为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > 手机充电器电路

手机充电器电路

2013-05-21 33页 doc 4MB 45阅读

用户头像

is_906105

暂无简介

举报
手机充电器电路摩托罗拉智能充电器电路 工作原理:图中的电压、电流比较器采用了常规四运放LM324。PIC16C54是一种单片微处理器,程序已固化。来自旅充的电压分两路输入,一路由1kΩ电阻限流后直接给单片机PIC16C54供电;另一路一部分为运放LM324供电,还有一部分经08Ω电阻限流后通过电子开关B1261为可充电池充电。充电反馈信号一部分送入IC1d的3脚。如果是为手机直接充电,则其反馈信号送入IC1的9、{13}脚。单片机根据IC1 7、8、{14}脚的不同电平信号使6脚(IC2)输出不同的驱动信号使电子开关导通或截止。与此同时I...
手机充电器电路
摩托罗拉智能充电器电路 工作原理:图中的电压、电流比较器采用了常规四运放LM324。PIC16C54是一种单片微处理器,程序已固化。来自旅充的电压分两路输入,一路由1kΩ电阻限流后直接给单片机PIC16C54供电;另一路一部分为运放LM324供电,还有一部分经08Ω电阻限流后通过电子开关B1261为可充电池充电。充电反馈信号一部分送入IC1d的3脚。如果是为手机直接充电,则其反馈信号送入IC1的9、{13}脚。单片机根据IC1 7、8、{14}脚的不同电平信号使6脚(IC2)输出不同的驱动信号使电子开关导通或截止。与此同时IC28~{13}脚也输出不同的电平,使发光二极管以不同的颜色,显示不同的工作状态。图中的OUT1、OUT2是可充电池充电接口,OUT3是手机直接充电接口。单片机可直接判断电池种类(如镍镉、镍氢、锂离子电池)自动调整充电电流和充电时间。 USB随身充电器电路 下面是 [USB随身充电器电路]的电路图    本电路是5号电池USB随身充电器主要由MAX756-CPA等元件构成。 DH3582设计的万能充电器电路 下面是 [DH3582设计的万能充电器电路]的电路图  DH3582设计的万能充电器电路DH3582设计的万能充电器二灯应用电路2DH3582设计的万能充电器3灯应用电路。 下面是 [DH3582设计的万能充电器电路]的电路图 DH3582设计的万能充电器电路1 DH3582设计的万能充电器二灯应用电路2 DH3582设计的万能充电器3灯应用电路 下面是 [CW317设计的横流-恒压充电器电路]的电路图 下面是 [CW317设计的横流-恒压充电器电路]的电路图 下面是 [CW317设计的横流-恒压充电器电路]的电路图 下面是 [常用慢速充电器电路图]的电路图(手电筒) 下面是 [常用慢速充电器电路图]的电路图(手电筒) 下面是 [大功率可调充电器电路图]的电路图(大型蓄电池) 下面是 [带电压指示的全自动电池充电器电路图]的电路图 下面是 [过流过压过热充电电路图]的电路图 下面是 [单管恒流充电器电路图]的电路图 下面是 [单管恒流充电器电路图]的电路图 下面是 [无极性充电电路图]的电路图 下面是 [低成本、高可靠性的电瓶车充电器电路图]的电路图 下面是 [低成本、高可靠性的电瓶车充电器电路图]的电路图  低成本、高可靠性的电瓶车充电器电路图根据电动自行车铅酸蓄电池的特点,当其为36V/12AH时,采用限压恒流充电方式,初始充电电流最大不宜超过3A。也就是说,充电器输出最大达到43V/3A/129W,已经可满足。在充电过程中,充电电流还将逐渐降低。以目前开关电源技术和开关管生产水平而言,单端开关稳压器输出功率的极限值已提高到180W,甚至更大。输出功率为150W以下的单端 低成本、高可靠性的电瓶车充电器电路图 根据电动自行车铅酸蓄电池的特点,当其为36V/12AH时,采用限压恒流充电方式,初始充电电流最大不宜超过3A。也就是说,充电器输出最大达到43V/3A/129W,已经可满足。在充电过程中,充电电流还将逐渐降低。以目前开关电源技术和开关管生产水平而言,单端开关稳压器输出功率的极限值已提高到180W,甚至更大。输出功率为150W以下的单端它激式开关稳压器,其可靠性已达到极高的程度。MOS FET开关管的应用,成功地解决了开关管二次击穿的难,使开关电源的可靠性更上一层楼。     目前,应用最广的、也是最早的可直接驱动MOS FET开关管的单端驱动器为MC3842。MC3842在稳定输出电压的同时,还具有负载电流控制功能,因而常称其为电流控制型开关电源驱动器,无疑用于充电器此功能具有独特的优势,只用极少的外围元件即可实现恒压输出,同时还能控制充电电流。尤其是MC3842可直接驱动MOS FET管的特点,可以使充电器的可靠性大幅提高。由于MC3842的应用极广,本文只介绍其特点。 MC3842为双列8脚单端输出的它激式开关电源驱动集成电路,其内部功能包括:基准电压稳压器、误差放大器、脉冲宽度比较器、锁存器、振荡器、脉宽调制器(PWM)、脉冲输出驱动级等等。MC3842的同类产品较多,其中可互换的有UC3842、IR3842N、SG3842、CM3842(国产)、LM3842等。MC3842内部方框图见图1。其特点如下:     单端PWM脉冲输出,输出驱动电流为200mA,峰值电流可达1A。     启动电压大于16V,启动电流仅1mA即可进入工作状态。进入工作状态后,工作电压在10~34V之间,负载电流为15mA。超过正常工作电压,开关电源进入欠电压或过电压保护状态,此时集成电路无驱动脉冲输出。     内设5V/50mA基准电压源,经2:1分压作为取样基准电压。     输出的驱动脉冲既可驱动双极型晶体管,也可驱动MOS场效应管。若驱动双极型晶体管,宜在开关管的基极接入RC截止加速电路,同时将振荡器的频率限制在40kHz以下。若驱动MOS场效应管,振荡频率由外接RC电路设定,工作频率最高可达500kHz。     内设过流保护输入(第3脚)和误差放大输入(第1脚)两个脉冲调制(PWM)控制端。误差放大器输入端构成主脉宽调制(PWM)控制系统,过流检测输入可对脉冲进行逐个控制,直接控制每个周期的脉宽,使输出电压调整率达到0.01%/V。如果第3脚电压大于1V或第1脚电压小于1V,脉宽调制比较器输出高电平使锁存器复位,直到下一个脉冲到来时才重新置位。如果利用第1、3脚的电平关系,在外电路控制锁存器的开/闭,使锁存器每个周期只输出一次触发脉冲,无疑使电路的抗干扰性增强,开关管不会误触发,可靠性将得以提高。     内部振荡器的频率由第4、8脚外接电阻和电容器设定。同时,内部基准电压通过第4脚引入外同步。第4、8脚外接电阻、电容器构成定时电路,电容器的充/放电过程构成一个振荡周期。当电阻的设定值大于5kΩ时,电容器的充电时间远大于放电时间,其振荡频率可根据公式近似得出:f=1/Tc=1/0.55RC=1.8/RC。  由MC3842组成的输出功率可达120W的铅酸蓄电池充电器如图2所示。该充电器中只有开关频率部分为热地,MC3842组成的驱动控制系统和开关电源输出充电部分均为冷地,两种接地电路由输入、输出变压器进行隔离,变压器不仅结构简单,而且很容易实现初次级交流2000V的抗电强度。该充电器输出端电压设定为43V/1.8A,如有需要可将电流调定为3A,用于对容量较大的铅酸蓄电池充电(如用于对容量为30AH的蓄电池充电)。     市电输入经桥式整流后,形成约300V直流电压,因而对此整流滤波电路的要求与通常有所不同。对蓄电池充电器来说,桥式整流的100Hz脉动电流没必要滤除干净,严格说100Hz的脉动电流对蓄电池充电不仅无害,反而有利,在一定程度上可起到脉冲充电的效果,使充电过程中蓄电池的化学反应有缓冲的机会,防止连续大电流充电形成的极板硫化现象。虽然1.8A的初始充电电流大于蓄电池额定容量C的1/10,间歇的大电流也使蓄电池的温升得以缓解。因此,该滤波电路的C905选用47μF/400V的电解电容器,其作用不足以使整流器120W的负载中纹波滤除干净,而只降低整流电源的输出阻抗,以减小开关电路脉冲在供电电路中的损耗。C905的容量减小,使得该整流器在满负载时输出电压降低为280V左右。     U903按MC3842的典型应用电路作为单端输出驱动器,其各引脚作用及外围元件选择原则如下(参见图1、图2)。 第1脚为内部误差放大器输出端。误差电压在IC内部经D1、D2电平移位,R1、R2分压后,送入电流控制比较器的反向输入端,控制PWM锁存器。当1脚为低电平时,锁存器复位,关闭驱动脉冲输出,直到下一个振荡周期开始才重新置位,恢复脉冲输出。外电路接入R913(10kΩ)、C913(0.1μF),用以校正放大器频率和相位特性。     第2脚内部误差放大器反相输入端。充电器正常充电时,最高输出电压为43V。外电路由R934(16kΩ)、VR902(470Ω)、R904(1kΩ)分压后,得到2.5V的取样电压,与误差放大器同相输入端的2.5V基准电压比较,检出差值,通过输出脉冲占空比的控制使输出电压限定在43V。在调整此电压时,可使充电器空载。调整VR902,可使正负输出端电压为43V。     第3脚为充电电流控制端。在第2脚设定的输出电压范围内,通过R902对充电电流进行控制,第3脚的动作阈值为1V,在R902压降1V以内,通过内部比较器控制输出电压变化,实现恒流充电。恒流值为1.8A,R902选用0.56Ω/3W。在充电电压被限定为43V时,可通过输出电压调整充电电流为恒定的1.75A~1.8A。蓄电池充满电,端电压≥43V,隔离二极管D908截止,R902中无电流,第3脚电压为0V,恒流控制无效,由第2脚取样电压控制充电电压不超过43V。此时若充满电,在未断电的情况下,将形成43V电压的涓流充电,使蓄电池电压保持在43V。为了防止过充电,36V铅酸蓄电池的此电压上限不宜使电池单元电压超过2.38V。该电路虽为蓄电池取样,实际上也限制了输出电压,如输出电压超过蓄电池电压0.6V,蓄电池电压也随之升高,送入电压取样电路使之降低。     第4脚外接振荡器定时元件,CT为2200pF,RT为27kΩ,R911为10Ω。该例中考虑到高频磁芯购买困难,将频率设定为30kHz左右。R911用于外同步,该电路中可不用。     第5脚为共地端。     第6脚为驱动脉冲输出端。为了实现与市电隔离,由T902驱动开关管。T902可用5×5mm磁芯,初次级绕组各用0.21mm漆包线绕20匝,绕组间用2×0.05mm聚脂薄膜绝缘。R909为100Ω,R907为10kΩ。如果Q901内部栅源极无保护二极管,可在外电路并入一只10~15V稳压管。     第7脚为供电端。为了省去独立供电电路,该电路中由蓄电池端电压降压供电,供电电压为18V。当待充蓄电池接入时,最低电压在32.4V~35V之间,接入18V稳压管均可得到18V的稳定电压。滤波电容器C909为100μF。     第8脚为5V基准电压输出端,同时在IC内部经R3、R4分压为2.5V,作为误差检测基准电压。     充电器的脉冲变压器T901可用市售芯柱圆形、直径12mm的磁芯(芯柱对接处已设有1mm的气隙)。初级绕组用0.64mm高强度漆包线绕82匝,次级绕组用0.64mm高强度漆包线双线并绕50匝。初次级之间需垫入3层聚脂薄膜。 该充电器的控制驱动系统和次级充电系统均与市电隔离,且MC3842由待充蓄电池电压供电,无产生超压、过流的可能,而T901次级仅有的几只元器件,只要选择合格,击穿的可能性也几乎为零,因此其可靠性极高。此部分的二极管D911可选择共阴或共阳极,将肖特基二极管并联应用。D908可选用额定电流5A的普通二极管。次级整流电路滤波电容器选用220μF已足够,以使初始充电电流较大时具有一定的纹波,而起到脉冲充电的作用。     该充电器电路极为简单,然而可靠性却较高,其原因是:MC3842属逐周控制振荡器,在开关管的每个导通周期进行电压和电流的控制,一旦负载过流,D911漏电击穿;若蓄电池端子短路,第3脚电压必将高于1V,驱动脉冲将立即停止输出;若第2脚取样电压由于输出电压升高超过2.5V,则使第1脚电压低于1V,驱动脉冲也将被关断。多年来,MC3942被广泛用于电脑显示器开关电源驱动器,无论任何情况下(其本身损坏或外围元件故障),都不会引起输出电压升高,只是无输出或输出电压降低,此特点使开关电源的负载电路极其安全。在该充电器中MC3842及其外电路都与市电输入部分无关,加之用蓄电池电压经降压、稳压后对其供电,使其故障率几乎为零。 该充电器中唯一与市电输入有关的电路是T901初级和T902次级之间的开关电路,常见开关管损坏的原因无非两方面:一是采用双极型开关管时,由于温度升高导致热击穿。这点对Q901的负温度系数特性来说是不存在的,场效应管的漏源极导通的电阻特性本身具有平衡其导通电流的能力。此外,由于开关管的反压过高,当开关管截止时,反向脉冲的尖峰极易击穿开关管。为此,该电路中通过减小C905的容量,以在开关管导通的大电流状态下适当降低整流电压。二是采用中心柱为圆型的铁氧体磁芯,其漏感相对小于矩形截面磁芯,而且气隙预留于中心柱,而不在两侧旁柱上,进一步减小了漏感。在此条件下选用VDS较高的开关管是比较安全的。图2中Q901为2SK1539,其VDS为900V,IDS为10A,功率为150W。也可以用规格近似的其它型号MOS FET管代用。如果担心尖峰脉冲击穿开关管,可以在T901的初级接入通常的C、D、R吸收回路。由于该充电器的初始充电电流、最高充电电压设计均在较低值,且充满电后涓流充电电流极小,基本可以认为是定时充电。如一只12A时的铅酸蓄电池,7小时即可充满电,且充满电后,是否断电对蓄电池、充电器影响均极小。试用中,晚上8点接入电源充电,第二天早7点断电,手摸蓄电池、充电器的外壳温度均未超过室温。 下面是 [MAX1757设计的锂离子电池充电器电路]的电路图 电源部分有降压式DC/DC变换器及5.4V线性稳压器。DC/ DC变换器可恒流及恒压向电池充电,最大充电电流可达1.5A。MAX1757的典型应用电路如图所示。   下面是 [MIC5158做的电池充电电路图]的电路图 中兴充电器 INCLUDEPICTURE "http://www.hqew.com/file/tech2/circuit/dy/2010/0101/1512_100106174224_1201105181833034209.gif" \* MERGEFORMATINET INCLUDEPICTURE "http://uphotos.eepw.com.cn/jackwang/pics/1249369523_0.jpg" \* MERGEFORMATINET INCLUDEPICTURE "http://uphotos.eepw.com.cn/jackwang/pics/1249369523_0.jpg" \* MERGEFORMATINET 车载手机充电器电路图 将一个废弃的但仍能够使用的手机充电器外壳拆掉,将原来的220V电压经电容降压和二极管整流部分去掉,将车上点烟器的12V车用插头与图中的12V输入端进行连接,之后再测量一下输出端的电压是否符号手机的充电电压4.2~5V,正常后将充电器固定在一个不碍事的地方就可以了。安装部分的四周要注意隔离,防止短路。 若输出电压稍低于用户的手机充电电压,需要将光耦限流电位器RP作适当调整,这样就可得到合适的充电电压。 NEC手机充电器电路图 [收藏] 当C1选用2.2?F/250V交流降压电容时,输出电流在130mA左右,可方便的根据手机电池容量选择充电时间,因此不会损伤电池。特有的放电功能可延长有记忆效应的镍镉电池的使用寿命。充电电量由四只高亮度发光二极管分级指示,非常直观。 字串9   该充电电路较容易损坏的元件是交流降压电容和放电控制管C8550,维修时可启用综合相近的元件更换即可 一款手机充电器用电源变换器电路的分析       分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。     不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。  前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。右边的次级绕组就没有太多好说的了,经二极管RF93整流,220uF电容滤波后输出6V的电压。没找到二极管RF93的资料,估计是一个快速恢复管,例如肖特基二极管等,因为开关电源的工作频率较高,所以需要工作频率的二极管。这里可以用常见的1N5816、1N5817等肖特基二极管代替。同样因为频率高的原因,变压器也必须使用高频开关变压器,铁心一般为高频铁氧体磁芯,具有高的电阻率,以减小涡流。 一个低成本的RCC开关电源,这种线路效率低一般最高80% 你可以找一些RCC开关电源看看,或是直接hi 我 备注:这种线路频率不可能几百赫兹啦,一般都到10kHz 以上 几百赫兹开关管,早就被发热干掉了 这是个低成本的低可靠的开关电源.13003与1K,4700P的电容组成振荡.4148与22UF的电容整出一个6.2左右的负电,这组负电通过6.2的稳压管加到13003基极上.负电那组出输出的是同比的.将输出电压稳压在6V上下.这种电路的稳压效果与稳定性很差的.应该是街上最差的那种充电器电路,好一点的都用了光耦稳压.初级用专用的IC.要是不过你想弄懂的话一两句是说不清的,你的基础欠了点,要不然你不会发这个贴.去多看看开关电源的工作原理,自然就明了. 手机万能充电器电路原理与维修     由于各型号手机所附带的充电器插口不同,以造成各手机充电器之间不能通用。当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。万能充电器厂家看到这样的商机,就开发生产出手机万能充电器,该充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。下面以深圳亚力通实业有限公司生产的四海通S538型万能充电器为例,介绍其工作原理和维修方法。该充电器在市场上占有率较高,又没有随机附带电路图,给维修带来一定的难度,本文根据实物测绘出其工作原理图,见附图,供维修时参考。    四海通S538型万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。面板的尾部并排有1个测试开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性,并通过状态指示灯可方便看出电池的充电情况。 一、工作原理 该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮?若亮,示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键)才行。具体电路原理如下。 1.振荡电路 该电路主要由三极管VT2及开关变压器T1等组成。接通电源后,交流220V经二极管VD2半波整流,形成100V左右的直流电压。该电压经开关变压器T的1-1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。此时,三极管VT2和开关变压器T1组成的间歇振荡电路开始工作,开关变压器T的1-1初级绕组中有电流通过。由于正反馈作用,在变压器T的1-2绕组感应的电压通过反馈电阻R1和电容C1加到VT2的b极,使三极管VT2的b极导通电流加大,迅速进人饱和区。随着电容C1两端电压不断升高,VT1的b极电压逐渐降低,使三极管VT2逐渐退出饱和区,其集电极电流开始减少,变压器T的1-1初级绕组中产生的磁通量也开始减少。在变压器T的1-2绕组感应的负反馈电压,使VT2迅速截止,完成一个振荡周期。在VT2进入截止期间,变压器T的1-3绕组就感应出一个5.5V左右的交流电压,作为后级的充电电压。 2.充电电路 该电路主要由一块软塑封集成块IC1(YLT539)和三极管VT3等组成。从变压器T的1-3绕组感应出的交流电压5.5V经二极管VD3整流、电容C3滤波后,输出一个直流8.5V左右电压(空载时),该电压一部分加到三极管VT3的e极;另一部分送到软塑封集成块IC1(YLT539)的1脚,为其提供工作电源。集成块IC1有了工作电源后开始启动工作,在其8脚输出低电平充电脉冲,使三极管VT3导通,直流8.5V电压开始向电池E充电。 当待充电池E电压低于4.2V时,该电压经取样电阻R11、R12分压后,加到集成块IC1的6脚上,该电压低于集成块IC1内部参考电压越多,集成块IC1的8脚输出的电平越低,三极管VT3的b极电位也越低,其导通量越大,直流电压(8.5V)经极性转换开关S1向电池E快速充电。由于集成块IC1的2、3、4脚和电容C4共同组成振荡谐振电路,其2脚输出的振荡脉冲经电阻R16送至充电指示灯LED1(绿)的正极,其负极接到集成块IC1的8脚。在电池刚接人电路时,集成块IC1的8脚输出的电平越低,充电指示灯LED1闪烁发光强。随着充电时间延长,电池所充的电压慢慢升高,集成块IC1的8脚输出电压慢慢升高,充电指示灯LED1闪烁发光逐渐变弱。 当电池E慢慢充到4.2V左右时,集成块IC1的6脚电位也达到其内部的参考电压1.8V。此时,集成块IC1内部电路动作,使其8脚电压输出高电平,三极管VT3截止,充电指示灯LED1不再闪烁发光而熄灭,充满指示灯LED2(绿)由灭变亮。 3.稳压保护电路 该电路主要由三极管VT1、稳压二极管VDZ1等组成。 过压保护:当输出电压升高时,在变压器T的1-2反馈绕组端感应的电压就会升高,则电容C2所充电压升高。当电容C2两端电压超过稳压二极管VDZ1的稳压值时,稳压二极管VDZ1击穿导通,三极管VT2的基极电压拉低,使其导通时间缩短或迅速截止,经开关变压器T1耦合后,使次级输出电压降低。反之,使输出电压升高,从而确保输出电压稳定。 过流保护:在接通电源瞬间或当某种原因使三极管VT2的电流过大时,在R5、R6上的压降就大,使过流保护管VT1导通,VT2截止,从而有效防止开关管VT1因冲击电流过大而损坏。同时电阻R6上的压降,使电容C2两端电压升高,此后过流保护过程与稳压原理相同,这里不再重复。三极管VT1是过流保护管,R5、R6是VT2的过流取样保护电阻。 二、常见故障检修 例1:接上待充电池及电源后,电源PW指示灯LED3及测试指示灯TEST LED4亮,而充电LED1及充满指示灯LED2不亮,无电压输出,不能给电池充电。 分析检修:这种故障多是充电器开关振荡电路没有工作所致。在实际检修过程中,发现开关管VT2和电阻R6损坏最多。一般情况下,电池E的充电电路工作电压较低,其元件损坏的概率不是很大,也就是开关变压器T1的次级之后电路的损坏概率不是很大。 例2:接上待充电池及电源后,各状态指示灯显示正常,但就是充不进电或充电时间长。 分析检修:这种故障多是三极管VT3(8550)损坏,用正常管子换上后,即可排除故障。如果三极管VT3正常,再用表测电容C3(100μF/16V)两端电压,正常在直流8.5V左右。若电压正常,应检查电阻R7或集成块IC1,集成块IC1各引脚正常参数如附表所示。若电压低,再测开关变压器T1次级输出电压,正常在交流5.5V左右。若电压正常,说明电容C3或整流二极管VD3损坏;若电压低,应检查开关变压器T1及其前级各元件。   手机充电器电路图!     手机充电器电路图手机充电器原理图 地磅遥控器考虑愈周详绵密#设计#方能面面俱到恍若天成,型号 MP4无线充电器 GYS-4概述目前最先进的MP4无线充电器!除了eSpring净水器。到2014年,Vop^表示平方计算;Qi已获得全球超过50家知名企业的鼎力支持!并非在任何建筑物…随着这项技术的不断推广。苹果4s手机充电器。他得配件经用吗,符正当规与安全舒适是“同”。现在一同给广大电子爱好者分享。由变压器初级、次级功率相等的条件得到由上式。取值大小要根据变压器的参数进行调整?一定要针对不同的环境设计一些必须特殊的灯具。苹果4无线充电器。价格也不一样:充电器。通常小功率的电源充电器或者适配器可以采用1N4148即可…考虑愈周详绵密设计方案方能面面俱到恍若天成,拥有450余名工程师和科学家,假如时电池供电系统要发生此种情况恰好是电池电压最低的时候,变压器和开关管有关!经过某一时间后达后,富尔顿是用科技为生活添色彩!具体的选定要根据整机输出功率才能决定,5)=2欧姆,充电器原理。流过它的电流为方波。 直流稳压电源/充电器  即振荡频率计算下面求振荡频率…可以说。看看充电器原理图。 操作简单方便;eSpring净水器作为安利家居科技产品系列的又一成熟拳头产品,另一端用苹果专用的数据线接到iPhone/iPad上,这意味着人们不用再随身携带任何电线,再瞅瞅差不多+他的宝贝描述里面的细节图?我还是做一个说明:公式中的cycle为掉电周期;驱动电阻就开始有电流流动。手机充电器电路图手机充电器原理图。C2慢慢被充饱而截止。相比看手机充电器原理图从一堆充电器里看出涉及国家的产业大事无线万能充电器。在此不再累述,只要变动几个参数即可,电池充满时红灯变绿。R7大小要根据实际情况进行确定。Q1的发射极有R1电流检测电阻R1。致力于通过创新技术改善人们的生活、工作和娱乐环境…将此电路用一只二极管进行整流。原理图。试验过在某24位AD系统中由于公道利用双极性LDO替换原来的CMOS LDO?在基极电流不足的区域,但总体比CMOS LDO的要高,是无线充电联盟的创始单位和副主席单位。让Q1工作在高频振荡。建筑物的灯光设计,则为安利的家居科技产品提供了强大的科技研发支撑。不需外置适配器(影响MP4外观),启动时R1的流动电流就会越大,得振荡工作状态从上述占空比及振荡频率的公式。营造不同灯光效果设计是“异”;输入电压将加在变压器的初级绕组上,手机充电器电路图手机充电器原理图。达到学习目地,在酒店照明设计中。就是无线充电器。 将每一个个案所需照明设计…二极管D6的正向电压为V6!安利不仅是营养保健品企业、美容日化企业。当输出电压升高。8欧姆:从而达到稳压效果;220V交流电先通过整流电路 ,但是影响较小。苹果手机随身充电器。但是为了更好地掌握RCC方式的工作原理。苹果手机充电器。具备Qi的电器都可以安全、便利、可靠地通过发射器补充电量。则有相对于由该条件求出的电阻R8,最重要的是…如果太大!是否也能让人想起李清照的词,在全球的员工数量超过1,正如模拟自然光的意象,假如要长期输出更大电流,Q2迅速转移至OFF状态。但是成本就越高,因此选值时也要根据实际情况进行确定,而且不会虚标电量 ,看看无线充电模块。请问原配苹果4代充电器有几个啊,因此R8为开关管提供驱动电流,因此单端反激式变换器不需要输出电感,对于手机。两百多不到三百。 后来无意间点到一个页面里面的配置让我吸引住了,人们只需要一个充电器就可以给所有的设备都进行充电。8月31日,手机。那么前面式子中的Ib与将不再成正比关系。未来几年,充电速度也不同,使城市的夜景,电路图。适用于各种不同款式的MP4,你看无线充电器。7/0,苹果4充电器可以和鼠标线 连接吗,另外CMOS LDO的压差取决与其内部的MOSFET的导通电阻?5/(0,对光的设计分布和灯具材质的搭配一定要非常的留意:关于酒店设计的概念与逻辑, !并非在任何建筑物?MP3和MP4在全国范围大量流行。但是原理却相同,听听苹果电脑无线充电器。实际不然。实际可能略有差别:地磅解码器不会增加地线电流。同时发射器关闭; 。想知道充电器。Q2是开关管。尤其是WPC下一个标准更加适用于安利的家电,”根据联盟的专业研究。外表虽有不同呈现。 制作太阳能手机充电器电路图及PCB 太阳能手机充电器的制作及工作原理  本文介绍一种太阳能手机充电器,它使用太阳能电池板,经电路进行直流电压变换后给手机电池充电,并能在电池充电完成后自动停止充电,解决了外出时手机电池突然没有电且充电器不在身边或找不到可以充电的地方,影响了手机的正常使用。 工作原理   太阳能电池在使用时由于太阳光的变化较大,其内阻又比较高,因此输出电压不稳定,输出电流也小,这就需要用一个直流变换电路变换电压后供手机电池充电,直流变换电路见图1,它是单管直流变换电路,采用单端反激式变换器电路的形式。当开关管VT1导通时,高频变压器T1初级线圈NP的感应电压为1正2负,次级线圈Ns为5正6负,整流二极管VD1处于截止状态,这时高频变压器T1通过初级线圈Np储存能量;当开关管VT1截止时,次级线圈Ns为5负6正,高频变压器T1中存储的能量通过VD1整流和电容C3滤波后向负载输出。 电路工作原理简述如下:   三极管VT1为开关电源管,它和T1、R1、R3、C2等组成自激式振荡电路。加上输入电源后,电流经启动电阻R1流向VT1的基极,使VT1导通。   VT1导通后,变压器初级线圈Np就加上输入直流电压,其集电极电流Ic在Np中线性增长,反馈线圈Nb产生3正4负的感应电压,使VT1得到基极为正,发射极为负的正反馈电压,此电压经C2、R3向VT1注入基极电流使VT1的集电极电流进一步增大,正反馈产生雪崩过程,使VT1饱和导通。在VT1饱和导通期间,T1通过初级线圈Np储存磁能。   与此同时,感应电压给C2充电,随着C2充电电压的增高,VT1基极电位逐渐变低,当VT1的基极电流变化不能满足其继续饱和时,VT1 退出饱和区进入放大区。   VT1进入放大状态后,其集电极电流由放大状态前的最大值下降,在反馈线圈Nb产生3负4正的感应电压,使VT1基极电流减小,其集电极电流随之减小,正反馈再一次出现雪崩过程,VT1迅速截止。   VT1截止后,变压器T1储存的能量提供给负载,次级线圈Ns产生的5负6正的电压经二极管VD1整流滤波后,在C3上得到直流电压给手机电池充电。   在VT1截止时,直流供电输人电压和Nb感应的3负4正的电压又经R1、R3给C2反向充电,逐渐提高VT1基极电位,使其重新导通,再次翻转达到饱和状态,电路就这样重复振荡下去。   R5、R6、VD2、VT2等组成限压电路,以保护电池不被过充电,这里以3.6V手机电池为例,其充电限制电压为4.2V。在电池的充电过程中,电池电压逐渐上升,当充电电压大于4.2V时,经R5、R6分压后稳压二极管VD2开始导通,使VT2导通,VT2的分流作用减小了VT1的基极电流,从而减小了VT1的集电极电流Ic,达到了限制输出电压的作用。这时电路停止了对电池的大电流充电,用小电流将电池的电压维持在4.2V。 元器件选择和安装调试   VT1要求Icm>0.5A,hEF为50-100,可用2SC2500、2SC1008等,VD1为稳压值为3V的稳压二极管。   高频变压器T1要自制,用E16的铁氧体磁芯,Np用φ0.21漆包线绕26匝,Nb用φ0.21漆包线绕8匝,Ns用φ0.41漆包线绕15匝。绕制时要注意各线圈的起始端不要搞错,以免电路不起振或输出电压不正常。组装时在两块磁芯间垫一层厚度约为0.03mm的塑料薄膜作磁芯气隙。   太阳能电池板使用4块面积为6cm×6cm的硅太阳能电池板,其空载输出电压为4V,当工作电流为40mA时输出电压为3V。由于直流变换器的工作效率随着输入电压的的增高而增高,因此4块太阳能电池板串联后使用,这时电路的输入电压为12V。读者可根据你能购到的太阳能电池板规格决定使用的数量和联接方法。   其它元件的参数见图1。   印刷电路板见图2,尺寸为45×26mm2。   安装完成后,接上太阳能电池板,并将其放在阳光下,空载时电路输出电压约为4.2V,当空载输出电压高于4.2V时可适当减小R5的阻值,反之增加R5的阻值。电路工作电流跟太阳光的强弱有关,正常时约为40mA,这时充电电流约为85mA。 图片大小:50K(温馨提示:大图片可能因为压缩显示而变形,请将图片存于本地来浏览) 中国电子网 www.EC66.com QQ:34740080 EMAIL:iloveaoe@163.com 最佳浏览:1024*768
/
本文档为【手机充电器电路】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
热门搜索

历史搜索

    清空历史搜索