为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > 矩阵论习题答案(方保镕编著)习题 5

矩阵论习题答案(方保镕编著)习题 5

2017-12-22 11页 doc 31KB 59阅读

用户头像

is_180829

暂无简介

举报
矩阵论习题答案(方保镕编著)习题 5矩阵论习题答案(方保镕编著)习题 5 习题 5 (k)(k)1. 证:由于,再利用矩阵范数的性质 limA,A,limA,A,0,,,,kk (k)(k) ~ A,A,A,A ()k(k)所以有~即. limA,AlimA,A,0,,,,kk 2. 证:因为 (k)(k)(k)(k) (,A,,B),(,A,,B),(,A,,A),(,B,,B)kkkk kkkk()()()(),,A,,A,,B,,B,,A,,A,,A,,A,,B,,B,,B,,Bkkkkkkkk kk()(). ,,A,A,,,,A,,B,B,,,,...
矩阵论习题答案(方保镕编著)习题 5
矩阵论习题(方保镕编著)习题 5 习题 5 (k)(k)1. 证:由于,再利用矩阵范数的性质 limA,A,limA,A,0,,,,kk (k)(k) ~ A,A,A,A ()k(k)所以有~即. limA,AlimA,A,0,,,,kk 2. 证:因为 (k)(k)(k)(k) (,A,,B),(,A,,B),(,A,,A),(,B,,B)kkkk kkkk()()()(),,A,,A,,B,,B,,A,,A,,A,,A,,B,,B,,B,,Bkkkkkkkk kk()(). ,,A,A,,,,A,,B,B,,,,Bkkkk (k)(k)利用~~以及lim,,,,0~limA,A,0limB,B,0k,,,,,,kkk lim,,,,0~~有界~知 ,,kkk,,k (k)(k)lim,(A,,B,(,A,,B),0kk,,k (k)(k)lim,(A,,B),,A,,B故有. kk,,k 3. 解:,1,由于~从而是收敛矩阵. A,0.9A1 515,2,由于的特征值为~~故~,,,,,,(A),,1A12626故的收敛矩阵. A ,,,,,a,,2a4. 解:由于的特征值为~于是~故,(A),2aA231 111a,,,a,,(A),1当即或时~为收敛矩阵. A222 1 ,NN(k)()()()NkkS,AS,PAQ,P(A)Q5. 证:记~ ,于是 ,,,k0,0,0,kk N,,(k)(k)(k)(N)PAQ,limS,P(limA)Q,PSQ,P(A)Q,,,,,NN,,,k0k0k0,, ,,,(k)(k)(k)PAQAA即也收敛.如果绝对收敛~则收敛.又由于,,,k,0k,0k,0 (k)(K)(k),其中是与无关的正数~由比较判别法知PAQ,PAQ,,Ak ,,(k)(k)PAQPAQ收敛~故也绝对收敛. ,,k,0k,0 17,,6. 解:,1, 设 A,,,,1,3,, ,1kx,,,,,2可求得的特征值为~所以~由幂级数的收,(A),2A,122k,1k敛半径为 2ak(,1)kr. ,lim,lim,12k,,k,,akk,1 ,1kA因 , 知矩阵幂级数发散. ,(A),2,r,2kk,1 1,8,,,,,3,,5,2,设~可求得的特征值为~~所以BB,12,,,21,, ,kk,,x,B,5.又因幂级数的收敛半径 ,k6,0k k,1ak6kr ,lim,lim,6kk,,k,,ak,16k,1 ,kkB即有,(B),r~故矩阵幂级数绝对收敛. ,k6k,0 2 ,0.10.7,,kA7. 解:设~由于~故矩阵幂级数收A,0.9,1A,,,,,0.30.6k,0,, 47,,2,1敛~且其和为. (),,IA,,393,, 8. 证:因~所以有 A(2,jI),(2,jI)A 111,,A234A,2,jIA2,jI,,,,,,?eI(,2jI)(2,jI)(2,jI)(2,jI) e,ee,,2!3!41,, ,,1111,,,,A2435 ,,,,?,,,,?e1(2,)(2,)j2,(2,)(2,)I,,,,,,2!4!3!5!,,,,,, AA,,ecos2,,jsin2,I,e=. 又因~所以有 A(2,I),(2,I)A sin(A,2,I),sinAcos(2,I),cosAsin(2,I) 1111,,,,2435,,,?,,,,?sinAI(,2I)(,2I)cosA2,I(2,I)(2,I)= ,,,,2!4!3!5!,,,, 1111,,,,2435sinA1,(,2),(,2),?I,cosA2,,(2,),(2,),?I= ,,,,2!4!3!5!,,,,= sinAcos2,,cosAsin2,,sinA 9. 证:因为 TT11,,A23e,I,A,A,A,?,,,,2!3!,, T2311TTTA,A,,,,,I,A,A,A,?,e,e2!3! TTAAAAA,A0A所以有.故为正交阵. e,,ee,e,e,e,e,I HHHjAjA,,jA,jA10. 证:因为, 于是有 ,,,,e,e,e,e 3 HjAjAjA,jA0 ,,ee,ee,e,IjA故为酉阵. e 3211. 解 :,1, , ,,f,,,I,A,,,, ,2,由Cayley-Hamilton定理知 3232,,fA,A,A,0 ~即A=A 从而有 4332A=A?A=A=A 5432A=A?A=A=A ………………… 111A23n故 e,I,A,A,A,?,A,?2!3!n! 111,,2,I,A,A,,?,,?,,2!3!n! ,, 2,,,I,A,e,2A 111k352k,1sin,,1A,A,A,A,?,,A,? ,,3!5!21!k, ,,111k2,,,A,A,,,?,,,,1,?,,3!5!2,,k,1! ,, 2,,,A,sin1,1A 12. 解: ,,,,,,,I,A,,,1,,1,,2,0 ,,,1,,1,,2求得A的特征值为~~~于是存在可逆阵 312 1,110,11,,,,1,,,,,1CC,,310,033 ~ ,,,,6,,,,310642,,,, 4 ,1,, ,,,1CAC,1使得.再根据矩阵函数值公式为 ,, ,,2,, 22,12,1,,6e4e,3e,e2e,3e,e 1,,,112,1,1,1AeCdiage,e,eC03e3e3e3e,,,,,, ,,6,1,1,,03e3e3e3e,,,, tA,tt2t,1,,e,Cdiage,e,eC ttt,ttt,t222,,6e4e,3e,e2e,3e,e 1,,t,tt,t03e3e3e3e,,, ,,6t,tt,t,,03e3e3e3e,,,, ,1,,,,sinA,Cdiagsin,1,sin1,sin2C sin24sin2,2sin12sin2,4sin1,,1,,006sin1 = ,,6,,06sin10,, 11,, ,,11,1,,13. 解:,1,对A求得C~使得CAC,,J~所以有 ,,11 ,,1,, 0000,, ,,1000,,1,1,,,,,lnln ACJC,1002,, 11,,,10,,32,, J1121,,,,,,1,2,~其中~ A,J,J,21,,,,,,J02012,,,,,, 于是有 1,,01,,ln2,,ln,J ~ ln,J122,,00,,,,0ln2,, 5 1,,ln200,,2lnJ,,,,1ln200 . ln,,A,,,,lnJ,2,01,, ,,0,, ,t,2t,t,2t,,2eeee,,At14. 解:,1,, e,,,,t,2t,t,2t2e2ee2e,,,,,, ,35,2011,11514,,,,,,t,2t3teee,,,,,,Ate,,3,52,01,1,514,2,, ,,,,,,61510,,,,,,3,520,1414514,,,,,, 1,,22,,,22121tttt,,,,2,,At222,2t,,,,,,,4421,3,, ettttte,,2,,,,,,,,,,854232121tttttt ,,,, 1,51063050,,,,,, ,,,,,,At,2t,2t,3t000000010e,e,te,e,4,. ,,,,,, ,,,,,,021000020,,,,,,, 15. 解: cosA,I,cos1,1A,sinA,sin1A,,,,, ,1, 2A,,e,I,e,1A 2A,,,,cosA,cos1IsinA,sin1Ie,eI,2,~~, 2Ae,I,3,~~. cosA,IsinA,A 5I,AA,I1000100016. 解:,1,, A,,544 3e,1e,3e,1,, ,,A3333e,ee,,e,,2,, ,, ,,3113e,e,,e,, 6 ,,,33,,,,A666arcsin,,3,, ,,4,233,,,,,363,, 15,8,,15,12,4,. ,,I,A,,A,A,,,8172110,, ,sintcost,,d17. 解: ,,At,,,,cost,sintdt,, ,sint,cost,,ddd,1. ,,,,,,At,,At,0,At,1,,cost,sintdtdtdt,, 2,,tt18. 解:时取~则 ,,At,m,2,,0t,, 43232,,,,tt,t4t3t,2td22 ,,,, At,,At,,,,,2dt0t02t,,,, 32,,4t2t,2td,,,, 2AtAt,,,dt02t,, dd2可见~,,,,. ,,At,2AtAtdtdt 19. 解:两边对t求导数~得 5cos5t,3cost10cos5t,2cost5cos5t,cost,,1,,AcosAt,5cos5t,cost10cos5t,2cost5cos5t,cost ,,4,,5cos5t,cost10cos5t,2cost5cos5t,3cost,,令t=0~并注意到~得 cos0,I 221,, ,,A,131. ,, ,,122,, 7 20. 解:这是数量函数对矩阵变量的导数.设,,~则A,aijmxn mn22T,,a,trAA=. ,,fA,A,,stF,,11st ,f,,,2ai,1,2,?,m;j,1,2,?,n又因为~所以 ij,aij ,,df,f,,,,,,2a,2A . ijm,n,,dA,aij,,m,n dTTYX,yx,yx,?,yx21. 解:由于~再由~,,XAX,2AX1122nndX ddfxdc,,T知~而~因此. ,,YX,Y,0,2AX,YdXdxdX n,,,,,,22. 证:,1,设~则~于是B,b,X,xBXbx,,,,ijijikkjm,nn,mk,1,,m,m有 nnn ,,trBX,bx,?,bx,?,bx ,,,11kkjkkjmkkm,,,111kkk ,tBX,,r ,,,bi,1,2,?,n;j,1,2,?,mji,xij b?b,,11m1d,,T,,,,trBX,??,B ,,dX,,b?b1nmn,, TTT注意到BX与,BX,=XB有相同的迹~所以 ddTTT ,,,, ,,,,trXB,trBX,BdXdX T,,,,A,a,X,x,f,tr,,XAX,2,设 ijij,,nnnm 则有 8 nn,,axax?,,1kk11kkm,,xx?,,11n1k,1k,1,,,,T ,,XAX??,??,,,,nn,,,,xx?1mnm,,axax?,,nkk1nkkm,,k,1k,1,, nnnnnn f,xax,?,xax,?,xax ,,,,,,11eekkejekkjemekkm,1,,11,1,1,1ekekek nn,,f,, ,xax,,ejekkj,,,,xxe,1k,1,,ijij nnn,,,x,,,,,ej, = axxax,,,,,,,,,ekkjejekkj,,xx,,11,1,,,,ekk,,ijij,, nn ax,ax = ,,jkkjekej,1,1kk ,,df,fTT,,,,,,AX,AX,A,AX.,,dX,xij,,n,m TT,,,,f,X,uAX,u23. 证:设~因为A,A~所以 TTT,,f,XAX,2AuX,uAu df利用第21题的结果可得,,. ,2AX,2Au,2AX,udX aA,,24. 证:设~记的代数等子式为~将detA按第行A,aiijijijn,n 展开~得 detA,aA,?,aA,?,aA~ i1i1ijijinin ,f,,,Ai,j,1,2,?,n所以~从而有 ij,aij dfTTT,1,1,,,,,, ,,,, ,A,adjA,detAA,detAAij,nndA 其中adjA是A的伴随矩阵. 9 T25. 解:设,,~,,.由于ABA的第k行第k列元素B,bA,aijijn,nn,m nn aba为~所以 ,,sksttk,,11st mnn,,T ,,,,fAtrABAaba,,,,,,,sksttk,,,111,,kst mnnnn,,,aba,aba,,,,,,,sksttksjsttjk,,,111s,,11tst,,,,k,j mnnn,, ,aba,aba,,,,,,sksttk1j1ttjk,,11s,,11tt,,,,k,j nn ,aba,?,aba,,ijittjnjnttjt,1t,1故 n,f,,,ab,?,ab,ba,ab,ab,,,11,1,,1,,1,,1,jiijiiittjijijijii,a,1t,,ij nn ,?,ab,ba,ba,,njniittjbisj,1,1ts最后得 nn,,df,f,,,,,,,,ba,ba,,,,,ittj,sisj,,dA,a ts,1,,1,,,ijnmnm,,,,nm, T,BX,BX dfTf,ABA特别地~当B是对称矩阵时~,当A为列向量时~~,2BAdA dfT且. ,BA,BAdA T,,26. 解:设 ~, 由于 A,a,,X,x,x,?,xij12nm,n Tnn,,F(X),AX,ax,?,ax,,,,1kkmkk,,k,1k,1 Tnn,,TG(X),(AX),ax,?,ax,,,,,1kkmkkk,1k,1,, 所以 10 ,F,GT,a,?,a,,a,?,a,,,,,11imiimi,x,xii T,,dF,F,FT,,,,故,,?,,a,?,a,?,a,?,a1111mnmn,,dX,x,x1n,, a?a,,111n,,dF,F,F,,,,,,?,,??,A T,,,,,x,xdX1n,,,,a?am1mn,, a?a,,T11m1,,dG,G,G,,T,,,,?,,??,A ,,,,dX,x,xn1,,,,a?a1nmn,, 27. 解:因为 2TTTTTTT ,,,,,,fx,AX,b,AX,bAX,b,XAAX,XAb,bAX,bb2 故由上两题的结果得 dfTTTTTT ,,,,,2AAX,Ab,bA,2AAX,AbdX T,,,f,f,fT1,,,,28. 解:因为,,?,n,a,?,a,, 1inii,,,x,x,xiii,, 故有 T,,dfff,,T,,,,,,?,,,,?,,. 1n,,dXxx,,1n,, 11,,2tt3ect1ectc,,,,,,111213,,23,,,t2tA,,tdt,,e,ce,cc29. 解: 212223,,,32,,t,ccc313233,,2,, 11 11,,2,11,,e,,23,,,12 ,,,,,110Atdtee,,,3,,002,,,, 22224tt,,etet2t,,22d,,,t2tAxdx2te2e0 ,,, ,,,,,0dt,,2,,3t00,, ,12,,1,3i,,30. 解:设~A的特征值为~相应的两个特A,,,2,21,, 征向量为 11,,,, ,,,,1,3i1,3i,, ,~, ,,,,22,,,,作矩阵 11,, ,,1,3i1,3iP, ,,22,, ix利用欧拉公式~则 e,cosx,isinx it3,,e0At,1,ePP,,it,30e,,,, 12,, ,cos3tsin3tsin3t,,33,,,,21,,sin3tcos3t,sin3t,,33,,故 2,,tsin3,,0,,3At,,xt,e,,,. ,,11,,,,t,tcos3sin3,,3,, 12 35,,31. 解:设~它的特征值为~对应的两个线,,3,5iA,,,,53,, 1i,,TT,,,,,,1,i,,,i,1性无关的特征向量为~作可逆矩阵~从而有 P,,,i1,, ,35it,,11,cos5sin5,,iitt0,,,,,,e1A3t ,,ee,,,,,,,,,,,35it1,1,sin5cos5iitt20e,,,,,,,, 故 ,,t0,,e,,,AtAt,,,,Xt,e,ed,,,,,,,010,,,, t,,sin5tcos5tcos5,sin5tsin5,,,,3t3t4,, ,e,eed,,,,,,0cos5t,sin5tcos5,cos5tsin5,,,,,, ,,sin5tat,,,,3t3t,e,e,其中,,,,,,cos5tbt,,,, ,4t,,e4,,,,at4cos5t5sin5tcos5t,,,,,,4141,, ,4t,,e5,,4sin5t,5cos5t,sin5t,,,,4141,, ,4t,,e4,,,,bt,,,4cos5t,5sin5t,sin5t,,4141,, ,4t,,e5,,,,4sin5t,5cos5t,cos5t,,4141,, ,,,21011,,,, ,,,,,,Ab,,t,,420,,2,,x0,1 32. 解: 设 ~~ ,,,,,,t,,,,,,101,1e,1,,,,,, 32,,,,,,,det,I,A= , 由C-H定理知 ,,, 324252 A=A~A=A~A=A~……~ 从而有 111234AteIAtAtAtAt,,,,,,,, ,,,,,,?2!3!4! 13 111,,2342,I,tA,t,t,t,A?,,2!3!4!,, 1,2tt0 ,, ,,t2,I,tA,e,1,tA,,4tt0,,,,ttt,,12teet1e,,,,,,故 ,,1,,tt,,,,At,A,At,,()()()()2xt,exo,eb,d,,exo,dt ,,,,,,00,,,,0,,,, ,,1t1,,,,,, ,,,,,,,,Ate1,2t,1 = . ,,,,,,,,t,,,,,,,,10(t,1)e,,,,,,,, 14
/
本文档为【矩阵论习题答案(方保镕编著)习题 5】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索