品没有统一国际,因此不同厂商产品在互联互通时可能会存在不兼容的情况。另外由于使用了波分复用,单纤收发器产品普遍存在信号衰耗大的特点。目前市面上的光纤收发器多为双纤产品,此类产品较为成熟和稳定,但需要更多的光纤。 本文由北京电信通整理发表
/
本文档为【[光纤收发器的作用]光纤收发器应用简要介绍】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索