为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

静压桩机的施工原理和常见问题分析,专业重要资料

2017-09-19 5页 doc 28KB 67阅读

用户头像

is_105949

暂无简介

举报
静压桩机的施工原理和常见问题分析,专业重要资料静压桩的沉桩机理及常见问题及处理 1 前 言 至今,管桩在厦门地区的应用已有十多年的历史,特别是近几年,随着福建省境内管桩生产企业的不断涌现,管桩产量大幅提高,价格也随之下降,促使管桩特别是预应力高强混凝土管桩在厦门的工业与民用建筑中得到广泛应用。施工方法主要采用静压抱压式沉桩,静压法施工是通过静力压桩机的压桩机构以压桩机自重和机架上的配重提供反力而将桩压入土中的沉桩工艺。由于这种方法具有无噪音、无振动、无冲击力等优点,适应对绿色岩土工程的要求;同时压桩桩型一般选用预应力管桩,该桩作基础具有工艺简明,质量可靠,造价低,检测方...
静压桩机的施工原理和常见问题分析,专业重要资料
静压桩的沉桩机理及常见问及处理 1 前 言 至今,管桩在厦门地区的应用已有十多年的历史,特别是近几年,随着福建省境内管桩生产企业的不断涌现,管桩产量大幅提高,价格也随之下降,促使管桩特别是预应力高强混凝土管桩在厦门的工业与民用建筑中得到广泛应用。施工方法主要采用静压抱压式沉桩,静压法施工是通过静力压桩机的压桩机构以压桩机自重和机架上的配重提供反力而将桩压入土中的沉桩工艺。由于这种方法具有无噪音、无振动、无冲击力等优点,适应对绿色岩土工程的要求;同时压桩桩型一般选用预应力管桩,该桩作基础具有工艺简明,质量可靠,造价低,检测方便的特性。两者的结合便大大推动了静压管桩在厦门地区的应用。原来厦门地区管桩设计和施工主要参照广东省《预应力混凝土管桩基础基础技术规程》DBJ/T15-22-98,由于管桩基础设计和施工的特殊性,厦门地区根据国家现行的有关标准、、在总结厦门地区勘察、设计、施工及工程质量验收的基础上,制定了厦门地区管桩技术规程《建筑预应力混凝土管桩基础技术规程》DBJ13-59-2004(2004-09-01实施)。在根据规程设计和施工的基础上,也希望对静压桩的沉桩机理及工程实践中的应用有进一步的了解,本文为此作一介绍,与大家共勉。 2 静压桩的设计 桩基础设计,应根据建筑物特点,仔细了解地质资料提供的场地土的工程特点,合理选择桩径,主要包括以下计算或验算:(1)、根据桩基的使用功能和受力特征进行桩基的竖向抗压或抗拔承载力计算;(2)、对经常受水平荷载作用的高层建筑,应进行水平承载力计算;(3)、桩身承载力验算;(4)、当桩端平面下存在软弱下卧层时,应验算软弱下卧层的承载力;(5)、按照先行国家标准,进行桩基础沉降验算;(5)、承台内力与承载力验算。 桩端持力层为全风化岩或强风化岩,单桩竖向承载力特征值一般由桩身强度控制,抗拔承载力一般由桩身强度控制。当桩端平面下存在软弱下卧层时,应慎重计算,同时桩端持力层厚度应满足要求,如太薄,设计时应考虑被穿越的可能性。 3 静压桩沉桩机理 沉桩施工时,桩尖“刺入”土体中时原状土的初应力状态受到破坏,造成桩尖下土体的压缩变形,土体对桩尖产生相应阻力,随着桩贯入压力的增大,当桩尖处土体所受应力超过其抗剪强度时,土体发生急剧变形而达到极限破坏,土体产生塑性流动(粘性土)或挤密侧移和下拖(砂土),在地表处,粘性土体会向上隆起,砂性土则会被拖带下沉。在地面深处由于上覆土层的压力,土体主要向桩周水平方向挤开,使贴近桩周处土体结构完全破坏。由于较大的辐射向压力的作用也使邻近桩周处土体受到较大扰动影响,此时,桩身必然会受到土体的强大法向抗力所引起的桩周摩阻力和桩尖阻力的抵抗,当桩顶的静压力大于沉桩时的这些抵抗阻力,桩将继续“刺入”下沉。反之,则停止下沉。 压桩时,地基土体受到强烈扰动,桩周土体的实际抗剪强度与地基土体的静态抗剪强度有很大差异。随着桩的沉入,桩与桩周土体之间将出现相对剪切位移,由于土体的抗剪强度和桩土之间的粘着力作用,土体对桩周表面产生摩阻力。当桩周土质较硬时,剪切面发生在桩与土的接触面上;当桩周土体较软时,剪切面一般发生在邻近于桩表面处的土体内,粘性土中随着桩的沉入,桩周土体的抗剪强度逐渐下降,直至降低到重塑强度。砂性土中,除松砂外,抗剪强度变化不大,各土层作用于桩上的桩侧摩阻力并不是一个常值,而是一个随着桩的继续下沉而显著减少的变值,桩下部摩阻力对沉桩阻力起显著作用,其值可占沉桩阻力的50~80%,它与桩周处土体强度成正比,与桩的入土深度成反比。 粘性土中,桩尖处土体在扰动重塑、超静孔降水压力作用下,土体的抗压强度明显下降。砂性土中,密砂受松驰效应影响土体抗压强度减少,松砂受挤密效应影响土体抗压强度增大,在成层土地基中,硬土中的桩端阻力还将受到分界处粘土层的影响,上覆盖层为软土时,在临界深度以内桩端阻力将随压入硬土内深度增加而增大。下卧为软土时,在临界厚度以内桩端阻力将随压入硬土的增加而减少。 一般将桩摩阻力从上到下分成三个区:上部柱穴区,中部滑移区,下部挤压区。施工中因接桩或其它因素影响而暂停压桩的间歇时间的长短虽对继续下沉的桩尖阻力无明显影响,但对桩侧摩阻力的增加影响较大,桩侧摩阻力的增大值与间歇时间长短成正比,并与地基土层特性有关,因此在静压法沉桩中,应合理设计接桩的结构和位置,避免将桩尖停留在硬土层中进行接桩施工。 4 终压力与极限承载力 在静压桩施工完成后,土体中孔隙水压力开始消散,土体发生固结强度逐渐恢复,上部桩柱穴区被充满,中部桩滑移区消失,下部桩挤压区压力减小,这时桩才开始获得了工程意义上的极限承载力。从大量的工程实践看,粘性土中长度较长的静压桩其最终的极限承载力比压桩施工时的终压力要大,在某些土体固结系数较高的软土地区,静压桩最后获得的单桩竖向极限承载力可比终压力值高出一二倍,但是粘性土中的短桩,土体强度经一段时间的恢复,摩阻力虽有提高,但因桩身短,侧摩阻力占桩的极限承载力的比例差异不大,最终极限承载力达不到桩的终压力。因此桩的终压力与极限承载力是两个不同的概念,一些初接触静压桩的设计、施工人员往往将两者混为一谈。两者数值上不一定相等,主要与桩长、桩周土及桩端土的性质有关,但两者也有一定的联系。汕头市总结本地提出了自己的做法,对一些设计承载力较高的工程,终压力值宜尽量达到设计取值的1.5~1.7倍,并视土质及布桩情况考虑复压;对于14~21m的中长桩,终压力控制在设计值的1.7~2倍以上,宜复压3次;而小于14 m的短桩,终压力控制在设计值的2~2.5倍以上,并复压3~5次。 广东省《静压桩基础技术规程》编制组通过大量桩基资料的统计分析,提出一个桩的极限承载力与终压力之间的关系经验公式: 当L≤14m时,Quk=αRsm =(0.6~0.85)Rsm 当14m<L<21m时,Quk=αRsm =(0.75~1.05)Rsm 当L≥21m时,Quk=αRsm =(1.0~1.20)Rsm 式中:Quk—静压桩单桩竖向极限承载力标准值 Rsm—静压桩的终压力值,不宜大于管桩桩身竖向承载力设计值的1.6倍 桩长一些,土质好一些,土体恢复系数α可取上限值;反之取下限值。这个经验公式有下列两个用途:一是已知终压力、桩长及土质情况,可以粗估静压桩的极限承载力。如终压力为3600KN,桩长7m,土体恢复系数取0.6,则估算桩的极限承载力Quk =0.6×3600=2160KN;二是已知单桩竖向极限承载力、桩长和土质情况,可选择压桩时的终压力值。如桩长为7m,土体恢复系数取0.7,要求桩的极限承载力达2400KN,则终压力值应为Rsm≥2400/0.7=3430KN,所以可选用3600KN压桩机施压。 由于各地区地质情况差别较大,所以压桩力宜以现场试压桩确定,根据压桩力、桩长、桩端进入持力层深度、参考类似工程经验综合确定。 4 常见质量事故分析及处理 总结近年来静压桩设计和施工经验,可以发现一些常见问题。 4.1 浮桩 由于静压桩是挤土桩,在场地桩数量较多,桩距较密的情况下,时常后压的桩会对已压的桩产生浮桩,特别对于短桩,易形成所谓的吊脚桩。这种桩在做静载试验时,开始沉降较大,曲线较陡,但当桩尖达到持力层,承载力又有明显增加,沉降曲线又趋于平缓,这是桩身上抬的典型曲线。浮桩除了静载沉降偏大外,对桩而言可能会把接头拉断,桩尖脱空,同时大大增加对四周桩的水平挤压力,导致桩倾斜偏位。观察场地浮桩情况可在桩基施工时先打几根观测桩,数量和位置应具有代表性,打桩过程中可通过对观测桩的监测了解场地的大致浮桩情况。 在处理上施工前合理安排压桩顺序,同一单体建筑物一般要求先压场地中央的桩,后压周边的桩;先压持力层较深的桩,后压较浅的桩。同一场地的多栋单体建筑宜分散跳打。同时减少单位时间沉桩数量。出现桩身上抬后一般采用复压的办法使桩基按正常使用,但对承受水平荷载的基础要慎重。 4.2 引孔压桩的问题 为了防止桩间的挤土效应太大,或土质太硬而使桩身较短,施工中往往采用引孔压桩的工艺 ,即先钻比管桩略小规格的直径钻孔,深度是桩长的(2/3~1)L,然后将管桩沿预钻孔压下去。引孔应随引随压,中间间隔时间不宜大长,否则孔内积水,一是会软化桩端土,待水消散后孔底会留有一定空隙;二是积水往桩外壁冒,削弱了桩的侧摩阻力。 对于较硬土质中引孔压桩还会有桩尖达不到引孔孔底的现象,施工完成后孔底积水使土体软化,使承载力达不到设计要求。 4.3 桩端封口不实 当桩尖有缝隙,地下水水头差的压力可使桩外的水通过缝隙进入桩管内腔,若桩尖附近的土质是泥质土,遇水易软化,从而直接影响桩的承载力。对于桩靴的焊接质量要求与端板间无间隙、错位,保证焊缝饱满,无气孔。施焊对称进行,焊拉时间控制得当,焊接完成后自然冷却10分钟左右方可施打,因高温焊缝遇水后变脆,容易开裂。工程上比较有效的补救技术措施是采用“填芯混凝土”法,即在管桩施压完毕后立即灌入高度为1.2m左右的C20细石混凝土封底,桩端不漏水,桩端附近水压平衡,桩端土承受三相压力,承载力能保持稳定。 4.4 桩顶(底)开裂 由于目前压桩机越来越大,最重可达6800KN,对于较硬土质,管桩有可能仍然压不到设计标高,在反复复压情况下,管桩桩身横向产生强烈应力,如果桩还是按常规配箍筋,桩顶混泥土抗拉不足开裂,产生垂直裂缝,为处理带来很大困难。另一种情况就是管桩由软弱土层突然进入硬持力层,没有经过渡层,桩机油压迅速升高,桩身受到瞬间冲击力也容易引起桩顶开裂,如果硬持力层面不平整,桩靴卡不进土引起桩头折断破碎,桩机油压又下降,再压时压力不稳定,吊线测量桩长发现比入土部分短。处理上事前改进桩尖形式(圆锥形桩尖易滑),事后用压力灌浆把桩底破碎混凝土粘结住,适当折减承载力设计值。 4.5地质构造带 不少地段处在地质断裂破碎带上,在这些场地采用静压桩,由于受构造断裂的影响,地层结构受到改变,破碎带作为地下水通道常软化持力层。压桩时虽满足终压力及桩长要求,而静载时桩又不合格。不合格桩长范围可从8米至30米都会出现,与规程统计的经验公式完全不符,可见由于土体的破碎加上水的润滑,土的抗剪强度基本散失,压力不再随桩长的增加而增加,这要特别引起重视。对于有软硬夹层,尤其是硬夹层不厚的情况下,施工时桩尖到达硬夹层,由于超孔压的反向作用,使桩的终压力满足设计要求,而施工完成后随孔压消散,土抗剪强度还没恢复,静载时桩尖土承受更大的压力,传递到软弱下卧层后引起该层土压缩增大,进而桩顶下沉增加,位移不满足要求。 4.6断桩 压桩时碰到孤石或其它障碍物使桩尖偏移,同时桩身混凝土强度高,导致桩身脆端,此时应补桩处理。 4.7短桩 压桩时碰到孤石或其它障碍物使桩端达不到持力层,桩长较短,相邻桩长相差较大,此时应视情况补桩处理。 4.8超送桩 由于地质资料只提供地质情况参考,尤其是地质情况复杂地区,配桩长度较难确定,如果配桩较短,将导致桩超送,桩顶低于设计标高,此时应待基槽开挖后视桩顶标高采取承台做锅底或接桩。如桩顶低于设计标高不多如小于等于500MM,可将承台局部做成锅底配构造筋处理;如桩顶低于设计标高较多应接桩处理,接桩方法有两种:混凝土灌注桩接桩和倒接桩。混凝土灌注桩接桩是采用人工挖孔或模板成孔后灌注混凝土桩头的接桩方法,此种方法质量可靠但工期较长,材料费较高。倒接桩是利用现场砍下的桩头倒过来与基桩桩头钢板焊接的一种接桩方法,此种方法简单,工期短,材料利用率高但质量值得商榷,原因一是由于场地工作面小,坑内焊接质量不易保证,二是现场砍下的桩头质量亦难保证,三是接桩位置一般在桩上部,此部位正是桩受竖向力和水平力较大处接头处或砍下的桩头如有质量问题对整个建筑影响较大。 4.9基坑开挖 由于静压桩逐渐用在高层建筑中,基坑开挖不可避免。应根据开挖深度考虑是否需要先围护开挖再沉桩的。边打桩边开挖是不可取的,先打桩后开挖应考虑对称均匀,如在中间开挖把土堆在周围就会造成四周和中心的土体高差悬殊,同时超孔隙水压及震动会使管桩倾斜或折断,所以合理制定基坑开挖方案是必不可少的。 5 结语 静压桩的沉桩机理非常复杂,与土质、土层排列、硬土层厚度、桩数、桩距、施工顺序、进度等有关,有待进一步研究。静压桩施工中出现的问题也各种各样,处理方法不尽相同,往往桩在做完静载试验发现不合格后,还要增加静载试验或大应变检测,以确定更大范围不合格桩数量分布。有时基坑已开挖,桩头已凿去位置难确定,压桩机撤出现场,复压或补桩有一定困难,这就要采取其它一些措施处理不合格桩,如灌浆补强、降低桩承载力标准或扩大承台等。相信随着工程实践的不断丰富,为静压桩规程的顺利的实施打下坚实的基础。
/
本文档为【静压桩机的施工原理和常见问题分析,专业重要资料】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索