为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > 实验六 窗函数及其对信号频谱的影响

实验六 窗函数及其对信号频谱的影响

2019-05-05 5页 doc 22KB 69阅读

用户头像

is_353097

暂无简介

举报
实验六 窗函数及其对信号频谱的影响实验六 窗函数及其对信号频谱的影响 一. 实验目的 1. 掌握几种典型窗函数的性质、特点,比较几种典型的窗函数对信号频谱的影响。 2. 通过实验认识它们在克服 FFT 频谱分析的能量泄漏和栅栏效应误差中的作用,以便在实际工作中能根据具体情况正确选用窗函数 二. 实验原理 1. 信号的截断及能量泄漏效应 数字信号处理的主要数学工具是博里叶变换.应注意到,傅里叶变换是研究整个时间域和频率域的关系。然而,当运用计算机实现工程测试信号处理时,不可能对无限长的信号进行测量和运算,而是取其有限的时间片段进行分析。做法是从信号中截取一个...
实验六 窗函数及其对信号频谱的影响
实验六 窗函数及其对信号频谱的影响 一. 实验目的 1. 掌握几种典型窗函数的性质、特点,比较几种典型的窗函数对信号频谱的影响。 2. 通过实验认识它们在克服 FFT 频谱的能量泄漏和栅栏效应误差中的作用,以便在实际工作中能根据具体情况正确选用窗函数 二. 实验原理 1. 信号的截断及能量泄漏效应 数字信号处理的主要数学工具是博里叶变换.应注意到,傅里叶变换是研究整个时间域和频率域的关系。然而,当运用计算机实现工程测试信号处理时,不可能对无限长的信号进行测量和运算,而是取其有限的时间片段进行分析。做法是从信号中截取一个时间片段,然后用观察的信号时间片段进行周期延拓处理,得到虚拟的无限长的信号,然后就可以对信号进行傅里叶变换、相关分析等数学处理。 图6.1 信号的周期延拓 周期延拓后的信号与真实信号是不同的,下面我们就从数学的角度来看这种处理带来的误差情况。设有余弦信号x(t)在时域分布为无限长(- ∞,∞),当用矩形窗函数w(t)与其相乘时,得到截断信号xT(t) =x(t)w(t)。根据博里叶变换关系,余弦信号的频谱X(ω)是位于ω。处的δ函数,而矩形窗函数w(t)的谱为sinc(ω)函数,按照频域卷积定理,则截断信号xT(t) 的谱XT(ω) 应为: 将截断信号的谱XT(ω)与原始信号的谱X(ω)相比较可知,它已不是原来的两条谱线,而是两段振荡的连续谱.这明原来的信号被截断以后,其频谱发生了畸变,原来集中在f0处的能量被分散到两个较宽的频带中去了,这种现象称之为频谱能量泄漏(Leakage)。 信号截断以后产生的能量泄漏现象是必然的,因为窗函数w(t)是一个频带无限的函数,所以即使原信号x(t)是限带宽信号,而在截断以后也必然成为无限带宽的函数,即信号在频域的能量与分布被扩展了。又从采样定理可知,无论采样频率多高,只要信号一经截断,就不可避免地引起混叠,因此信号截断必然导致一些误差,这是信号分析中不容忽视的问题。 如果增大截断长度T,即矩形窗口加宽,则窗谱 W(ω)将被压缩变窄(π/T减小)。虽然理论上讲,其频谱范围仍为无限宽,但实际上中心频率以外的频率分量衰减较快,因而泄漏误差将减小。当窗口宽度T趋于无穷大时,则谱窗W(ω)将变为δ(ω)函数,而δ(ω)与X(ω)的卷积仍为X(ω),这说明,如果窗口无限宽,即不截断,就不存在泄漏误差。 图6.2 信号截断与能量泄露现象 为了减少频谱能量泄漏,可采用不同的截取函数对信号进行截断,截断函数称为窗函数,简称为窗。泄漏与窗函数频谱的两侧旁瓣有关,如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱,为此,在时间域中可采用不同的窗函数来截断信号。 2. 窗函数 实际应用的窗函数,可分为以下主要类型: a)幂窗--采用时间变量某种幂次的函数,如矩形、三角形、梯形或其它时间(t)的高次幂; b) 三角函数窗--应用三角函数,即正弦或余弦函数等组合成复合函数,例如汉宁窗、海明窗等; c) 指数窗--采用指数时间函数,如 形式,例如高斯窗等。 不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。信号的截断产生了能量泄漏,而用FFT算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的,但是我们可以通过选择不同的窗函数对它们的影响进行抑制。图6.5是几种常用的窗函数的时域和频域波形,其中矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高。 图6.5 几种常用的窗函数的时域和频域波形 对于窗函数的选择,应考虑被分析信号的性质与处理要求。如果仅要求精确读出主瓣频率,而不考虑幅值精度,则可选用主瓣宽度比较窄而便于分辨的矩形窗,例如测量物体的自振频率等;如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,如汉宁窗、三角窗等;对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。 三. 实验仪器和设备 1. 计算机 四. 实验步骤及内容 7. 点击实验中的"运行"按钮,然后选择矩形窗,分析和观察矩形窗对信号频谱的影响,同时调节上下截止频率,观察其能量泄漏和栅栏效应。 8. 然后分别选择"Hanning窗"、"Hamming窗"、"BlackMan窗"和"平顶窗",分析和观察这些窗函数对信号频谱的影响,同时调节上下截止频率,观察其能量泄漏和栅栏效应。 五. 实验要求 1. 根据已学知识,整理出典型窗函数时域、频域谱图,并分析各种窗的特性。 2.根据实验结果,整理出同一信号经不同的窗加权后得到的谱图。 六. 思 1. 在信号分析中,加窗除了有减小能量泄漏的好处外,还有什么作用? 2. 对比几种常用窗函数的时域和频域波形,说明它们各自的优缺点。 3. 为什么在加窗处理过程中,窗的长度要尽量长? 继续阅读
/
本文档为【实验六 窗函数及其对信号频谱的影响】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索