为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > 同济第六版《高等数学》教学教案设计WORD版-第07章空间解析几何与向量代数

同济第六版《高等数学》教学教案设计WORD版-第07章空间解析几何与向量代数

2022-11-18 3页 doc 782KB 26阅读

用户头像 个人认证

平凡

计算机科学与计算硕士毕业,12年工作教龄

举报
同济第六版《高等数学》教学教案设计WORD版-第07章空间解析几何与向量代数空间解析几何与向量代数教学目的:1、理解空间直角坐标系,理解向量的概念及其表示。2、掌握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直和平行的条件。理解单位向量、方向数与方向余弦、向量的坐标表达式,熟练掌握用坐标表达式进行向量运算的方法。掌握平面方程和直线方程及其求法。会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。会求点到直线以及点到平面的距离。理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标...
同济第六版《高等数学》教学教案设计WORD版-第07章空间解析几何与向量代数
空间解析几何与向量代数教学目的:1、理解空间直角坐标系,理解向量的概念及其表示。2、掌握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直和平行的条件。理解单位向量、方向数与方向余弦、向量的坐标表达式,熟练掌握用坐标表达式进行向量运算的。掌握平面方程和直线方程及其求法。会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问。会求点到直线以及点到平面的距离。理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。了解空间曲线的参数方程和一般方程。了解空间曲线在坐标平面上的投影,并会求其方程。教学重点:1、向量的线性运算、数量积、向量积的概念、向量运算及坐标运算;2、两个向量垂直和平行的条件;3、平面方程和直线方程;4、平面与平面、平面与直线、直线与直线之间的相互位置关系的判定条件;5、点到直线以及点到平面的距离;6、常用二次曲面的方程及其图形;7、旋转曲面及母线平行于坐标轴的柱面方程;8、空间曲线的参数方程和一般方程。教学难点:1、向量积的向量运算及坐标运算;2、平面方程和直线方程及其求法;3、点到直线的距离;4、二次曲面图形;5、旋转曲面的方程;§71向量及其线性运算一、向量概念向量在研究力学、物理学以及其他应用科学时常会遇到这样一类量它们既有大小又有方向例如力、力矩、位移、速度、加速度等这一类量叫做向量在数学上用一条有方向的线段(称为有向线段)来表示向量有向线段的长度表示向量的大小有向线段的方向表示向量的方向.向量的符号以A为起点、B为终点的有向线段所表示的向量记作向量可用粗体字母表示也可用上加箭头书写体字母表示例如a、r、v、F或、、、自由向量由于一切向量的共性是它们都有大小和方向所以在数学上我们只研究与起点无关的向量并称这种向量为自由向量简称向量因此如果向量a和b的大小相等且方向相同则说向量a和b是相等的记为ab相等的向量经过平移后可以完全重合向量的模向量的大小叫做向量的模向量a、、的模分别记为|a|、、单位向量模等于1的向量叫做单位向量零向量模等于0的向量叫做零向量记作0或零向量的起点与终点重合它的方向可以看作是任意的向量的平行两个非零向量如果它们的方向相同或相反就称这两个向量平行向量a与b平行记作a//b零向量认为是与任何向量都平行当两个平行向量的起点放在同一点时它们的终点和公共的起点在一条直线上因此两向量平行又称两向量共线类似还有共面的概念设有k(k3)个向量当把它们的起点放在同一点时如果k个终点和公共起点在一个平面上就称这k个向量共面二、向量的线性运算1.向量的加法向量的加法设有两个向量a与b平移向量使b的起点与a的终点重合此时从a的起点到b的终点的向量c称为向量a与b的和记作a+b即ca+b.三角形法则上述作出两向量之和的方法叫做向量加法的三角形法则平行四边形法则当向量a与b不平行时平移向量使a与b的起点重合以a、b为邻边作一平行四边形从公共起点到对角的向量等于向量a与b的和abABCABCD向量的加法的运算规律(1)交换律abba(2)结合律(ab)ca(bc)由于向量的加法符合交换律与结合律故n个向量a1a2an(n3)相加可写成a1a2an并按向量相加的三角形法则可得n个向量相加的法则如下使前一向量的终点作为次一向量的起点相继作向量a1a2an再以第一向量的起点为起点最后一向量的终点为终点作一向量这个向量即为所求的和负向量设a为一向量与a的模相同而方向相反的向量叫做a的负向量记为a向量的减法我们规定两个向量b与a的差为bab(a)即把向量a加到向量b上便得b与a的差ba特别地当ba时有aaa(a)0显然任给向量及点O有因此若把向量a与b移到同一起点O则从a的终点A向b的终点B所引向量便是向量b与a的差ba三角不等式由三角形两边之和大于第三边的原理有|ab||a||b|及|ab||a||b|其中等号在b与a同向或反向时成立2.向量与数的乘法向量与数的乘法的定义向量a与实数的乘积记作a规定a是一个向量它的模|a||||a|它的方向当>0时与a相同当<0时与a相反当0时|a|0即a为零向量这时它的方向可以是任意的特别地当1时有1aa(1)aa运算规律(1)结合律(a)(a)()a;(2)分配律()aaa;(ab)ab例1在平行四边形ABCD中设ab试用a和b表示向量、、、其中M是平行四边形对角线的交点解由于平行四边形的对角线互相平分所以ABCDMab即(ab)于是(ab)因为所以(ab)又因ab所以(ba)由于所以(ab)例1在平行四边形ABCD中设试用a和b表示向量、、、其中M是平行四边形对角线的交点ABCDM解由于平行四边形的对角线互相平分所以于是因为所以向量的单位化设a0则向量是与a同方向的单位向量记为ea于是a|a|ea向量的单位化设a0则向量是与a同方向的单位向量记为ea于是a|a|ea定理1设向量a0那么向量b平行于a的充分必要条件是存在唯一的实数使ba证明条件的充分性是显然的下面证明条件的必要性设b//a取当b与a同向时取正值当b与a反向时取负值即ba这是因为此时b与a同向且|a||||a|再证明数的唯一性设ba又设ba两式相减便得()a0即|||a|0因|a|0故||0即给定一个点及一个单位向量就确定了一条数轴设点O及单位向量i确定了数轴Ox对于轴上任一点P对应一个向量由//i根据定理1必有唯一的实数x使xi(实数x叫做轴上有向线段的值)并知与实数x一一对应于是点P向量xi实数x从而轴上的点P与实数x有一一对应的关系据此定义实数x为轴上点P的坐标由此可知轴上点P的坐标为x的充分必要条件是xi三、空间直角坐标系在空间取定一点O和三个两两垂直的单位向量i、j、k就确定了三条都以O为原点的两两垂直的数轴依次记为x轴(横轴)、y轴(纵轴)、z轴(竖轴)统称为坐标轴它们构成一个空间直角坐标系称为Oxyz坐标系注:(1)通常三个数轴应具有相同的长度单位(2)通常把x轴和y轴配置在水平面上而z轴则是铅垂线(3)数轴的的正向通常符合右手规则坐标面在空间直角坐标系中任意两个坐标轴可以确定一个平面这种平面称为坐标面x轴及y轴所确定的坐标面叫做xOy面另两个坐标面是yOz面和zOx面卦限三个坐标面把空间分成八个部分每一部分叫做卦限含有三个正半轴的卦限叫做第一卦限它位于xOy面的上方在xOy面的上方按逆时针方向排列着第二卦限、第三卦限和第四卦限在xOy面的下方与第一卦限对应的是第五卦限按逆时针方向还排列着第六卦限、第七卦限和第八卦限八个卦限分别用字母I、II、III、IV、V、VI、VII、VIII表示向量的坐标分解式任给向量r对应有点M使以OM为对角线、三条坐标轴为棱作长方体有设则上式称为向量r的坐标分解式xi、yj、zk称为向量r沿三个坐标轴方向的分向量显然给定向量r就确定了点M及三个分向量进而确定了x、y、z三个有序数反之给定三个有序数x、y、z也就确定了向量r与点M于是点M、向量r与三个有序x、y、z之间有一一对应的关系据此定义有序数x、y、z称为向量r(在坐标系Oxyz)中的坐标记作r(xyz)有序数x、y、z也称为点M(在坐标系Oxyz)的坐标记为M(xyz)向量称为点M关于原点O的向径上述定义表明一个点与该点的向径有相同的坐标记号(xyz)既表示点M又表示向量.坐标面上和坐标轴上的点其坐标各有一定的特征例如点M在yOz面上则x0同相在zOx面上的点y0在xOy面上的点z0如果点M在x轴上则yz0同样在y轴上,有zx0在z轴上的点有xy0如果点M为原点则xyz0.四、利用坐标作向量的线性运算设a(axayaz)b(bxbybz)即aaxiayjazkbbxibyjbzk则ab(axiayjazk)(bxibyjbzk)(axbx)i(ayby)j(azbz)k(axbxaybyazbz)ab(axiayjazk)(bxibyjbzk)(axbx)i(ayby)j(azbz)k(axbxaybyazbz)a(axiayjazk)(ax)i(ay)j(az)k(axayaz)利用向量的坐标判断两个向量的平行设a(axayaz)0b(bxbybz)向量b//aba即b//a(bxbybz)(axayaz)于是例2求解以向量为未知元的线性方程组其中a(212)b(112).解如同解二元一次线性方程组可得x2a3by3a5b以a、b的坐标表示式代入即得x2(212)3(112)(7110)y3(212)5(112)(11216)例3已知两点A(x1y1z1)和B(x2y2z2)以及实数1在直线AB上求一点M使解由于因此从而这就是点M的坐标另解设所求点为M(xyz)则依题意有即(xx1yy1zz1)(x2xy2yz2z)(xyz)(x1y1z1)(x2y2z2)(xyz)点M叫做有向线段的定比分点当1点M的有向线段的中点其坐标为五、向量的模、方向角、投影1.向量的模与两点间的距离公式设向量r(xyz)作则按勾股定理可得设有|OP||x||OQ||y||OR||z|于是得向量模的坐标表示式设有点A(x1y1z1)、B(x2y2z2)则(x2y2z2)(x1y1z1)(x2x1y2y1z2z1)于是点A与点B间的距离为例4求证以M1(431)、M2(712)、M3(523)三点为顶点的三角形是一个等腰三角形解因为|M1M2|2(74)2(13)2(21)214|M2M3|2(57)2(21)2(32)26|M1M3|2(54)2(23)2(31)26所以|M2M3||M1M3|即M1M2M3为等腰三角形例5在z轴上求与两点A(417)和B(352)等距离的点解设所求的点为M(00z)依题意有|MA|2|MB|2即(04)2(01)2(z7)2(30)2(50)2(2z)2解之得所以所求的点为例6已知两点A(405)和B(713)求与方向相同的单位向量e解因为所以2.方向角与方向余弦当把两个非零向量a与b的起点放到同一点时两个向量之间的不超过的夹角称为向量a与b的夹角记作或如果向量a与b中有一个是零向量规定它们的夹角可以在0与之间任意取值类似地可以规定向量与一轴的夹角或空间两轴的夹角非零向量r与三条坐标轴的夹角、、称为向量r的方向角向量的方向余弦设r(xyz)则x|r|cosy|r|cosz|r|coscos、cos、cos称为向量r的方向余弦从而上式表明以向量r的方向余弦为坐标的向量就是与r同方向的单位向量er因此cos2cos2cos21例3设已知两点)和B(1,3,0)计算向量的模、方向余弦和方向角解3.向量在轴上的投影设点O及单位向量e确定u轴任给向量r作再过点M作与u轴垂直的平面交u轴于点M(点M叫作点M在u轴上的投影)则向量称为向量r在u轴上的分向量设则数称为向量r在u轴上的投影记作Prjur或(r)u按此定义向量a在直角坐标系Oxyz中的坐标axayaz就是a在三条坐标轴上的投影即axPrjxaayPrjyaazPrjza投影的性质性质1(a)u|a|cos(即Prjua|a|cos)其中为向量与u轴的夹角性质2(ab)u(a)u(b)u(即Prju(ab)PrjuaPrjub)性质3(a)u(a)u(即Prju(a)Prjua)§72数量积向量积一、两向量的数量积数量积的物理背景:设一物体在常力F作用下沿直线从点M1移动到点M2以s表示位移由物理学知道力F所作的功为W|F||s|cos其中为F与s的夹角数量积对于两个向量a和b它们的模|a|、|b|及它们的夹角的余弦的乘积称为向量a和b的数量积记作ab即a·b|a||b|cos数量积与投影由于|b|cos|b|cos(a^b)当a0时|b|cos(a^b)是向量b在向量a的方向上的投影于是a·b|a|Prjab同理当b0时a·b|b|Prjba数量积的性质(1)a·a|a|2(2)对于两个非零向量a、b如果a·b0则ab反之如果ab则a·b0如果认为零向量与任何向量都垂直则aba·b0数量积的运算律(1)交换律a·bb·a(2)分配律(ab)cacbc(3)(a)·ba·(b)(a·b)(a)·(b)(a·b)、为数(2)的证明分配律(ab)cacbc的证明因为当c0时上式显然成立当c0时有(ab)c|c|Prjc(ab)|c|(PrjcaPrjcb)|c|Prjca|c|Prjcbacbc例1试用向量证明三角形的余弦定理证设在ΔABC中∠BCA(图724)BC|aCA|b|AB|c要证c2a2b22abcos记abc则有cab从而|c|2cc(ab)(ab)aabb2ab|a|2|b|22|a||b|cos(a^b)即c2a2b22abcos数量积的坐标表示设a(axayaz)b(bxbybz)则a·baxbxaybyazbz提示按数量积的运算规律可得a·b(axiayjazk)·(bxibyjbzk)axbxi·iaxbyi·jaxbzi·kaybxj·iaybyj·jaybzj·kazbxk·iazbyk·jazbzk·kaxbxaybyazbz两向量夹角的余弦的坐标表示设(a^b)则当a0、b0时有提示a·b|a||b|cos例2已知三点M(111)、A(221)和B(212)求AMB解从M到A的向量记为a从M到B的向量记为b则AMB就是向量a与b的夹角a{110}b{101}因为ab1110011所以从而例3.设液体流过平面S上面积为A的一个区域液体在这区域上各点处的流速均为(常向量v设n为垂直于S的单位向量(图7-25(a))计算单位时间内经过这区域流向n所指一方的液体的质量P(液体的密度为ρ)解单位时间内流过这区域的液体组成一个底面积为A、斜高为|v|的斜柱体(图7-25(b))这柱体的斜高与底面的垂线的夹角就是v与n的夹角所以这柱体的高为|v|cos体积为A|v|cosAv·n从而单位时间内经过这区域流向n所指一方的液体的质量为PAv·n二、两向量的向量积在研究物体转动问题时不但要考虑这物体所受的力还要分析这些力所产生的力矩设O为一根杠杆L的支点有一个力F作用于这杠杆上P点处F与的夹角为由力学规定力F对支点O的力矩是一向量M它的模而M的方向垂直于与F所决定的平面M的指向是的按右手规则从以不超过的角转向F来确定的向量积设向量c是由两个向量a与b按下列方式定出c的模|c||a||b|sin其中为a与b间的夹角c的方向垂直于a与b所决定的平面c的指向按右手规则从a转向b来确定那么向量c叫做向量a与b的向量积记作ab即cab根据向量积的定义力矩M等于与F的向量积即向量积的性质(1)aa0(2)对于两个非零向量a、b如果ab0则a//b反之如果a//b则ab0如果认为零向量与任何向量都平行则a//bab0数量积的运算律(1)交换律abba(2)分配律(ab)cacbc(3)(a)ba(b)(ab)(为数)数量积的坐标表示设aaxiayjazkbbxibyjbzk按向量积的运算规律可得ab(axiayjazk)(bxibyjbzk)axbxiiaxbyijaxbzikaybxjiaybyjjaybzjkazbxkiazbykjazbzkk由于iijjkk0ijkjkikij所以ab(aybzazby)i(azbxaxbz)j(axbyaybx)k为了邦助记忆利用三阶行列式符号上式可写成aybziazbxjaxbykaybxkaxbzjazbyi(aybzazby)i(azbxaxbz)j(axbyaybx)k例4设a(211)b(112)计算ab解2ij2kk4jii5j3k例5已知三角形ABC的顶点分别是A(123)、B(345)、C(247)求三角形ABC的面积解根据向量积的定义可知三角形ABC的面积由于(222)(124)因此4i6j2k于是例6设刚体以等角速度绕l轴旋转计算刚体上一点M的线速度解刚体绕l轴旋转时我们可以用在l轴上的一个向量表示角速度它的大小等于角速度的大小它的方向由右手规则定出即以右手握住l轴当右手的四个手指的转向与刚体的旋转方向一致时大姆指的指向就是的方向设点M到旋转轴l的距离为a再在l轴上任取一点O作向量r并以表示与r的夹角那么a|r|sin设线速度为v那么由物理学上线速度与角速度间的关系可知v的大小为|v|||a|||r|sinv的方向垂直于通过M点与l轴的平面即v垂直于与r又v的指向是使、r、v符合右手规则因此有vr§73曲面及其方程一、曲面方程的概念在空间解析几何中任何曲面都可以看作点的几何轨迹在这样的意义下如果曲面S与三元方程F(xyz)0有下述关系(1)曲面S上任一点的坐标都满足方程F(xyz)0(2)不在曲面S上的点的坐标都不满足方程F(xyz)0那么方程F(xyz)0就叫做曲面S的方程而曲面S就叫做方程F(xyz)0的图形常见的曲面的方程例1建立球心在点M0(x0y0z0)、半径为R的球面的方程解设M(xyz)是球面上的任一点那么|M0M|R即或(xx0)2(yy0)2(zz0)2R2这就是球面上的点的坐标所满足的方程而不在球面上的点的坐标都不满足这个方程所以(xx0)2(yy0)2(zz0)2R2就是球心在点M0(x0y0z0)、半径为R的球面的方程特殊地球心在原点O(000)、半径为R的球面的方程为x2y2z2R2例2设有点A(123)和B(214)求线段AB的垂直平分面的方程解由题意知道所求的平面就是与A和B等距离的点的几何轨迹设M(xyz)为所求平面上的任一点则有|AM||BM|即等式两边平方然后化简得2x6y2z70这就是所求平面上的点的坐标所满足的方程而不在此平面上的点的坐标都不满足这个方程所以这个方程就是所求平面的方程研究曲面的两个基本问题(1)已知一曲面作为点的几何轨迹时建立这曲面的方程(2)已知坐标x、y和z间的一个方程时研究这方程所表示的曲面的形状例3方程x2y2z22x4y0表示怎样的曲面?解通过配方原方程可以改写成(x1)2(y2)2z25这是一个球面方程球心在点M0(120)、半径为一般地设有三元二次方程Ax2Ay2Az2DxEyFzG0这个方程的特点是缺xyyzzx各项而且平方项系数相同只要将方程经过配方就可以化成方程(xx0)2(yy0)2(zz0)2R2的形式它的图形就是一个球面二、旋转曲面以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面叫做旋转曲面这条定直线叫做旋转曲面的轴设在yOz坐标面上有一已知曲线C它的方程为f(yz)0把这曲线绕z轴旋转一周就得到一个以z轴为轴的旋转曲面它的方程可以求得如下设M(xyz)为曲面上任一点它是曲线C上点M1(0y1z1)绕z轴旋转而得到的因此有如下关系等式从而得这就是所求旋转曲面的方程在曲线C的方程f(yz)0中将y改成便得曲线C绕z轴旋转所成的旋转曲面的方程同理曲线C绕y轴旋转所成的旋转曲面的方程为例4直线L绕另一条与L相交的直线旋转一周所得旋转曲面叫做圆锥面两直线的交点叫做圆锥面的顶点两直线的夹角()叫做圆锥面的半顶角试建立顶点在坐标原点O旋转轴为z轴半顶角为的圆锥面的方程解在yOz坐标面内直线L的方程为zycot将方程zycot中的y改成就得到所的圆锥面的方程或z2a2(x2y2)其中acot例5将zOx坐标面上的双曲线分别绕x轴和z轴旋转一周求所生成的旋转曲面的方程解绕x轴旋转所在的旋转曲面的方程为绕z轴旋转所在的旋转曲面的方程为这两种曲面分别叫做双叶旋转双曲面和单叶旋转双曲面三、柱面例6方程x2y2R2表示怎样的曲面?解方程x2y2R2在xOy面上表示圆心在原点O、半径为R的圆在空间直角坐标系中这方程不含竖坐标z即不论空间点的竖坐标z怎样只要它的横坐标x和纵坐标y能满足这方程那么这些点就在这曲面上也就是说过xOy面上的圆x2y2R2且平行于z轴的直线一定在x2y2R2表示的曲面上所以这个曲面可以看成是由平行于z轴的直线l沿xOy面上的圆x2y2R2移动而形成的这曲面叫做圆柱面xOy面上的圆x2y2R2叫做它的准线这平行于z轴的直线l叫做它的母线例6方程x2y2R2表示怎样的曲面?解在空间直角坐标系中过xOy面上的圆x2y2R2作平行于z轴的直线l则直线l上的点都满足方程x2y2R2因此直线l一定在x2y2R2表示的曲面上所以这个曲面可以看成是由平行于z轴的直线l沿xOy面上的圆x2y2R2移动而形成的这曲面叫做圆柱面xOy面上的圆x2y2R2叫做它的准线这平行于z轴的直线l叫做它的母线柱面平行于定直线并沿定曲线C移动的直线L形成的轨迹叫做柱面定曲线C叫做柱面的准线动直线L叫做柱面的母线上面我们看到不含z的方程x2y2R2在空间直角坐标系中表示圆柱面它的母线平行于z轴它的准线是xOy面上的圆x2y2R2一般地只含x、y而缺z的方程F(xy)0在空间直角坐标系中表示母线平行于z轴的柱面其准线是xOy面上的曲线CF(xy)0例如方程y22x表示母线平行于z轴的柱面它的准线是xOy面上的抛物线y22x该柱面叫做抛物柱面又如方程xy0表示母线平行于z轴的柱面其准线是xOy面的直线xy0所以它是过z轴的平面类似地只含x、z而缺y的方程G(xz)0和只含y、z而缺x的方程H(yz)0分别表示母线平行于y轴和x轴的柱面例如方程xz0表示母线平行于y轴的柱面其准线是zOx面上的直线xz0所以它是过y轴的平面 四、二次曲面与平面解析几何中规定的二次曲线相类似我们把三元二次方程所表示的曲面叫做二次曲面把平面叫做一次曲面怎样了解三元方程F(xyz)0所表示的曲面的形状呢方法之一是用坐标面和平行于坐标面的平面与曲面相截考察其交线的形状然后加以综合从而了解曲面的立体形状这种方法叫做截痕法研究曲面的另一种方程是伸缩变形法设S是一个曲面其方程为F(xyz)0S是将曲面S沿x轴方向伸缩倍所得的曲面显然若(xyz)S则(xyz)S若(xyz)S则因此对于任意的(xyz)S有即是曲面S的方程例如,把圆锥面沿y轴方向伸缩倍所得曲面的方程为即(1)椭圆锥面由方程所表示的曲面称为椭圆锥面圆锥曲面在y轴方向伸缩而得的曲面把圆锥面沿y轴方向伸缩倍所得曲面称为椭圆锥面以垂直于z轴的平面zt截此曲面当t0时得一点(000)当t0时得平面zt上的椭圆当t变化时上式表示一族长短轴比例不变的椭圆当|t|从大到小并变为0时这族椭圆从大到小并缩为一点综合上述讨论可得椭圆锥面的形状如图(2)椭球面由方程所表示的曲面称为椭球面球面在x轴、y轴或z轴方向伸缩而得的曲面把x2y2z2a2沿z轴方向伸缩倍得旋转椭球面再沿y轴方向伸缩倍即得椭球面(3)单叶双曲面由方程所表示的曲面称为单叶双曲面把zOx面上的双曲线绕z轴旋转得旋转单叶双曲面再沿y轴方向伸缩倍即得单叶双曲面(4)双叶双曲面由方程所表示的曲面称为双叶双曲面把zOx面上的双曲线绕x轴旋转得旋转双叶双曲面再沿y轴方向伸缩倍即得双叶双曲面(5)椭圆抛物面由方程所表示的曲面称为椭圆抛物面把zOx面上的抛物线绕z轴旋转所得曲面叫做旋转抛物面再沿y轴方向伸缩倍所得曲面叫做椭圆抛物面(6)双曲抛物面由方程所表示的曲面称为双曲抛物面双曲抛物面又称马鞍面用平面xt截此曲面所得截痕l为平面xt上的抛物线此抛物线开口朝下其项点坐标为当t变化时l的形状不变位置只作平移而l的项点的轨迹L为平面y0上的抛物线因此以l为母线L为准线母线l的项点在准线L上滑动且母线作平行移动这样得到的曲面便是双曲抛物面还有三种二次曲面是以三种二次曲线为准线的柱面依次称为椭圆柱面、双曲柱面、抛物柱面§74空间曲线及其方程一、空间曲线的一般方程空间曲线可以看作两个曲面的交线设          F(xyz)0和G(xyz)0是两个曲面方程它们的交线为C因为曲线C上的任何点的坐标应同时满足这两个方程所以应满足方程组反过来如果点M不在曲线C上那么它不可能同时在两个曲面上所以它的坐标不满足方程组因此曲线C可以用上述方程组来表示上述方程组叫做空间曲线C的一般方程例1方程组表示怎样的曲线解方程组中第一个方程表示母线平行于z轴的圆柱面其准线是xOy面上的圆圆心在原点O半行为1方程组中第二个方程表示一个母线平行于y轴的柱面由于它的准线是zOx面上的直线因此它是一个平面方程组就表示上述平面与圆柱面的交线例2方程组表示怎样的曲线解方程组中第一个方程表示球心在坐标原点O半行为a的上半球面第二个方程表示母线平行于z轴的圆柱面它的准线是xOy面上的圆这圆的圆心在点半行为方程组就表示上述半球面与圆柱面的交线例2方程组表示怎样的曲线解方程组中第一个方程表示球心在坐标原点O半行为2a的上半球面第二个方程表示母线平行于z轴的圆柱面它的准线是xOy面上的圆这圆的圆心在点(a0)半行为a方程组就表示上述半球面与圆柱面的交线二、空间曲线的参数方程空间曲线C的方程除了一般方程之外也可以用参数形式表示只要将C上动点的坐标x、y、z表示为参数t的函数当给定tt1时就得到C上的一个点(x1y1z1)随着t的变动便得曲线C上的全部点方程组(2)叫做空间曲线的参数方程例3如果空间一点M在圆柱面x2y2a2上以角速度绕z轴旋转同时又以线速度v沿平行于z轴的正方向上升(其中、v都是常数)那么点M构成的图形叫做螺旋线试建立其参数方程解取时间t为参数设当t0时动点位于x轴上的一点A(a,00)处经过时间t动点由A运动到M(xyz)(图7-44)记M在xOy面上的投影为MM的坐标为xy,0由于动点在圆柱面上以角速度绕z轴旋转所以经过时间t,∠AOMt从而x|OM|cos∠AOMacosty|OM|sin∠AOMasint,由于动点同时以线速度v沿平行于z轴的正方向上升所以zMMvt.因此螺旋线的参数方程为也可以用其他变量作参数例如令t则螺旋线的参数方程可写为其中而参数为*曲面的参数方程曲面的参数方程通常是含两个参数的方程形如例如空间曲线(t)绕z轴旋转所得旋转曲面的方程为(t02)……(4)这是因为固定一个t得上一点M1((t)(t)(t))点M1绕z轴旋转得空间的一个圆该圆在平面z(t)上其半径为点M1到z轴的距离因此固定t的方程(4)就是该圆的参数方程再令t在[]内变动方程(4)便是旋转曲面的方程例如直线绕z轴旋转所得旋转曲面的方程为(上式消t和得曲面的直角坐标方程为)又如球面x2y2z2a2可看成zOx面上的半圆周(0)绕z轴旋转所得故球面方程为(002)三、空间曲线在坐标面上的投影以曲线C为准线、母线平行于z轴的柱面叫做曲线C关于xOy面的投影柱面投影柱面与xOy面的交线叫做空间曲线C在xOy面上的投影曲线或简称投影(类似地可以定义曲线C在其它坐标面上的投影)设空间曲线C的一般方程为设方程组消去变量z后所得的方程H(xy)0这就是曲线C关于xOy面的投影柱面这是因为一方面方程H(xy)0表示一个母线平行于z轴的柱面另一方面方程H(xy)0是由方程组消去变量z后所得的方程因此当x、y、z满足方程组时前两个数x、y必定满足方程H(xy)0这就说明曲线C上的所有点都在方程H(xy)0所表示的曲面上即曲线C在方程H(xy)0表示的柱面上所以方程H(xy)0表示的柱面就是曲线C关于xOy面的投影柱面曲线C在xOy面上的投影曲线的方程为讨论曲线C关于yOz面和zOx面的投影柱面的方程是什么曲线C在yOz面和zOx面上的投影曲线的方程是什么例4已知两球面的方程为x2y2z21(5)和x2(y1)2(z1)21(6)求它们的交线C在xOy面上的投影方程解先将方程x2(y1)2(z1)21化为x2y2z22y2z1然后与方程x2y2z21相减得yz1将z1y代入x2y2z21得x22y22y0这就是交线C关于xOy面的投影柱面方程两球面的交线C在xOy面上的投影方程为例5求由上半球面和锥面所围成立体在xOy面上的投影解由方程和消去z得到x2y21这是一个母线平行于z轴的圆柱面容易看出这恰好是半球面与锥面的交线C关于xOy面的投影柱面因此交线C在xOy面上的投影曲线为这是xOy面上的一个圆于是所求立体在xOy面上的投影就是该圆在xOy面上所围的部分:x2y21§75平面及其方程一、平面的点法式方程法线向量如果一非零向量垂直于一平面这向量就叫做该平面的法线向量容易知道平面上的任一向量均与该平面的法线向量垂直唯一确定平面的条件当平面上一点M0(x0y0z0)和它的一个法线向量n(ABC)为已知时平面的位置就完全确定了平面方程的建立设M(xyz)是平面上的任一点那么向量必与平面的法线向量n垂直即它们的数量积等于零由于n(ABC)所以A(xx0)B(yy0)C(zz0)0这就是平面上任一点M的坐标xyz所满足的方程反过来如果M(xyz)不在平面上那么向量与法线向量n不垂直从而即不在平面上的点M的坐标xyz不满足此方程由此可知方程A(xx0)B(yy0)C(zz0)0就是平面的方程而平面就是平面方程的图形由于方程A(xx0)B(yy0)C(zz0)0是由平面上的一点M0(x0y0z0)及它的一个法线向量n(ABC)确定的所以此方程叫做平面的点法式方程例1求过点(230)且以n(123)为法线向量的平面的方程解根据平面的点法式方程得所求平面的方程为(x2)2(y3)3z0即x2y3z80例2求过三点M1(214)、M2(132)和M3(023)的平面的方程解我们可以用作为平面的法线向量n因为所以根据平面的点法式方程得所求平面的方程为14(x2)9(y1)(z4)0即14x9yz150二、平面的一般方程由于平面的点法式方程是xyz的一次方程而任一平面都可以用它上面的一点及它的法线向量来确定所以任一平面都可以用三元一次方程来表示反过来设有三元一次方程AxByCzD0我们任取满足该方程的一组数x0y0z0即Ax0By0Cz0D0把上述两等式相减得A(xx0)B(yy0)C(zz0)0这正是通过点M0(x0y0z0)且以n(ABC)为法线向量的平面方程由于方程AxByCzD0与方程A(xx0)B(yy0)C(zz0)0同解所以任一三元一次方程AxByCzD0的图形总是一个平面方程AxByCzD0称为平面的一般方程其中xyz的系数就是该平面的一个法线向量n的坐标即n(ABC)例如方程3x4yz90表示一个平面n(341)是这平面的一个法线向量讨论考察下列特殊的平面方程指出法线向量与坐标面、坐标轴的关系平面通过的特殊点或线AxByCz0ByCzD0AxCzD0AxByD0CzD0AxD0ByD0提示D0平面过原点n(0BC)法线向量垂直于x轴平面平行于x轴n(A0C)法线向量垂直于y轴平面平行于y轴n(AB0)法线向量垂直于z轴平面平行于z轴n(00C)法线向量垂直于x轴和y轴平面平行于xOy平面n(A00)法线向量垂直于y轴和z轴平面平行于yOz平面n(0B0)法线向量垂直于x轴和z轴平面平行于zOx平面例3求通过x轴和点(431)的平面的方程解平面通过x轴一方面表明它的法线向量垂直于x轴即A0另一方面表明它必通过原点即D0因此可设这平面的方程为ByCz0又因为这平面通过点(431)所以有3BC0或C3B将其代入所设方程并除以B(B0)便得所求的平面方程为y3z0例4设一平面与x、y、z轴的交点依次为P(a00)、Q(0b0)、R(00c)三点求这平面的方程(其中a0b0c0)解设所求平面的方程为AxByCzD0因为点P(a00)、Q(0b0)、R(00c)都在这平面上所以点P、Q、R的坐标都满足所设方程即有由此得将其代入所设方程得即上述方程叫做平面的截距式方程而a、b、c依次叫做平面在x、y、z轴上的截距三、两平面的夹角两平面的夹角两平面的法线向量的夹角(通常指锐角)称为两平面的夹角设平面1和2的法线向量分别为n1(A1B1C1)和n2(A2B2C2)那么平面1和2的夹角应是和两者中的锐角因此按两向量夹角余弦的坐标表示式平面1和2的夹角可由来确定从两向量垂直、平行的充分必要条件立即推得下列结论平面1和2垂直相当于A1A2B1B2C1C20平面1和2平行或重合相当于例5求两平面xy2z60和2xyz50的夹角解n1(A1B1C1)(112)n2(A2B2C2)(211)所以所求夹角为例6一平面通过两点M1(111)和M2(011)且垂直于平面xyz0求它的方程解方法一已知从点M1到点M2的向量为n1(102)平面xyz0的法线向量为n2(111)设所求平面的法线向量为n(ABC)因为点M1(111)和M2(011)在所求平面上所以nn1即A2C0A2C又因为所求平面垂直于平面xyz0所以nn1即ABC0BC于是由点法式方程所求平面为2C(x1)C(y1)C(z1)0即2xyz0方法二从点M1到点M2的向量为n1(102)平面xyz0的法线向量为n2(111)设所求平面的法线向量n可取为n1n2因为所以所求平面方程为2(x1)(y1)(z1)0即2xyz0例7设P0(x0y0z0)是平面AxByCzD0外一点求P0到这平面的距离解设en是平面上的单位法线向量在平面上任取一点P1(x1y1z1)则P0到这平面的距离为提示例8求点(211)到平面xyz10的距离解§76空间直线及其方程一、空间直线的一般方程空间直线L可以看作是两个平面1和2的交线如果两个相交平面1和2的方程分别为A1xB1yC1zD10和A2xB2yC2zD20那么直线L上的任一点的坐标应同时满足这两个平面的方程即应满足方程组(1)反过来如果点M不在直线L上那么它不可能同时在平面1和2上所以它的坐标不满足方程组(1)因此直线L可以用方程组(1)来表示方程组(1)叫做空间直线的一般方程设直线L是平面1与平面2的交线平面的方程分别为A1xB1yC1zD10和A2xB2yC2zD20那么点M在直线L上当且仅当它同时在这两个平面上当且仅当它的坐标同时满足这两个平面方程即满足方程组因此直线L可以用上述方程组来表示上述方程组叫做空间直线的一般方程通过空间一直线L的平面有无限多个只要在这无限多个平面中任意选取两个把它们的方程联立起来所得的方程组就表示空间直线L二、空间直线的对称式方程与参数方程方向向量如果一个非零向量平行于一条已知直线这个向量就叫做这条直线的方向向量容易知道直线上任一向量都平行于该直线的方向向量确定直线的条件当直线L上一点M0(x0y0x0)和它的一方向向量s(mnp)为已知时直线L的位置就完全确定了直线方程的确定已知直线L通过点M0(x0y0x0)且直线的方向向量为s(mnp)求直线L的方程设M(xyz)在直线L上的任一点那么(xx0yy0zz0)//s从而有这就是直线L的方程叫做直线的对称式方程或点向式方程注当mnp中有一个为零例如m0而np0时这方程组应理解为当mnp中有两个为零例如mn0而p0时这方程组应理解为直线的任一方向向量s的坐标m、n、p叫做这直线的一组方向数而向量s的方向余弦叫做该直线的方向余弦由直线的对称式方程容易导出直线的参数方程设得方程组此方程组就是直线的参数方程例1用对称式方程及参数方程表示直线解先求直线上的一点取x1有解此方程组得y2z0即(120)就是直线上的一点再求这直线的方向向量s以平面xyz1和2xy3z4的法线向量的向量积作为直线的方向向量s:s(ijk)(2ij3k)4ij3k因此所给直线的对称式方程为令得所给直线的参数方程为提示当x1时有此方程组的解为y2z0令有x14ty2tz3t三、两直线的夹角两直线的方向向量的夹角(通常指锐角)叫做两直线的夹角设直线L1和L2的方向向量分别为s1(m1n1p1)和s2(m2n2p2)那么L1和L2的夹角就是和两者中的锐角因此根据两向量的夹角的余弦公式直线L1和L2的夹角可由来确定从两向量垂直、平行的充分必要条件立即推得下列结论设有两直线L1L2则L1L2m1m2n1n2p1p20L1L2例2求直线L1:和L2:的夹角解两直线的方向向量分别为s1(141)和s2(221)设两直线的夹角为则所以四、直线与平面的夹角当直线与平面不垂直时直线和它在平面上的投影直线的夹角称为直线与平面的夹角当直线与平面垂直时规定直线与平面的夹角为设直线的方向向量s(mnp)平面的法线向量为n(ABC)直线与平面的夹角为那么因此按两向量夹角余弦的坐标表示式有因为直线与平面垂直相当于直线的方向向量与平面的法线向量平行所以直线与平面垂直相当于因为直线与平面平行或直线在平面上相当于直线的方向向量与平面的法线向量垂直所以直线与平面平行或直线在平面上相当于AmBnCp0设直线L的方向向量为(mnp)平面的法线向量为(ABC)则LL//AmBnCp0例3求过点(124)且与平面2x3yz40垂直的直线的方程解平面的法线向量(231)可以作为所求直线的方向向量由此可得所求直线的方程为五、杂例例4求与两平面x4z3和2xy5z1的交线平行且过点(325)的直线的方程解平面x4z3和2xy5z1的交线的方向向量就是所求直线的方向向量s因为所以所求直线的方程为例5求直线与平面2xyz60的交点解所给直线的参数方程为x2ty3tz42t代入平面方程中得2(2t)(3t)(42t)60解上列方程得t1将t1代入直线的参数方程得所求交点的坐标为x1y2z2例6求过点(213)且与直线垂直相交的直线的方程解过点(213)与直线垂直的平面为3(x2)2(y1)(z3)0即3x2yz5直线与平面3x2yz5的交点坐标为以点(213)为起点以点为终点的向量为所求直线的方程为例6求过点(212)且与直线垂直相交的直线的方程解过已知点与已知直线相垂直的平面的方程为(x2)(y1)2(z2)0即xy2z7此平面与已知直线的交点为(122)所求直线的方向向量为s(122)(212)(110)所求直线的方程为即提示求平面xy2z7与直线的交点直线的参数方程为x2ty3tz42t代入平面方程得(2t)(3t)2(42t)7解得t1代入直线的参数方程得x1y2z2平面束设直线L的一般方程为其中系数A1、B1、C1与A2、B2、C2不成比例考虑三元一次方程A1xB1yC1zD1(A2xB2yC2zD2)0即(A1A2)x(B1B2)y(C1C1)zD1D20其中为任意常数因为系数A1、B1、C1与A2、B2、C2不成比例所以对于任何一个值上述方程的系数不全为零从而它表示一个平面对于不同的值所对应的平面也不同而且这些平面都通过直线L也就是说这个方程表示通过直线L的一族平面另一方面任何通过直线L的平面也一定包含在上述通过L的平面族中通过定直线的所有平面的全体称为平面束方程A1xB1yC1zD1(A2xB2yC2zD2)0就是通过直线L的平面束方程例7求直线在平面xyz0上的投影直线的方程解设过直线的平面束的方程为(xyz1)(xyz1)0即(1)x(1)y(1)z(1)0其中为待定的常数这平面与平面xyz0垂直的条件是(1)1(1)1(1)10即1将1代入平面束方程得投影平面的方程为2y2z20即yz10所以投影直线的方程为教案精品文档,可自由编辑。
/
本文档为【同济第六版《高等数学》教学教案设计WORD版-第07章空间解析几何与向量代数】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索