为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

Jean-Marie Tarascon

2013-03-21 12页 pdf 1MB 34阅读

用户头像

is_014646

暂无简介

举报
Jean-Marie Tarascon 1 J-M. Tarascon Workshop organized by Nanoforum and the Institute for Environment and Sustainabi liy, JRC Ispra Brussels Apri l 3rd, 2006 Towards the Next Generation of Li-ion Batteries Based On Nanomaterials LiLi LiLi ALISTORE’s coordinator Paris A...
Jean-Marie Tarascon
1 J-M. Tarascon Workshop organized by Nanoforum and the Institute for Environment and Sustainabi liy, JRC Ispra Brussels Apri l 3rd, 2006 Towards the Next Generation of Li-ion Batteries Based On Nanomaterials LiLi LiLi ALISTORE’s coordinator Paris Ami ens Paris Ami ens LiLi NoE ALISTORE Amiens Southampton Uppsala St Andrew’s Warsaw Roma Montpellier Kent Ljubljana Cordoba Toulouse Bordeaux Villigen Delft Stuttgard Barcelone Aix-Marseille AmiensAmiens UppsalaUppsala St AndrewsSt Andrew WarsawWarsaw RomaRoma Montpellier KentKent LjubljanaLjubljana CordobaCordoba Toulouse Bordeaux VilligenVilligen DelftDelft Stuttgart BarceloneBarcelone Aix-Marseille Amiens Southampton Uppsala St Andrew’s Warsaw Roma Montpellier Kent Ljubljana Cordoba Toulouse Bordeaux Villigen Delft Stuttgard Barcelone Aix-Marseille AmiensAmiens UppsalaUppsala St AndrewsSt Andrew WarsawWarsaw RomaRoma Montpellier KentKent LjubljanaLjubljana CordobaCordoba Toulouse Bordeaux VilligenVilligen DelftDelft Stuttgart BarceloneBarcelone Aix-Marseille Max Planck Inst. Paul Scherrer Inst. Montpellier Univ. Provence Univ. P. Sabatier Univ. Jules Verne Univ. ICMB Bordeaux St-Andrews Univ. Kent Univ. Barcelona Univ. Cordoba Univ Delft Uni. Lj ubljana Uni. Roma La SapienzaUni. Uppsala Uni. WarsawUni. Max Planck Inst. Paul Scherrer Inst. Montpellier Univ. Provence Univ. P. Sabatier Univ. Jules Verne Univ. ICMB Bordeaux St-Andrews Univ. Kent Univ. Barcelona Univ. Cordoba Univ Delft Uni. Lj ubljana Uni. Roma La SapienzaUni. Uppsala Uni. WarsawUni. Montpellier Univ. Provence Univ. P. Sabatier Univ. Jules Verne Univ. ICMB Bordeaux St-Andrews Univ. Kent Univ. Barcelona Univ. Cordoba Univ Delft Uni. Lj ubljana Uni. Roma La SapienzaUni. Uppsala Uni. WarsawUni. Max Planck Inst. Paul Scherrer Inst. Montpellier Univ. Provence Univ. P. Sabatier Univ. Jules Verne Univ. ICMB Bordeaux St-Andrews Univ. Kent Univ. Barcelona Univ. Cordoba Univ Delft Uni. Lj ubljana Uni. Roma La SapienzaUni. Uppsala Uni. WarsawUni. Max Planck Inst. Paul Scherrer Inst. Montpellier Univ. Provence Univ. P. Sabatier Univ. Jules Verne Univ. ICMB Bordeaux St-Andrews Univ. Kent Univ. Barcelona Univ. Cordoba Univ Delft Uni. Lj ubljana Uni. Roma La SapienzaUni. Uppsala Uni. WarsawUni. Montpellier Univ. Provence Univ. P. Sabatier Univ. Jules Verne Univ. ICMB Bordeaux St-Andrews Univ. Kent Univ. Barcelona Univ. Cordoba Univ Delft Univ . Lj ubljana Univ . Roma La SapienzaUniv . Uppsala Univ . WarsawUniv . Æ 15 partners Æ Starting date: January 1st 2004 Æ Duration: 5 years, 2004-2008 Æ Budget: 5 MEuros " "Mission:Æ To establish a durable integrated European research to address 21st Century energy storage issues Æ To jointly execute research to develop low cost and high performance advanced Li energy storage sy stems LiLi 2 To unite European Li-research groups within a virtual institute Objectives of ALISTORE Network of Excellence LiLi Place Europe securely back at the international forefront of Li-based energy storage technology. To create scientific knowledge to develop advanced lithium energy storage systems with high energy and power based on the use of nano electrode/electrolyte components. For: Æ Hy brid or electric vehicles Æ To ensure the quality of electricity Æ UPS back-up systems Æ Renewable energy sources Æ Aeronautics Wind Sun Waves AutomobilesAutomobiles PowerPower The world Battery market: $30 Billion /year with staggering How to optimize such systems? Concept (1980) Commercial ization: Sony (1990) V Non-aqueous liquid electrol yte Cathode (LixHost) Anode (LixHost) Li+ + - Li+ (LiCoO2, LiMn2O4) Graphite Specific capacity: : Ah/kg M Molecular weight (kg) 26,8 x ∆x = N° of e- or Li + LiC6 => Li+ + C6 + e- Li1-xCoO2+ x Li+ + e- => LiCoO2 Practical0.5-0.6 e-Theoretical1 e- Output Voltage: 3.6 V LiLi Rechargeable Li-ion batteries: schematics Duality Ions Æ Electrons 3 “LiNiO2” Sn Po te nt ia l v s Li /L i+ (V ) Capacity (Ah/kg) 0 200 400 600 800 1000 1200 3800 40000 200 400 600 800 1000 1200 3800 4000 N eg at iv e m at er ia ls P os iti ve m at er ia ls L i metalGraphite Other carbons Si-C d = 2.3 Intermetallics d = 4- 8 3D metal oxides d= 7.5 Nitrides d = 2.1 0 3 4 5 2 1 0 3 4 5 2 1 Sn-C Phosphides (d ≈ 8) “5V” “LiCoO2” “LiMn2O4” “MnO2” Vanadium oxides (V2O5, LiV3O8) Polyanionic compounds (Li1 -xVOPO4, LixFePO4) “LiMnPO4” “LiCoPO4” Li4Ti5O1 2 Si J.M. Tarascon and M. Armand : Nature, 2001, 414 (359-367) “Doped LiMn2O4” VLi-ion VLi-metal LiLi Resarch Status on Anode/Cathode Materials For Li and Li-Ion Batteries Reaching the intrinsic limit of 1 e- per 3d-metal ?? Energy evolution for different battery technologies Year 1970 1980 1990 2000 2010E ne rg y de ns ti y (W h/ kg ) 100 300 200 NiCd NiMH Li-Ion/Poly Incremental changes: Chances of ensuring leadership are sli m. HOW ? Use of nano-materials ALISTORE ’s goal LiLi 4 Electron conductor Poorly conductive particles Percolation Particles are connected, but the quality of contact may vary Particle Coating IMPORTANT: Coating must be permeable for ions Ra v et e t al ., E CS Me etin g, H awa ï, 1 99 9 Nano-architectured electrode . Good electronic conductivity . Direct electrolyte path Scrosat i et al . IMLB XII, Nara 2004 ionelectron ionelectron chem σσ σσD += ~ Ways to better fuel electrons and ions to the electrode (Shortening e- and Li+ travelling distances) Bulk to nano Duality ions/electrons LiLi Why nano-materials : To improve electrode kinetics ? Catalysis Surfacial Redox reactions Electrode materials Core redox reactions Divided/nanomaterials Coexistence of both Rate: C /5 # 22.2mA/h 100 100 100 nm LiLi Nano-materials within the field of Energy Storage: why not before ??? Electrode vs. Catalytic materials: Two opposing worlds …. Towards a merging … 5 Recent studies by ALISTORE members : discharge Co-Nano particles CoO CoO + 2 e− + 2 Li+ ' Co0 + Li20 2 e- per Co 500Å charge Today LixCoO2+ 0.5Li+ + 0.5e- <=> LiCoO2 0.5-0.6 e- per Cofactor 3 New paths have opened : - A new way of looking at the electrode/electrolyte is emerging - New opportunities for advanced Li energy storage sources lie ahead With nano-materials traditions are left behind LiLi Poizot et al. Nature, 407 (6803), 496-499 (2000). The nanostructured electrode is internally created during the first reduction, producing pristine and compact nanoparticles char ge dis cha rge 1 s t c ha rg e: E l ec tr oc hem ica l g r ind i ng m os a ic M o n olit h e m o sa ic ~20 0 Å 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 0 10 20 30 40 50 60 70 80 Vo lts v s C d/ Cd (O H ) 2 Tim e in ho ur s β−Ni(O H)2 β−NiO OH β−Ni(O H)2 ~20 0 Å char ge dis cha rge 1 s t c ha rg e: E l ec tr oc hem ica l g r ind i ng m os a ic M o n olit h e m o sa ic ~20 0 Å 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 0 10 20 30 40 50 60 70 80 Vo lts v s C d/ Cd (O H ) 2 Tim e in ho ur s β−Ni(O H)2β−Ni(O H)2 β−NiO OHβ−NiO OH β−Ni(O H)2 ~20 0 Å Ni(OH)2 electrode Bulk MOx First reduction Re-oxidations Further discharges Nanocomposite M° + xLi2O Nano MOx LiLi Is the Li-driven nano-texturing of the electrode something special ? 6 0 5 10 15 20 0 200 400 600 800 1000 1200 1400 1600 1800 Cycle number Nanoparticles "pre-compacted" Bulk Nanotubes Nanoparticles Sp ec if ic c ap ac it y (m A h/ g) 20 nm Nanoparticles SBET = 100 m²/g 20 nm Nanoparticles SBET = 100 m²/g 20 nm Nanoparticles "pre-compacted" SBET = 240 m²/g 20 nm Nanoparticles "pre-compacted" SBET = 240 m²/g 20 nm Nanotubes 20 nm Nanotubes 20 nm Bulk 20 nm Bulk Surface g roups are detrimental to capacity retention Ex situ synthesis of nano favors surface groups LiLi In-situ vs ex-situ made nanoparticles ? Same behavior observed for : - Sulfides, Fluorides, Chlorides, Phosphides and Nitrides CoS + 2 e− + 2 Li+ ' Co0 + Li2S CoO + 2 e− + 2 Li+ ' Co0 + Li2O RuO2 + 4e- +4Li+ ' Ru0 + 2 Li20 CoCl2 + 2 e− + 2 Li+ ' Co0 + 2 LiCl CoF3 + 3 e− + 3 Li+ ' Co0 + 3 LiF FeF3 + 3 e− + 3 Li+ ' Fe0 + 3 LiF 2 to 6 e- Per 3d-metal 0.7 V 3.5 V NiP2 + 6 e− + 6 Li+ ' Ni + 2 Li3P Electronegativity Poizot et al. Nature, 407 (6803), 496-499 (2000). LiLi MOx/M° reactions of conversion : Not specific to CoO, but universal 7 Comparaison Comparaison betweenbetween insertion insertion and conversion and conversion electrodeselectrodes InsertionInsertion (Carbone)(Carbone) Volumic Capacity Specific Capacity Ew(V) (Ah/Kg) (Ah/L) Average voltage Energetical Efficiency ≅Polarisation ConversionConversion (Cr(Cr22OO33, NiP, NiP22)) Electrode Capacity Wh/kg Wh/L E(V) InsertionInsertion LiCoO2 150 600 3000 4 Li[Ni/Co/Mn]O2 200 800 4000 4 Conv ersionConv ersion CuF2 528 1584 7746 2.8 FeF3 712 1567 5647 2.8 N eg at iv e P os iti ve Technology in infancy, interesting path to next generation, time will te ll.. Witnessing Intense arrival of nano-materials within the Field of energy storage 8 500 nm 50 nm 0 10 20 30 40 50 60 70 80 90 1 00 0 2 0 40 60 8 0 10 0 12 0 1 40 1 60 18 0 2 00 2 20 24 0 26 0 2 80 3 00 0 2 4 6 8 10 12 14 16 18 n m % % Particles’ size (nm) Average particles’size = 140 nm Carbon-free coating p articles 0 20 40 60 80 100 120 140 160 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 1-10 1 2-10C/5 (charge), C/2 (discharge) AM (~3 mg) + 5 wt.% ketjen black Specific Capacity mAhg-1 Po te nt ia l L i+ vs . L i ( V) LRCS-UMICORE Patent: EPO5291406.6 (2005) LiLi Low temperature synthesis process of nano LiFePO4 Modifying Li electrochemical reactivity by downsizing particle sizes TiO 2Fe 2 O 3 A myriad of opportunities LiFeO2 9 200 nm Counter electrode Working electrode Ref. electrode (ES M) Counter electrode Working electrode Ref. electrode (ES M) Cu nanorods current collector Counter electrode Working electrode Ref. electrode (ES M) Counter electrode Working electrode Ref. electrode (ES M) Cu nanorods current collector Electrode Nanostructuration (II) Electrochemical filling S. Mitra, …. and J.M. Tarascon; Advanced Funct. Materials May 2006 2.05 g Fe2 (SO4)3,x H2O in 50 mL distilled water 10 g NaOH ( pH = >13) Organic agent to complex Fe3+ " "" LiLi 1.80µm 1.8µm Great power rate 0 2 00 4 00 6 00 8 00 1 0 00 0 2.5 5 7 .5 10 C /1 0 C /5 R a te / C C ap ac ity / m A h g -1 C /2 1 0 C 0 2 00 4 00 6 00 8 00 1 0 00 0 2.5 5 7 .5 10 C /1 0 C /5 R a te / C C ap ac ity / m A h g -1 C /2 1 0 C Several benefits are associated with the downsizing of particles: Æ Easier accommodation of structural strains: favours longer calendar life Æ Shorter diffusion path: enhances power capability ÆÆ Enhanced solid state reactivityEnhanced solid state reactivity byby--passing kinetic limitations:passing kinetic limitations: lowlow--cost materials with staggering cost materials with staggering capacity gainscapacity gains 20 nm : Years 1998 2001 2004 20O7R el at iv e Co st Eu ro s 2010 Years 1998 2001 2004 20O7R el at iv e Co st Eu ro s 2010 - - Years 1998 2001 2004 20O7R el at iv e Co st Eu ro s 2010 Years 1998 2001 2004 20O7R el at iv e Co st Eu ro s 2010 - Li-Ion Ni-MH Ni-Cd Pb-acid ALISTORE’s Battery (Projected cost) Years 1998 2001 2004 20O7R el at iv e Co st Eu ro s 2010 Years 1998 2001 2004 20O7R el at iv e Co st Eu ro s 2010 - - Years 1998 2001 2004 20O7R el at iv e Co st Eu ro s 2010 Years 1998 2001 2004 20O7R el at iv e Co st Eu ro s 2010 - Li-Ion Ni-MH Ni-Cd Pb-acid ALISTORE’s Battery (Projected cost) Should translate into large cost gains while still preserving safety ALISTORE is exploiting this new opportunity LiLi Foreseen performance and cost advantages of nano-material based batteries 10 First commercial product LiLi (Elements are mixed on a nanometer Level as opposed to conventional batteries) (February 2005) Nano Sn-based electrode Does the use of nanomaterials present any health/environmental risks ??? Æ We use self-supported electrodes Æ Self encapsulated particles Æ Nanoparticles are generated insitu creating pristine surfaces " New conversion reactions LiLi Rate: C/5 # 22 .2mA/h 100 n m + - " Nano-materials driven insertion reactions amorphous Sn(0 ) amorphous Si (0 ) amorphous Sn(0 ) amorphous Si (0 ) 10 nm 100 nm Æ Are not released upon use Handling of the nano-particles will benefit from other fields Safety of Li-ion cells rather than the handling of the nanoparticles is presently our main concern 11 As usual, with every new concepts, they come with their pitfalls, so that implementing them into a new viable battery is a long and exciting “food chain” process Nanomaterials could revolutionize the way that we store energy Will require a multidisciplinary approach involving electrochemists, metallurgists, materials scientists, organic chemists THANK YOU 12 J-B.Leriche Lithium Group P. Poizot S. Laruelle J-M. Tarascon S. Grugeon L. Dupont C. Masquelier D. Larcher Patrice SIMON (CIRIMAT ) Laure MONCONDUIT (UM2) LiLi LiLi M. Armand J-B.Leriche Lithium Group P. Poizot S. LaruelleS. Laruelle J-M. Tarascon S. GrugeonS. Grugeon L. Dupont C. Masquelier D. Larcher Patrice SIMON (CIRIMAT ) Laure MONCONDUIT (UM2) LiLi LiLi M. Armand NoE ALISTORE LiLi LiLi Our group: Poizot et al. Nature, 407 (6803), 496-499 (2000). New Li-reactivity mechanisms 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 Vo lta ge (V v sL i/L i+ ) x in 'LixCoO' 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1. 5 2 2.5 3 Vo lta ge (V v sL i/L i+ ) x in 'LixCoO' CoO: Rocksalt Str ucture Mn+ to M0 “Conversion reactions” discharge Co-Nano particles CoO CoO + 2 e−+ 2 Li+ ' Co0 + Li20 2 e- per Co 500Å charge 30 to 50Å No Interstitial voids for guest ions" LixCoO2+ 0.5Li+ + 0.5e- <=> LiCoO2 0.5-0.6 e- per Co factor 3 Today Li-ion cells
/
本文档为【Jean-Marie Tarascon】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索