为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

抗肿瘤药物

2017-09-20 37页 doc 66KB 107阅读

用户头像

is_654168

暂无简介

举报
抗肿瘤药物抗肿瘤药物 恶性肿瘤是一种严重威胁人类健康的常见病和多发病,人类因恶性肿瘤而引起的死亡率 居所有疾病死亡率的第二位,仅次于心脑血管疾病。肿瘤的治疗方法有手术治疗、放射治疗 和药物治疗(化学治疗),但在很大程度上仍是以化学治疗为主。 抗肿瘤药是指抗恶性肿瘤的药物,又称抗癌药。抗肿瘤药物的发展起源于四十年代, 以氮芥治疗恶性淋巴瘤开始,经六十多年的发展,抗肿瘤药物治疗已经有了很大的进展,成 为抗肿瘤治疗中非常重要的一环。通过联合化疗和综合化疗,可治愈病人或能够明显地延长 病人的生命。由于对肿瘤特性的研究和分子生物学、细胞生物学...
抗肿瘤药物
抗肿瘤药物 恶性肿瘤是一种严重威胁人类健康的常见病和多发病,人类因恶性肿瘤而引起的死亡率 居所有疾病死亡率的第二位,仅次于心脑血管疾病。肿瘤的治疗方法有手术治疗、放射治疗 和药物治疗(化学治疗),但在很大程度上仍是以化学治疗为主。 抗肿瘤药是指抗恶性肿瘤的药物,又称抗癌药。抗肿瘤药物的发展起源于四十年代, 以氮芥治疗恶性淋巴瘤开始,经六十多年的发展,抗肿瘤药物治疗已经有了很大的进展,成 为抗肿瘤治疗中非常重要的一环。通过联合化疗和综合化疗,可治愈病人或能够明显地延长 病人的生命。由于对肿瘤特性的研究和分子生物学、细胞生物学的研究进展,为抗肿瘤药物 的研究提供了新的方向和新的作用靶点。抗肿瘤药物通常按其作用原理和来源分可分为烷化 剂、抗代谢物、抗肿瘤抗生素、抗肿瘤植物药有效成分,抗肿瘤金属配合物等。 第一节 烷化剂 烷化剂又被称为生物烷化剂是一类在体内能形成缺电子活泼中间体或其他具有活泼的 亲电性基团的化合物,它能与生物大分子(如DNA、RNA或某些重要的酶类)中含有富电子 的基团(如氨基、巯基、羟基、羧基、磷酸基等)发生共价结合,使其丧失活性或使DNA分 子发生断裂。烷化剂属于细胞毒类药物,在抑制和毒害增生活跃的肿瘤细胞的同时,对其他 增生较快的正常细胞,如骨髓细胞、胃肠上皮细胞、毛发细胞和生殖细胞也同样产生抑制作 用,因而会产生许多严重的副反应,如恶心、呕吐、骨髓抑制、脱发等。 按化学结构,目前临床使用的烷化剂药物可分为氮芥类、乙撑亚胺类、磺酸酯及多元卤 醇类、亚硝基脲类等。 1、氮芥类 CHCHCl22NR CHClCH22 载体部分 烷化剂部分 氮芥类药物是β-氯乙胺类化合物的总称,其结构可分为两部分:烷基化部分和载体部 分。载体部分可以改善该类药物在体内的吸收、分布等动力学性质,提高其选择性和抗肿瘤 活性。依据载体部分的化学结构,可将其分为脂肪氮芥、芳香氮芥、氨基酸氮芥、杂环氮芥 和甾体氮芥。 (1)脂肪氮芥: 当载体部分为脂肪烃基时,称为脂肪氮芥。由于烷基的供电作用,使脂肪氮芥的氮原子 碱性比较强,在游离状态和生理pH(7.4)时,氮原子可使β-氯原子离去生成高度活泼的乙撑亚胺离子,成为亲电性的强烷化剂,极易与细胞成分的亲核中心起烷化作用。因此,对肿 瘤细胞的杀伤能力也较大,抗瘤谱较广。但选择性比较差,毒性也比较大。脂肪氮芥的代表 药物为盐酸氮芥(Chlormethine Hydrochloride)。 CHClCH22HClNHC3CHCHCl22 盐酸氮芥 (2)芳香氮芥: 考虑适当减少氮原子上的电子密度来降低氮芥的反应性,进而达到降低其毒性的目的, 以芳香环取代氮芥结构的脂肪烃基,得到芳香氮芥。由于氮原子上的孤对电子和苯环产生共 轭作用,减弱了氮原子的碱性,其作用机制也发生了改变,不象脂肪氮芥那样很快形成稳定 的环状乙撑亚胺离子,而是失去氯原子形成碳正离子中间体,再与亲核中心作用。芳香氮芥 构效关系研究表明当羧基和苯环之间碳原子数为3时效果最好,即苯丁酸氮芥(Chlorambucil)。临床上用于治疗慢性淋巴细胞白血病,对淋巴肉瘤、何杰金氏病,卵巢癌 CHClCH等。 22NCHCHHOOCCH222CHCHCl22 苯丁酸氮芥 (3)氨基酸氮芥: 基于肿瘤组织在其生长过程中需大量的氨基酸,因此,将天然存在的氨基酸作为氮芥药 物的载体,以期增加药物在肿瘤部位的浓度和亲和性,提高药物的疗效。例如用苯丙氨酸为 载体的美法仑(Melphalan),该药物对卵巢癌、乳腺癌、淋巴肉瘤和多发性骨髓瘤等恶性肿瘤 有较好的疗效。将美法仑的氨基进行甲酰化得到氮甲(Formylmerphalan),提高选择性并可降低毒性。虽然药用为消旋体,但研究表明左旋体有更强的活性,与其思想相符。 CHClCH22CHCOOHNCH2*CHCHCl22NHCHO 氮甲 *美法仑 CHClCH22CHCHNCOOH2CH*CHCl22NH2 化学名为(?)对-[双(β-氯乙基)氨基]苯丙氨酸: 本品为白色或类白色结晶性粉末,可溶于水。在不同介质中的比旋光度略有不同, [] D D +7.5?(c = 1.33 , 1.0N 盐酸), [] -31.5º(c = 0.67 ,甲醇)。mp. 182-183?。 2522 美法仑的化学结构包括氮芥和苯丙氨酸部分,其性质既有氮芥易在碱性水溶液中易水 解的特点,亦有氨基酸与茚三酮的显色反应。且有氨基酸两性的性质。 本品对精原细胞瘤的疗效较为显著,对多发性骨髓瘤、恶性淋巴瘤也有效。选择性较 高,可口服活动脉灌注给药。 (4)甾体氮芥: 由于某些肿瘤细胞中存在载体激素受体,以甾体为激素作为载体,使所得的药物同具有 烷化剂和激素的双重作用,例如用于治疗前列腺癌和乳腺癌的磷酸雌莫司汀(Estra-mustine phosphate)和治疗恶性淋巴瘤及慢性白血病的泼尼莫司汀(Prednimustine)。 CHCl22CHONCHCHClPO22OHOCHOHO3OCHOHHO3 CH3O CHClCH22NOOClCHCH22 磷酸雌莫司汀 泼尼莫司汀 (5)杂环氮芥: 鉴于体内存在诸多有杂环所构成的碱对,因此将杂环作为氮芥类药物的载体,其代表药 物为环磷酰胺(Cyclophosphamide),在其分子设计中运用前体药物的设计思想,较其他氮 芥类药物降低了毒性,已经成为临床上普遍使用的抗癌药物。在环磷酰胺结构的基础上,将 环外氮原子上的一个氯乙基移至环上的氮原子上得到异环磷酰胺(Ifosfamide)。 CHClCH22HNO*环磷酰胺 ONP.H2 ClCHCHO22 化学名为N,N-双(β-氯乙基)四氢-2H-1,3,2-氧氮磷杂环己烷-2-胺-2-氧化物一水合物。 本品含有一个结晶水时为白色结晶或结晶性粉末,失去结晶水后即液化。本品在乙醇中 易溶,在水或丙酮中溶解;可溶于水,但溶解度不大,水溶液不稳定,遇热更易分解,故应 在溶解后短期内使用。mp.48.5~52 ?。 考虑到在肿瘤组织中,磷酰胺酶的活性高于正常组织,所以涉及含磷酰胺基的前体药物 环磷酰胺是在氮芥的氮原子上连有一个吸电子的环状磷酰胺内酯。在肿瘤组织中被磷酰胺酶 催化裂解成活性的去甲氮芥而发挥作用。此外磷酰基的强吸电子性可使氮原子上的电子云密 度得到降低,不易形成反应活性的乙撑亚胺正离子,降低其的烷基化能力,达到减少毒副作 用的目的,使毒性降低。所以环磷酰胺在体外对肿瘤细胞无效,只有进入体内后,经过活化 才能发挥作用。而且研究结果表明环磷酰胺在体内的活化的部位是肝脏而不是肿瘤组织。 OHClCHCHCHNHHNO22ClCHO222 NPNPCHClCH22CH=CHCHOClCHCHHNClCHCH2-2222OOHCHCHCl22 4-羟基环磷酰胺 磷酰氮芥 丙烯醛 去甲氮芥 环磷酰胺在肝脏中被细胞色素P450氧化酶氧化生成4-羟基环磷酰胺,4-羟基环磷酰胺可经过进一步氧化代谢为无毒的4-羰基环磷酰胺;也可经过互变异构生成开环的醛基化合 物。并在肝脏中进一步氧化生成无毒的羧酸化合物。而肿瘤组织中因缺乏正常组织所具有的 酶,则不能进行上述代谢,只能经非酶促反应的β-消除生成丙烯醛和磷酰氮芥。磷酰氮芥 及其它代谢产物都可经非酶水解生成去甲氮芥。他们均为强的烷化剂。 环磷酰胺在水中不稳定,即使是2%水溶液,在pH4.0~6.0时,磷酰胺基都不稳定,而当加热时更易分解,而失去生物烷化作用。 OOOCHHOCH22PNH+2HOCHCHNH+O223 环磷酰胺的水解产物 本品的抗瘤谱较广,主要用于恶性淋巴瘤,急性淋巴细胞白血病,多发性骨髓瘤、肺 癌、神经母细胞瘤等,对乳腺癌、卵巢癌、鼻咽癌也有效。毒性比其它氮芥小,一些病人观 察到有膀胱毒性,这可能与代谢产物丙烯醛有关。 氮介类药物的合成是以二乙胺醇为原料,用二氯亚砜或三氯氧磷等氯化试剂进行氯代而 得到: CHOHCHClCH22CH22RNRNCHCHCHOHCHCl2222 环磷酰胺的合成方法如下: ClOHNCHOHCHCHCClHCHCClH222222POClCHCHCHOHNH32222HNNNPOPCHCHOHClHClHCHCCHC222222OCl CHClCH22*异环磷酰胺 ONH NP,HO2ClCHCH22O 化学名为N- (β-氯乙基)-N’- (β-氯乙基)-四氢-2H-1,3,2-氧氮磷杂环己烷-2-胺-2-氧化物一水合物。 异环磷酰胺也为前体药物,在体内经酶代谢活化后发挥作用。虽然它的代谢途径和环 磷酰胺基本相同,但异环磷酰胺经代谢可产生单氯乙基环磷酰胺而产生神经毒性。 异环磷酰胺的抗瘤谱与环磷酰胺不完全相同,临床用于骨及软组织肉瘤,非小细胞肺癌, 乳腺癌,头颈部癌、子宫颈癌、食道癌的治疗。由于主要毒性为骨髓抑制、出血性膀胱炎等 肾脏毒性、尿道出血等,须和尿路保护剂美司纳(巯乙磺酸钠)一起使用,以降低毒性。 2、乙撑亚胺类 脂肪氮芥类药物在体内转变为乙撑亚胺活性中间体而发挥烷基化作用,这促使对乙撑亚 胺基团的化合物抗癌活性的研究。同样为了降低乙撑亚胺基团的反应性,在氮原子上用吸电 子基团取代,以达到降低其毒性的作用。此类中的噻替哌(Thiotepa)和替哌(Tepa),其结构中的氮杂环丙环基团与核苷酸中的腺嘌呤、鸟嘌呤的3-N和7-N进行烷基化,产生抗肿瘤活性。 N NNP O 替哌 *塞替哌 N PNN S 化学名为三(1-氮杂环丙基)硫代磷酰胺 本品为白色结晶性粉末、无臭或几乎无臭。易溶于水和乙醇中,mp.52~57?。 由于含有体积较大的硫代磷酰基脂溶性大,对酸不稳定,不能口服,在胃肠道吸收较差, 须通过静脉注射给药。本品进入体内后迅速分布到全身,在肝脏中很快被肝脏P450酶系代谢生成替哌,而发挥作用,因此噻替哌可认为是替哌的前体药物。 噻替哌临床上主要用于治疗卵巢癌、乳腺癌、膀胱癌和消化道癌,由于可直接注射入膀 胱,所以是治疗膀胱癌的首选药物。 3、亚硝基脲类 将β-氯乙基与亚硝基脲相连,即得亚硝基脲类抗肿瘤药物。由于N-亚硝基的存在,使得与亚硝基的氮原子与相邻碳之间的键变得不稳定,在生理pH环境下易发生分解,生成亲核性试剂与DNA发生烷基化,达到治疗的作用。 *卡莫司汀 NOHNNClCl O 化学名为1,3-双(2-氯乙基)-1-亚硝基脲:又名;卡氮芥,BCNU 卡莫司汀具有广谱的抗肿瘤活性。由于结构中的β-氯乙基具有较强的亲脂性,易通过 血脑屏障进入脑脊液中,因此,适用于脑瘤、转移性脑瘤及其它中枢神经系统肿瘤及恶性淋 巴瘤等治疗并且与其它抗肿瘤药物合用时可增强疗效。但有迟发性和累积性骨髓抑制的副作 用。 亚硝基脲药物在酸性和碱性溶液中相当不稳定,分解时可放出氮气和二氧化碳。 将卡莫司汀分子中的一个β-氯乙基用环己基替代,得到洛莫司汀(Lomustine)。它对脑瘤的疗效虽不及卡莫司汀,但对何杰金氏病、肺癌、及若干转移性肿瘤的疗效优于卡莫司汀。 若以甲环己基取代环己基得到司莫司汀(Semustine),其抗肿瘤疗效优于卡莫司汀和洛莫司 汀,且毒性较低,临床用于脑瘤、肺癌和胃肠道肿瘤。考虑到若增大此类药物的水溶性,可 降低毒性,则将糖基引入本类药物中如氯脲霉素(Chlorozotocin),由于其水溶性增加,毒副作用降低,特别是对骨髓抑制的副作用较低。 CHOH2ClCHCHNCONH22ONO OH 洛莫司汀 OHOH NHCON-CHCHCl22ClCHCHNCONHCH223NONO 链佐星 司莫司汀 可用下面的合成方法进行合成: NH2O2NHNHCHCHOH222NHNHCHHOHCHCHNCHOHO2222OOHOHN2SOCl22NHOO NHCHHNCHOHNHCH22ClHCHCHNCHCl2222 SOCl2NaNO2 OONHCHHNCHCl22NCHClHCHCHNCHCl2222NaNO2NO(卡莫司汀) O NCHHNCHCl22 (洛莫司汀)NO 4、甲磺酸酯及多元卤醇类 在有机合成的烷基化反应中,由于甲磺酸酯基的存在,使C-O键之间变得活泼,成为应用较广的烷基化反应试剂。鉴于氮芥类药物的作用机理的发现,使得磺酸酯类药物备受关 注,在研究过程中发现1~8个次甲基的双甲磺酸酯是具有抗肿瘤活性双功能的烷化剂,其中 活性最强的为4个次甲基的化合物白消安(Busulfan)。 OO *白消安 OCHS3OSHC3OO 化学名为1,4-丁二醇二甲磺酸酯。 本品为白色结晶粉末,mp.114~118?. 白消安是双功能烷化剂,在体内由于甲磺酸酯基有较好的离去性质,使C-O键断裂和 7细胞内多种成分反应,也可以和DNA分子中鸟嘌呤核苷酸的N烷基化产生交联;还可以和氨基酸及蛋白质中的-SH反应,从分子中除去S原子。以半胱氨酸为例,白消安与其反应 后使硫原子双烷基化,生成环状硫化合物,在体内分解为四氢噻吩和2-氨基丙烯酸,经进一步代谢后生成3-羟基四氢噻吩-1,1-二氧化物和丙酮酸。 OHHNOO2SOHSHCOOHHS+3CHOS3HNH2OOO ONH2HOOOHSHCOH+S+HC32OOO 从有机化学的角度来看,烷化剂和体内生物大分子之间的反应,其实质是亲核性的取代 反应。烷化剂上有较好的离去基团,在和生物大分子反应时,或通过生成正碳离子的途径与 生物大分子发生SN的反应;或通过直接和生物大分子按SN的方式进行烷基化。因此从12 此观点出发,凡是具有此类结构特征的有机化合物均有可能成为具有抗肿瘤作用的生物烷化 剂。甲磺酸酯及多元醇类化合物即属于此类非氮芥类的烷化剂。 本品在氢氧化钠条件下水解生成丁二醇,再脱水生成具有乙醚样特臭的四氢呋喃。 OONaOHHCONaSHCO3-HO32OHSCHOSO3+HOOOOO 由于甲磺酸酯的特点,白消安口服吸收良好,吸收后迅速分布到各组织中去。在体内甲 磺酸酯经代谢后生成甲磺酸的形式自尿中缓慢排出,代谢速度比较慢,24小时排出不足50%,反复用药可引起蓄积。 临床上白消安主要用于治疗慢性粒细胞白血病,其治疗效果优于放射治疗。主要不良反 应为消化道反应及骨髓抑制。 用作抗肿瘤的多元醇类药物主要是卤代多元醇,如二溴甘露醇和二溴卫矛醇。D-型异构体有效,L-型异构体无效,二者在体内都通过脱去溴化氢,形成双环氧化物而产生烷基化 作用。二溴甘露醇主要用于治疗慢性粒细胞型白血病,二溴卫矛醇抗瘤谱更广,对某些实体 瘤,如胃癌,肺癌,结直肠癌,乳腺癌等有一定的疗效。 脱水卫矛醇可以看成是二溴卫矛醇脱水后的产物,该药对L白血病的疗效比二溴卫1210矛醇强三倍,并能通过血脑屏障,对支气管肺癌、胃肠道及泌尿道肿瘤有效,脱水卫矛醇的 双乙酰化物毒性比脱水卫矛醇小。 第二节 抗代谢药物 通过抑制肿瘤细胞的生存和复制所必需的代谢途径,则导致肿瘤细胞死亡。因此,在抗 肿瘤药物中,抗代谢药物占较大的比重。尽管可利用正常细胞与肿瘤细胞之间生长分数的差 别,从理论上讲抗代谢药物仍能杀死肿瘤细胞而较少地影响正常的细胞。介于目前尚未发现 肿瘤细胞有独特的代谢途径。所以抗代谢药物的选择性较小,并且对增殖较快的正常组织如 骨髓、消化道粘膜等也呈现毒性。 抗代谢药物的抗瘤谱比较窄,临床上多数用于治疗白血病,但对某些实体瘤也有效。由 于抗代谢药物的作用点各异,一般无交叉耐药性。 依据抗代谢的基本理论的要求,抗代谢物的结构与代谢物一般都很相似,而且大多数抗 代谢物是以代谢物为先导化合物,利用诸如生物电子等排原理等药物设计方法,制备其抗代 谢物。临床上常用的有嘧啶抗代谢物、嘌呤抗代谢物、叶酸抗代谢物等药物。 1、嘧啶抗代谢物 嘧啶抗代谢物主要有尿嘧啶和胞嘧啶两类。 (1)尿嘧啶抗代谢物 考虑到尿嘧啶掺入肿瘤组织的速度较其它嘧啶快。因此利用电子等排理论,以卤原子代 替氢原子合成的卤代尿嘧啶衍生物中,以氟尿嘧啶抗肿瘤作用最好。 *氟尿嘧啶 O F HN ON化学名为5-氟-2,4(1H,3H)-嘧啶二酮:又名:5-FU 。 H 本品为白色或类白色结晶或结晶性粉末,mp.281~284?(分解)。略溶于水,微溶于乙 醇,几乎不溶于氯仿。可溶于稀盐酸或氢氧化钠溶液。本品中含两个氮原子,故有两个pKa 值,分别是8.0,13.0。 氟尿嘧啶在空气及水溶液中都非常稳定,在亚硫酸钠水溶液中较不稳定。首先亚硫酸离 子在氟尿嘧啶C5,C6双键上进行加成,形成了不稳定的5-氟-5,6-二氢-6-磺酸尿嘧啶。它消去SO H或F,则分别生成氟尿嘧啶和6-磺酸基尿嘧啶。若在强碱中,则开环,最后生成3 2-氟-3-脲丙烯酸和氟丙醛酸。 OFHNOOONFHFHNHNHSO-H+3OSOON-3ONH-HHHN ONSOHOO3HOOHSO-3__O_ONNHNNHO22HHHOHOFFF 本品抗瘤谱比较广,对绒毛膜上皮癌及恶性葡萄胎有显著疗效,对结肠癌、直肠癌、胃 癌和乳腺癌、头颈部癌等有效,是治疗实体肿瘤的首选药物。 用氟原子取代尿嘧啶中的氢原子后,由于氟的原子半径和氢的原子半径相近,氟化物的 体积与原化合物几乎相等,加之C-F键特别稳定,在代谢过程中不易分解,分子水平代替 正常代谢物,因而是胸腺嘧啶合成酶抑制剂。氟尿嘧啶及其衍生物在体内首先转变成氟尿嘧 啶脱氧核苷酸,与胸腺嘧啶合成酶结合,再与辅酶5,10-次甲基四氢叶酸作用,由于C-F键稳定,导致不能有效地合成胸腺嘧啶脱氧核苷酸,使胸腺嘧啶合成酶失活。从而抑制DNA的合成,最后肿瘤细胞死亡。 依此代谢过程中的各代谢物作先导化合物,得到一系列抗肿瘤的抗代谢物。替加氟 (Tegafur)和双呋氟尿嘧啶(Difuradin)分别为氟尿嘧啶的单四氢呋喃环和1,3-双四氢呋喃环取代的衍生物,作用特点和适应症与氟尿嘧啶相似,但毒性较低,活性更强。去氧氟尿 苷(Doxifluridine)在体内被嘧啶核苷磷酸化酶作用,转化成游离的氟尿嘧啶而发挥作用。 这种酶的活性在肿瘤组织内较正常组织高,所以本品在肿瘤细胞内转化为5-FU的速度快,而对肿瘤具有选择性作用。氟铁龙和卡莫氟(Carmofur)都是氟尿嘧啶的前体药物,进入体 OO内后缓缓释放出5-FU而发挥抗肿瘤作用。 OFOFFHNHNN OHCNO3NOONOO OHOH 替加氟 双呋氟尿嘧啶 去氧氟尿苷 *卡莫氟 O FHN ON CONHCH613 化学名为5-氟-N-己基-3,4二氢-2,4-二氧代-1(2H)-嘧啶羰酰胺。 本品侧链的酰胺键在体内水解释放出氟尿嘧啶,因此被认为是氟尿嘧啶的前体药物。 所以其抗瘤谱较广,化疗指数较高。临床上可用于胃癌、结肠癌、直肠癌、乳腺癌等的治疗, 特别是对结肠癌和直肠癌的疗效较高。 2、胞嘧啶类抗代谢物 在研究尿嘧啶构效关系时发现,将尿嘧啶4-位的氧被氨基取代后得到胞嘧啶的衍生 物,亦有较好的抗肿瘤作用。 *盐酸阿糖胞苷 NH2 ONHOHC2O,HClHO OH 化学名为1β-D-阿拉伯呋喃糖基-4-氨基-2(1H)-嘧啶酮盐酸盐 25本品为白色细小针状结晶或结晶性粉末。[α]+127?~+133?(HO)。mp.189~195?。 2D 盐酸阿糖胞苷在体内转化为活性的三磷酸阿糖胞苷(Ara-CTP),发挥抗癌作用。Ara-CTP通过抑制DNA多聚酶及少量掺入DNA,阻止DNA的合成而抑制细胞的生长。主要用于治 疗急性粒细胞白血病。与其它抗肿瘤药合用可提高疗效。 本品口服吸收较差,通常是通过静脉连续滴注给药,才能得到较好的效果,因为该药物 会迅速被肝脏的胞嘧啶脱氨酶作用脱氨,生成无活性的尿嘧啶阿糖胞苷。为了减轻阿糖胞苷 在体内脱氨失活,将其氨基以长链脂肪酸酰化,如依诺他滨(Enocitabine)和棕榈酰阿糖胞苷(N-Palmitoyl-Arac),在体内代谢为阿糖胞苷而起作用,但抗肿瘤作用比阿糖胞苷强而持 久。 环胞苷(Cyclocytidine)为合成阿糖胞苷的中间体,体内代谢比阿糖胞苷慢,作用时间 长,副作用较轻。用于各类急性白血病治疗,亦可用于治疗单疱疹病毒角膜炎和虹膜炎。 在阿糖胞苷嘧啶核上嵌入氮原子得阿扎胞苷(Azacitidine)。本品在体内转化为氮杂胞嘧啶核苷酸掺入RNA和DNA,形成非功能性的氮杂RNA和DNA,影响核酸转录过程,抑制DNA和蛋白质的合成。主要用于急性粒细胞白血病,对结肠癌、乳腺癌也有一定的疗NH2NHRNH效。 NNNN NOOHONNHOHOOOOOHO HOHOHOHO 依诺他滨 R = -CO(CH)CH 环胞苷 阿扎胞苷 2203 棕榈酰阿糖胞苷 R = -COCH5 131 2、嘌呤抗代谢物 腺嘌呤和鸟嘌呤是DNA和RNA的重要组分,次黄嘌呤是腺嘌呤和鸟嘌呤生物合成的 重要中间体。嘌呤类抗代谢物主要为次黄嘌呤和鸟嘌呤的衍生物。 *巯嘌呤 SHHNNO.H2NN 化学名为6-嘌呤巯醇一水合物。pKa 7.8。 将黄嘌呤6-位的羟基以巯基取代得巯嘌呤,在体内经酶促转变为有活性的6-硫代次黄嘌呤核苷酸(即硫代肌苷酸),抑制腺酰琥珀酸合成酶,阻止次黄嘌呤核苷酸(肌苷酸)转 变为腺苷酸(AMP);还可抑制肌苷酸脱氢酶,阻止肌苷酸氧化为黄嘌呤核苷酸,从而抑制 DNA和RNA的合成。可用于各种急性白血病的治疗,对绒毛膜上皮癌、恶性葡萄胎也有效。 但是巯嘌呤水溶性较差。我国研究人员从人工合成胰岛素中用亚硫酸钠可使S-S键断裂形成水溶性R-S-SONa衍生物中受到启发,合成了巯嘌呤的前体药物磺巯嘌呤钠3 (Sulfomercapine Sodium),增加了药物的水溶性,也克服了巯嘌呤的其它缺点。生成的 R-S-SONa键可被肿瘤细胞中巯基化合物和酸性介质选择性分解、释放出巯嘌呤。因为肿瘤3 组织pH较正常组织低,巯基化合物含量也比较高,则对肿瘤可能有一定的选择性,。磺巯 嘌呤钠的用途与巯嘌呤相同,显效较快,毒性较低。 SHNa3S-SO NNNN.HO2NNNHNN2HNa 磺巯嘌呤钠 巯鸟嘌呤 OHOHOHOHCOOCH25NONaCO, NiNHNHNH2322NaNO2NNaSOHONaC2N22425NCHN2SNHCN2HSNNHHSNNH2NNH2HSNNH22 OHSHNaSSSSO3NNSOINa223NNNPSN2HCOOHNNNN NNNNNNNNNNHHHHNa(磺巯嘌呤钠)(巯嘌呤) 根据巯嘌呤在体内能抑制嘌呤核苷酸生物合成的原理,对鸟嘌呤的结构进行类似的改 造,同样得到巯鸟嘌呤(Thioguanine)。它在体内转化为硫代鸟嘌呤核苷酸,阻止嘌呤核苷 酸的相互转换,影响DNA和RNA的合成。更重要的是硫代鸟嘌呤核苷酸能掺入DNA和 RNA,使DNA不能复制。本品主要作用于S期,是细胞周期特异性药物。临床用于各类型 白血病,与阿糖胞苷合用,可提高疗效。 3、叶酸抗代谢物 叶酸(Folic Acid)是核酸生物合成的代谢物,也是红细胞发育生长的重要因子,临床COOHO用作抗贫血药。但叶酸缺乏时,白细胞减少,因此叶酸的拮抗剂可用于缓解急性白血病。 OHOHNHONNNH NNHN2 叶酸 *甲氨蝶呤 COOHO OHNHN*2HONNN CH3NNHN2 化学名为L-(+)-N-[对-[[(2,4-二氨基-6-蝶啶基)甲基]甲胺基]苯甲酰基]谷氨酸。 本品为橙黄色结晶性粉末。甲氨蝶呤分子中含有多个氮原子,故有pKa 4.8, 5.5。 甲氨蝶呤为叶酸的拮抗剂,对二氢叶酸还原酶的亲和力比二氢叶酸强1000倍,几乎是不可逆地和二氢叶酸还原酶结合,使二氢叶酸不能转化为四氢叶酸,从而影响辅酶F的生成。干扰胸腺嘧啶脱氧核苷酸和嘌呤核苷酸的合成;因而对DNA和RNA的合成均可抑制,阻碍肿瘤细胞的生长,甲氨蝶呤结构中的N′与二氢叶酸还原酶中的天门冬氨酸的羧基形成 较强的结合形式,从而较强地抑制二氢叶酸还原酶的作用,此外发现甲氨蝶呤对胸腺嘧啶合 成酶也有抑制作用,对所有细胞的核酸代谢都产生致命的作用。 本品主要用于治疗急性白血病,绒毛膜上皮癌和恶性葡萄胎,对头颈部肿瘤、乳腺癌、 宫颈癌、消化道癌和恶性淋巴癌也有一定的疗效。 甲氨蝶呤在强酸性溶液中不稳定,酰胺基会水解,生成谷氨酸及蝶呤酸而失去活性。 COOHOOH2NHNHONNNCH3NNOHN2OHCOOH2NHOHHNN+2NNOCH3NNHN2 甲氨蝶呤大剂量引起中毒时,可用亚叶酸钙(Leucovorin Calcium)解救。亚叶酸钙可提供四氢叶酸,与甲氨蝶呤合用可降低毒性,不降低肿瘤活性。 第三节 抗肿瘤天然药物 天然抗肿瘤药物主要有抗生素和植物药有效成分两类: 1、抗肿瘤抗生素 抗肿瘤抗生素是由微生物产生的具有抗肿瘤活性的化学物质。现已发现的抗肿瘤抗生素 有许多种,这些抗生素大多是直接作用于DNA或嵌入DNA干扰模板的功能。为细胞周期 非特异性药物。 (1)多肽类抗生素 放线菌素D(Dactinomycin D)又称更生霉素,属于放线菌素族的一种抗生素。在乙醇 溶液中显左旋性。 放线菌素D与DNA结合能力较强,但结合的方式是可逆的,抑制以DNA为模板的RNA多聚酶,从而抑制RNA的合成。 适用于肾母细胞瘤、横纺肌肉瘤、神经母细胞瘤以及绒毛膜上皮癌和睾丸癌。 博莱霉素(Bleomycin)又称争光霉素。水溶液呈弱碱性,较稳定。为一类水溶性碱性 糖肽抗生素。用于临床的是混合物。其中以A-2和B-2为主要成分。国产的平阳霉素 (Pingyangmycin)是博莱霉素经分离所获的纯品A-5。博莱霉素和平阳霉素抑制胸腺嘧啶 核苷酸掺入DNA,从而干扰DNA的合成。对鳞状上皮细胞癌、宫颈癌和脑癌都有效。与 放射治疗合并应用,可提高疗效。 (2)醌类抗生素及其衍生物 醌类抗生素包括蒽醌类和醌类。 蒽醌类抗生素是七十年代发展起来的抗肿瘤抗生素,主要代表是阿霉素(Doxorubicin,多柔比星)和柔红霉素(Daunorubicin)。 *阿霉素 OOHO111129OH OHCABD* 546*7OOMeOHOOCH3 OHNH2 阿霉素(多柔比星)是蒽环糖苷抗生素,临床上常用其盐酸盐;由于结构中具共轭的蒽 醌结构,为桔红色针状结晶;盐酸多柔比星易溶于水,水溶液稳定,在碱性条件下不稳定易 迅速分解;mp.201~205?。 多柔比星具有脂溶性蒽环配基和水溶性柔红糖胺,又有酸性酚羟基和碱性氨基,易通过 细胞膜进入肿瘤细胞,因此有很强的药理活性。 蒽醌类抗生素的靶点为DNA,其蒽醌结构可嵌合到DNA中,每6个碱基对嵌入2个蒽醌环。蒽醌环的长轴与碱基对的氢键呈垂直取向,氨基糖位于DNA的小沟处,D环插到大沟部位。由于这种嵌入作用使碱基对之间的距离由原来的0.34nm增至0.68nm,因而引起DNA的裂解。 OOHOOOHCH3OOHOHOHNNCHOH3OHOHO OOMeOHOOMeOHOOOMeOOHONHNHNH222OOOHOHCHCHCOH3OH33 柔红霉素 表柔比星 佐柔比星 多柔比星是广谱的抗肿瘤药物,临床上主要用于治疗乳腺癌,甲状腺癌、肺癌、卵巢癌、 肉瘤等实体瘤。 柔红霉素(Daunorubicin)是由放线菌产生的抗生素,从我国河北省正定县土壤中亦获 得放线菌株,并得到同类物质,称为正定霉素。多柔比星和柔红霉素的结构差异仅在C-9 侧链上为羟乙酰基和乙酰基。由于柔红霉素和多柔比星结构上的相似性,多柔比星也可从柔 红霉素通过化学转化得到,或通过化学全合成得到。柔红霉素的作用与多柔比星相同,临床 上主要用治疗急性粒细胞白血病及急性淋巴细胞白血病。多柔比星和柔红霉素的主要毒副作 用为骨髓抑制和心脏毒性,其产生原因可能是醌环被还原成半醌自由基,诱发了脂质过氧化 反应,引起心肌损伤。这类抗生素的研究致力于寻找心脏毒性较低的化合物,主要是对柔红 霉糖的氨基和羟基的改造。 表柔比星(表阿霉素,Epirubicin)是多柔比星在柔红霉糖4′位的OH差向异构化的化合物。对白血病和其它实体瘤的疗效与多柔比星相似,但骨髓抑制和心脏毒性比多柔比星低 25%。 佐柔比星(Zorubicin)为半合成的柔红霉素的衍生物,临床用于急性淋巴细胞白血病和 急性原始粒细胞白血病,疗效与多柔比星相似。 以多柔比星为基本结构进行新的抗肿瘤药物设计时,保留蒽醌为母核,利用其它有氨基 (或烃胺基)的侧链代替氨基糖,保持了活性而减小心脏毒性。氨基或烃胺基侧链对母核起 稳定作用,使化合物保持易于嵌入DNA的平面结构。较为成功的药物为米托蒽醌 (Mitoxantrone)。 *米托蒽醌 HNNHOHOHO NHOOHHONH 化学名为1,4-二羟基-5,8-双[[2-[(2-羟乙基)胺基]乙基]胺基]-9,10-蒽二酮。 本品为蓝黑色结晶,mp.162~164?。盐酸盐有吸湿性,mp.203~205?。 米托蒽醌是细胞周期非特异性药物,能抑制DNA和RNA合成。抗肿瘤作用是柔红霉素的5倍,心脏毒性较小。用于治疗晚期乳腺癌,非何杰金氏病淋巴瘤和成人急性非淋巴细 胞白血病复发。 比生群(Bisantrene)是继米托蒽醌后第二个用于临床的合成蒽环类抗肿瘤药,可能是 抑制RNA及DNA的合成。抗瘤谱与米托蒽醌相似,无明显的心脏毒性。对恶性淋巴瘤、 卵巢癌、肺癌、肾癌、黑色素瘤和急性白血病有效。 醌类抗肿瘤抗生素的另一代表药物是醌式结构的丝裂霉素C(Mitomycin C)。为由放线 菌产生的一种抗生素。我国从放线菌H2760菌株培养液中分离得到的抗生素,证明与文献 报道的丝裂霉素C相同,称为自力霉素。丝裂霉素C对各种腺癌有效(胃、胰腺、直肠、乳腺等),对某些头颈癌和骨髓性白血病也有效。由于能引起骨髓抑制的毒性反应,故较少 单独使用。通常与其它抗癌药物合用,治疗胃的腺癌。 HN NNNNH2HOO OHNO2CH3HNNHNNNHC3NOH 比生群 丝裂霉素 C 2、抗肿瘤的植物药有效成分及其衍生物 从植物中寻找抗肿瘤药物,在国内外已成为抗癌药物研究的重要组成部分。植物药抗肿 瘤的有效成分研究属于天然药物化学的内容,但在天然药有效成分上进行结构修饰,半合成 一些衍生物,寻找疗效更好的药物近年来发展较快,已成为抗肿瘤药物的一个重要组成部分。 这里主要对这些部分作些介绍。 (1)喜树碱类: 喜树碱(Camptothecin)是从中国特有珙桐科植物喜树(Camptotheca accuminata Decaisene)中分离得到的含五个稠和环的内酯生物碱。不溶水,也几乎不溶于有机溶剂, 这给其临床应用带来了困难。喜树碱结构中有二个氮原子,一个为内酰胺的氮原子,另一个 为喹啉的氮原子,碱性比较弱,因此与酸不能形成稳定的盐。 O N N O HC3*OOH 喜树碱 喜树碱有较强的细胞毒性,对消化道肿瘤(如胃癌、结肠直肠癌)、肝癌、膀胱癌和白 血病等恶性肿瘤有较好的疗效。但毒性比较大,主要为尿频、尿痛和尿血等。在对喜树碱的 研究过程,又从喜树中又分离得到含量较低,但抗肿瘤活性更高,毒性较小的羟基喜树碱 (Hydroxycamptothecin)。羟基喜树碱临床主要用于肠癌、肝癌和白血病的治疗,毒性比喜 树碱低,很少引起血尿和肝肾功能损伤。但是羟基喜树碱和喜树碱一样,不溶于水,微溶于 有机溶剂。八十年代后期发现喜树碱类药物的作用靶点是作用于DNA拓扑异构酶I,而使 DNA复制,转录受阻,最终导致DNA的断裂,又重新引起人们的重视,设计和合成了一 些水溶性较大,毒性较低的衍生物。 CH3ONHOOONONNNNOOHCHC33OOHOOH 羟基喜树碱 伊立替康 伊立替康(Irinotecan)为浅黄色针状结晶,mp.256.5?,其盐酸盐溶于水,不溶于氯仿、二氯甲烷等有机溶剂。在体内(主要是肝脏)经代谢生成SN-38而起作用,属前体药物。主要用于小细胞和非小细胞肺癌、结肠癌、卵巢癌、子宫癌、恶性淋巴瘤等的治疗。 CH3NCH3CH3HOOHOONNNNOOHCHC33OOOHOH SN-38 拓扑替康 拓扑替康(Topotecan)是另一个半合成的水溶性喜树碱衍生物。主要用于转移性卵巢 癌的治疗。对小细胞肺癌、乳腺癌、结肠癌、直肠癌的疗效也比较好。 (2)鬼臼生物碱: 鬼臼毒素(Podophyllotoxin)是喜马拉雅鬼臼(Podophyllum emodi)和美鬼臼(Podophyllum peltatum)的根茎中的主要生物碱,是一种有效的抗肿瘤成分。由于毒性反 应严重,不能用于临床。经结构改造,获得依托泊苷(Etoposide)和替尼泊苷(Teniposide)。 鬼臼毒素是较强的微管抑制剂,从而抑制细胞分裂。但托泊苷和替尼泊苷是鬼臼毒素与糖形 成的苷类,对微管无抑制作用,是通过作用于DNA拓扑异构酶II,而发挥活性作用。 OH O O O O MeOOMe OMe 鬼臼毒素 *依托泊苷 OO3HCO HOHOO OOO O MeOOMe OH 又名托泊苷,依托波干,足叶乙甙,VP-16等。 本品为鬼臼毒素的半合成衍生物,其作用机理为抑制微管的组装和拓扑异构酶?,使 DNA不能修复。依托泊苷的代谢主要经尿中排除。 临床上用于治疗小细胞肺癌、淋巴瘤、睾丸癌、急性粒细胞白血病等。 *替尼泊苷 SOOOHOHOO OOO O MeOOMe OH 替尼泊苷,又名VM-26,其作用机理同托泊苷,即作用DNA拓扑异构酶?,导致双链或单链破坏使细胞不能通过S期。 本品的代谢主要是由胆汁中与葡萄糖醛酸或硫酸盐结合排除。临床上用途基本与依托泊 苷相似。 依托泊苷和替尼泊苷相等剂量时,替尼泊苷的活性大于依托泊苷,但依托泊苷的化疗指 数较高,对单核细胞白血病有效,完全缓解率也高,对小细胞肺癌有显著疗效,为小细胞肺 癌化疗首选药物。替尼泊苷脂溶性高,达血脑屏障,为脑瘤首选药物。 (3)长春碱类 长春碱类抗肿瘤药系由夹竹桃科植物长春花(Catharanthus roseus或Vinca roseal)分离 得到的具有抗癌活性的生物碱。主要有长春碱(Vinblastine,VLB)和长春新碱(Vincristine, VCR),对淋巴白血病有较好的治疗作用。临床采用硫酸盐,称为硫酸长春碱和硫酸长春新 碱。 OHNCH3 NONH OHC3CH3OH OCOCHNMeO3HCHCOOCH33 长春碱 在对长春碱结构改造的过程中,合成了长春地辛(长春酰胺,Vindesine),对实验动物肿瘤的活性远优于长春碱和长春新碱,对急性淋巴细胞性白血病及慢性粒细胞性白血病都有 显著的疗效。对小细胞及非小细胞肺癌、乳腺癌等也有较好疗效。 OHNCH3NHNOCHO3OHHC3NOHMeOHCH3CONH2 长春地辛 长春碱类抗肿瘤药物均能与微管蛋白结合阻止微管蛋白双微体聚合成为微管;又可诱导 微管的解聚,使纺锤体不能形成,细胞停止于分裂中期,从而阻止癌细胞分裂繁殖。 *硫酸长春新碱 OHNCH3NONH OHC,HSO324CH3OHOCOCHNMeO3HCHOCOOCH3 本品常用其硫酸盐,为白色或类白色结晶性粉末,有引湿性;与光或热易变黄,易溶于 水。 长春新碱除作用于微管蛋白外,还可以干扰蛋白质代谢既抑制RNA多聚糖的活力,并抑制细胞膜类脂质的合成和氨基酸在细胞膜上的运转。 长春新碱用于对急性急慢性白血病,恶性淋巴瘤、小细胞肺癌及乳腺癌的治疗。对睾丸 癌、卵巢癌、消化道癌及恶性黑色素瘤的也显抑制作用。 (4)紫杉烷类: 紫杉醇(Taxol)最先是从美国西海岸的短叶红豆杉(Taxus breviolia)的树皮中提取得到的一个具有紫杉烯环的二萜类化合物,主要用于治疗卵巢癌、乳腺癌及非小细胞肺癌。 但是紫杉醇在使用过程中出现了二个主要问题:在数种红豆杉属植物中含量很低(最高 约0.02%);加之紫杉生长缓慢,树皮剥去后不能再生,树木将死亡,使来源受到限制。水 溶性很差(0.03 mg/ml),难以制成合适制剂。后来,在浆果紫杉(Taxus baccata)的新鲜叶子中提取得到紫杉醇前体10-去乙酰浆果赤霉素(含量约0.1%),并以此进行半合成紫杉醇及其衍生物。 紫杉烷类的药物的抗肿瘤作用机制是通过诱导和促使微管蛋白聚合成微管,同时抑制所 形成微管的解聚,产生稳定的微管束。使微管束的正常动态再生受阻,细胞在有丝分裂时不 能形成正常的有丝分裂纺锤体,从而抑制了细胞分裂和增殖。这和长春碱类诱导微管解聚的 作用正好相反。 CHO3 OOHOOHOHHOHC3ONHOCH3 HOOOOOHHHHOHOOCOCHOCOCH33OCOCOCOCHH6565 10-去乙酰浆果赤霉素 多烯紫杉 多烯紫杉(Docetaxel)是由10-去乙酰基浆果赤霉素进行半合成得到的又一个紫杉烷类 抗肿瘤药物。其水溶性比紫杉醇好,抗肿瘤谱更广,对除肾癌、结、直肠癌以外的其它实体 瘤都有效。在相当的毒性剂量下,其抗肿瘤作用比紫杉醇高1倍,且同样情况下,活性优于紫杉醇。 *紫杉醇 O COOOOHCH3NHO108O3 OOHH1HOOCOCH3OCOCH65 化学名为5β,20-环氧-1,2α,4,7β,10β,13α-六羟基紫杉醇烷-11-烯-9-酮-4,10-二乙酸酯-2-苯甲酸酯-13-[(2'R. 3'S)-N-苯甲酰-3-苯基异丝氨酸酯。 紫杉醇属有丝分裂抑制剂或纺锤体毒素,与目前常用的化疗药作用机理不同,它是诱导 和促进微管的装配。紫杉醇具有聚合和稳定微管的作用,致使快速分裂的肿瘤细胞在有丝分。 裂阶段被牢牢固定,使癌细胞复制受阻断而死亡。 紫杉醇临床为广谱抗肿瘤药物,为治疗难治性卵巢癌及乳腺癌的有效药物之一第四节 金属配合物抗肿瘤药物 自1969年首次报道顺铂(Cisplatin)对动物肿瘤有强烈的抑制作用后。引起人们对金属配 合物抗肿瘤药研究的重视,合成了大量的金属化合物,其中尤以铂的配合物引起人们的极大 重视。 *顺铂 NH3Cl Pt ClNH3 化学名为(Z)-二氨二氯铂。 本品为亮黄色或橙黄色的结晶性粉末;无臭。易溶于二甲基亚砜,略溶于二甲基甲酰胺, 微溶于水中,不溶于乙醇。 顺铂通常通过静脉注射给药,供药用的是含有甘露醇和氯化钠的冷冻干燥粉,用前用注 射用水配成每毫升含1毫克的顺铂、9毫克氯化钠和10毫克甘露醇的溶液,pH在3.5-5.5之间。本品在室温条件下,在光和空气中稳定。 本品加热至170?时即转化为反式,溶解度降低,颜色发生变化,继续加热至270?熔融同时分解成金属铂。对光和空气不敏感,室温条件下可长期贮存。 顺铂水溶液不稳定,能逐渐水解和转化为反式,生成水合物?和?,进一步水解生成无 抗肿瘤活性且有剧毒的低聚物?与?,但此两种物质在0.9%氯化钠溶液中不稳定,可迅速完全转化为顺铂,因此临床上不会导致中毒危险。 3+NH3+2+2+NHONH33OHHNOHHNPtNH2ON2Pt3H333NHPtOPtPtHNPt33HOHHNClNHNONHHN323333 水合物? 水合物? 低聚物? 低聚物 ? 顺铂临床用于治疗膀胱癌,前列腺癌,肺癌,头颈部癌,乳腺癌,恶性淋巴癌和白血病 等。目前已被公认为治疗睾丸癌和卵巢癌的一线药物。与甲氨蝶呤、环磷酰胺等有协同作用, 无交叉耐药性,并有免疫抑制作用。但该药物水溶性差,且仅能注射给药,缓解期短,并伴 有严重的肾脏、胃肠道毒性、耳毒性及神经毒性,长期使用会产生耐药性。 为了克服顺铂的缺点,用不同的胺类(乙二胺、环己二胺等)和各种酸根(无机酸、 有机酸)与铂(?)络合,合成了一系列铂的配合物。 *卡铂 OONH3Pt OHNO3 化学名为顺式-1,1-环丁烷二羧酸二氨铂。 卡铂是八十年代设计开发的第二代铂配合物。其理化性质,抗肿瘤活性,和抗瘤谱与顺 铂类似,但肾脏毒性、消化道反应和耳毒性均较低。卡铂治疗小细胞肺癌、卵巢癌的效果比 顺铂好,但对膀胱癌、头颈部癌的效果不如顺铂。但仍需静脉注射给药。 第五节 其他抗肿瘤药物 现代研究发现某些妇科肿瘤,如乳腺癌、卵巢癌、子宫癌等,于体内的雌性激素有关,在这些肿瘤部位有较多雌性激素受体,利用雌激素受体拮抗剂阻断雌激素对受体的作用,可以达到治疗这些肿瘤的目的。他莫昔芬 (Tamoxifen) 原是非甾体的雌激素受体拮抗剂,近来发现 他莫昔芬对晚期复发的乳腺癌、卵巢癌有良好的疗效,副作用肿瘤的治疗药物中直接用于肿 瘤治疗的药物。近20年来,乳腺癌的内分泌药物治疗有了很大发展,随着新的调节体内激 素水平的有效药物的出现,人们对乳腺癌的内分泌药物治疗的兴趣与日俱增,无论是作为乳 腺癌术后预防复发转移的辅助治疗,还是复发转移后的解救治疗,乳腺癌内分泌治疗都有十 分重要的地位。目前临床应用最多的乳腺癌内分泌药物有芳香化酶抑制剂等。 *枸橼酸他莫昔芬 HC3 CH3 NOCH3 他莫昔芬为白色或淡黄色结晶粉末,mp.96~98?。其枸橼酸盐mp.140~142?。 他莫昔芬为抗雌激素类药。通过与雌激素竞争雌激素受体,阻断雌激素对靶器官的作用 而发挥疗效。为治疗绝经后晚期乳腺癌的一线药物。还可用于治疗各期乳腺癌、卵巢癌和子 宫内膜癌,并作为前述疾病术后、放疗后的首选辅助用药,对预防复发和缓解病情有明显效 果。尚有微弱的雌激素样作用。 芳构酶抑制剂 通过抑制绝经后妇女芳构酶的活性,阻断雌激素的合成达到抑制乳腺癌 细胞生长。氨鲁米特(Aminoglutethimide)是最传统的芳构酶抑制剂,进一步研究发现氨鲁 米特能抑制肾上腺所有类固醇激素合成,起到“药物性肾上腺切除”的作用,对绝经后转移 性乳腺癌有效率为53%。但由于氨鲁米特非特异性阻断肾上腺功能,导致出现较多的不良 反应,如头晕、嗜睡、疲倦、恶心、皮疹等。为此,研究者开发研制了新一代高选择性的芳 构酶抑制剂,成为近几年乳腺癌内分泌药物治疗的研究热点。兰他隆(Lentaron)是新一代选择性芳构酶抑制剂,该药不影响体内黄体生成素(LH)、卵泡刺激素(FSH)和甲状腺刺激素(TSH),所以使用时不需加用氢化可的松。来曲唑(Letrozol)是新一代代芳构酶抑制剂,为人工合成的苄三唑类衍生物。另外还有一些肿瘤治疗的辅助药物如昂丹司琼 (Ondansetron)等止吐药物,现在逐渐引起人们的重视。 OHC3 CH3CHH3 HHHNO2ON HOHO 氨鲁米特 兰他隆 *来曲唑 N NN NCCN 化学名为1-[双-(4-氰基苯基)甲基]-1H-1,2,4-三氮唑 来曲唑通过抑制芳构酶,使雌激素水平下降,从而消除雌激素对肿瘤生长的刺激作用。 体内外研究显示,来曲唑能有效抑制雄激素向雌激素转化,而绝经后妇女的雌激素主要来源 于雄激素前体物质在外周组织的芳构,故它特别适用于绝经后的乳腺癌患者。来曲唑的体内 活性比第一代芳构酶抑制剂氨鲁米特强150~250倍。由于其选择性较高,不影响糖皮质激素、盐皮质激素和甲状腺功能,大剂量使用对肾上腺皮质类固醇类物质分泌无抑制作用,因 此具有较高的治疗指数。各项临床前研究表明,来曲唑对全身各系统及靶器官没有潜在的毒 性,具有耐受性好、药理作用强的特点。与其他芳构酶抑制剂和抗雌激素药物相比,来曲唑 的抗肿瘤作用更强。用于治疗抗雌激素治疗无效的晚期乳腺癌。 *昂丹司琼 ONN3*HC3 N9CH3 化学名为1,2,3,9-四氢-9-甲基-3-[(2-甲基-1H-咪唑基-1-基)甲基]-4H-咔唑-4-酮。 昂丹司琼的咔唑环上的3位碳具有手性,其中R体的活性较大,目前临床上使用外消旋体。 昂丹司琼可静注或口服,口服的生物利用度为60%。口服后吸收迅速,分布广泛,半衰期为3.5小时。90%以上在肝内代谢,尿中代谢产物主要为葡萄糖醛酸及硫酸酯的结合物, 也有少量羟基化和去甲基代谢物。 本品为强效,高选择性的5-HT受体拮抗剂。对5-HT、5-HT、肾上腺素,、,、,、312121 胆碱、GABA、组胺H、H、神经激肽等受体都无拮抗作用。癌症病人因化学治疗或放射12 治疗引起的小肠与延髓的5-HT释放,通过5-HT受体引起迷走神经兴奋而导致呕吐反射。3昂丹司琼可有效地对抗该过程。本品可用于治疗癌症病人的恶心呕吐症状,辅助癌症病人的 药物治疗,无锥体外系的副作用,毒副作用极小。本品还用于预防和治疗手术后的恶心和呕 吐。
/
本文档为【抗肿瘤药物】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索