为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

主板CPU供电电路完全图解[策划]

2018-08-02 13页 doc 334KB 9阅读

用户头像

is_769254

暂无简介

举报
主板CPU供电电路完全图解[策划]主板CPU供电电路完全图解[策划] 相信大家看主板导购文章的时候经常听到说这块主板是三相供电,那块是两相供电的说法,而且一般总是推荐三相供电的主板。那么两相三相到底代表什么,对于普通消费者来说应该怎么选择呢,本文将就这个问题展开,尽量让大家能够自己分辨出主板到底几相供电,并且提供一点购买建议。 CPU供电电路原理图 我们知道CPU核心电压有着越来越低的趋势,我们用的ATX电源供给主板的12V,5V直流电不可能直接给CPU供电,所以我们要一定的电路来进行高直流电压到低直流电压的转换,这种电路不仅仅用在CPU的供电上,但是今...
主板CPU供电电路完全图解[策划]
主板CPU供电电路完全图解[策划] 相信大家看主板导购文章的时候经常听到说这块主板是三相供电,那块是两相供电的说法,而且一般总是推荐三相供电的主板。那么两相三相到底代什么,对于普通消费者来说应该怎么选择呢,本文将就这个问题展开,尽量让大家能够自己分辨出主板到底几相供电,并且提供一点购买建议。 CPU供电电路原理图 我们知道CPU核心电压有着越来越低的趋势,我们用的ATX电源供给主板的12V,5V直流电不可能直接给CPU供电,所以我们要一定的电路来进行高直流电压到低直流电压的转换,这种电路不仅仅用在CPU的供电上,但是今天我们把注意力集中在这里。我们先简单介绍一下供电电路的原理,以便大家理解。 一般而言,有两种供电方式。 1.线性电源供电方式:通过改变晶体管的导通程度来实现,晶体管相当于一个可变电阻,串接在供电回路中。 上图只要是学过初中物理的都懂,通过电阻分压使得负载(这里想像为CPU)上的电压降低。虽然方法简单,但由于可变电阻与负载流过相同的电流,要消耗掉大量的能量并导致升温,电压转换效率非常低,一般主板不可能用这种方法。 2.开关电源供电方式:我们平时用的主板基本都用这种方式,原理图如下。 其工作原理比刚刚的电路复杂很多,笔者只能简单说说:ATX供给的12V电通过第一级LC电路滤波(图上L1,C1组成),送到两个场效应管和PWM控制芯片组成的电路,两个场效应管在PWM控制芯片的控制下轮流导通,提供如图所示的波形,然后经过第二级LC电路滤波形成所需要的Vcore。 上图中的电路就是我们说的“单相”供电电路,使用到的元器件有输入部分的一个电感线圈、一个电容,控制部分的一个PWM控制芯片、两个场效应管,还有输出部分的一个线圈、一个电容。强调这些元器件是为了后文辨认几相供电做准备。 由于场效应管工作在开关状态,导通时的内阻和截止时的漏电流都较小,所以自身耗电量很小,避免了线性电源串接在电路中的电阻部分消耗大量能量的问题。 多相供电的引入 单相供电一般能提供最大25A的电流,而现今常用的处理器早已超过了这个数字,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。 三相供电当然就是三个单相电路并联而成的,因此可以提供三倍的电流 上图是一个典型的三相供电电路,读者抓住本质的话,就可以看到此图和上面图片的一致。 区分两相和三相 有些用户很关心怎么从主板上看出到底是两相还是三相供电。一般的读者可能会说通过在CPU插槽附近的供电电路有多少电感线圈来判断。这种说法有它的道理,但不太全面。笔者这里提供更加合理的方法供大家借鉴。 1.根据元器件的数量来分辨。 首先我们要找到主板CPU插槽附近的供电电路,下图是一个典型的三相供电电路。一般来说,判断是一个线圈、两个场效应管和一个电容构成一相电路。图中上面三个是电容(左边那个不算),中间两个脚的是场效应管,下面三个是线圈,大家要认准了。 再看一个两相供电电路,可以看到有两个电容(中间有一个竖的线圈,这个是一级电感),四个场效应管 总结来说,电容的个数并不一定。看到一个电感加上两个场效应管就认为是一相。但是近来也有并联多个电感或者多个场效应管的情况发生,这个时候就要综合考虑,挑数目少的那种元器件来判断。顺便说一句, 因为很多情况第一级电感线圈也做在附近,所以一般也有线圈数目,1,相数的说法。上面两个例子里面我们都看到多出一个电感。 我们再看一个例子,下图中有三个电感,六个场效应管,但它不是三相供电的,而是两相,因为左边的电感是一级电感,所以这里用两个电感和六个场效应管构成的是两相供电电路。 2.根据PWM控制芯片的型号来分辨。 因为PWM芯片的功能在出厂的时候都已经确定,所以我们可以根据主板使用的PWM控制芯片的型号来分辨。比如下图中的这块主板使用了常见的Richtek RT9241芯片。 这块PWM芯片就用在笔者上面最后一个例子里面的主板上面,下面笔者说说从这块芯片上怎么看出是两相供电的,我们上Richtek的查询产品页面,我们看到RT9241是一个两相的控制芯片,当然不可能用这块芯片做出三相的供电电路来的。 笔者刚刚用的第一个例子里三相供电用的芯片入下图所示,也来自Richtek,型号是RT9237,这就是 一个2-4相的控制芯片,再通过观察元器件数量,可以判断是三相供电 上图就是一个两相供电的示意图,其实就是两个单相电路的并联,因此它可以提供双倍的电流。 下图是另外一个常见品牌的芯片,Intersil的HIP6301芯片,使用在著名的NF7主板上。 在Intersil网站上可以查到它是一块支持4相供电的控制芯片。所以很多三相甚至四相供电的主板都使用它。 顺便说一句,通过查询这块芯片,我们还可以知道主板支持Intel的VRM(VRD)版本,比如上面的RT9241和RT9237都支持VRM9.0/9.2,而要支持最新的VRD 10.X规范就要用比如RT9243或者RT9245这样的控制芯片了,在支持Prescott的主板上这是很重要的。 三相VS两相 首先要强调除去设计导致的不稳定因素,三相供电总是好过两相供电的。 三相的好处很多: 1.可以提供更大的电流,当然笔者认为不能简单认为可以提供的电流成倍增长,因为电感,场效应管本身的选择也对能够承受的最大电流产生重要影响,选择承载电流强度大的元器件同样可以提高电流的承载能力,但是三相供电能够提供更大电流毋庸置疑。 2.可以降低供电电路的温度,因为电流多了一路分流,每个器件的发热量自然减少了。其实供电电路是主板上温度最高的区域之一,甚至比处理器本身还热,有很多厂家已经对这部分电路增加散热措施,如果长时间工作在高温下,显然对器件不利,对主板的稳定不利。三相电路可以非常精确地平衡各相供电电路输出的电流,以维持各功率组件的热平衡,在器件发热这项上三相供电具有优势。 3.利用三相供电获得的核心电压信号也比两相的来得稳定。 上图反映了三相供电滤波之后的电压比两相更加平滑,更加稳定。 当然三相供电也有一些缺点,在成本上,三相总是大一些。对设计的要求也更高一些。而且一般说来元器件越多越不利散热,出现故障的概率越大,相互之间的干扰也较高,而且笔者已经说了,元器件的选择同样重要,如果因为三相供电对元器件的要求降低的话,效果到底是怎样就不一定了。 选购策略 笔者经常看到一些网友对供电很重视,而且很偏执的认为一定要选择三相。其实我们都知道,一款成功的产品出厂的时候必定经过多次测试,不可能因为供电模块使用两相而导致不稳定,在设计阶段厂商肯定会考虑到这一点。而且,使用什么供电策略,使用什么元器件都是主板工程师们决定的,只要稳定,只要设计合理,没有理由拒绝两相供电的产品。 当然我们再次强调,同样设计下的三相供电理论上优于两相供电,而且一般三相供电的控制芯片总是优于两相供电的控制芯片,在功能上也是如此,这样一来在很大程度上保证日后升级新处理器的时候有优势。 所以笔者的意见是不要盲目相信三相供电的炒作广告,也不要盲目相信所谓两相更稳定的说法,我们选购主板的时候还是应该更关注品牌,关注口碑。而且供电电路只是主板上的小小部分而已,整块主板的运行情况并不由它决定。 那么为什么市场上Intel架构的主板大多使用三相以上的供电,而AMD的板子使用两相的不少呢,我们选择不同处理器的时候对供电部分的关注是否也有区别呢,笔者特意找来一些处理器电流的参考值。 【电脑技巧】CPU供电电路基本常识 [原创 2010-01-01 19:06:13] 介绍CPU供电电路的基本常识。 ?单相供电电路的组成和原理 CPU电路主要有PWM芯片,MOSEFT管,电感、电容四种元件。其中的MOSEFT管就是一个电子开关(如上图中的K1、K2),只不过开关的频率很高,每秒开关1万到1.5万次。电感和电容在这里起2个作用,储存电能和滤波。 左图是K1闭合,K2断开。12V直流电流经过电感给电容充电同时给CPU供电。电流经过电感的时候,由于电感的阻抗,从电感出来的电压不是12V,是从0V慢慢上升的。供给CPU的电压不会是12V。电流经过电感是有部分电能转换成磁能存储在电感中。电容充电也存储电能。右图是K1断开,K2闭合。12V供电电源断开。电感的原正极(+)端经K2与负极接 通。电感把储存的磁能转换成电流释放出来,给电容充电和给CPU供电。此刻电感成为供电电源。电感提供的电压是很低的。前面说到,K1闭合时,12V直流经过电感时,电压是从0V慢慢上升的。所以K1闭合的时间越长,供给CPU的电压越高。控制K1和K2的开关时间就可以把12V电压降到适合CPU的电压。专业术语叫“占空比”。 K1、K2开关时间是由PWM芯片控制的,PWM的意思就是脉(冲)宽(度)调制。因为控制K1、K2(MOSEFT开关管)的信号是高电平是闭合(导通),低电平是关开(关断),这种高低电平信号由于时间很短,就像一个个脉冲。脉冲的宽度就是时间。所以叫做脉宽调制。脉宽调制是现在最常用的电压变换技术。PC的电源供应器就是利用脉宽调制把220V的交流电转换成PC用的各种直流低电压。 K1、K2是否还有同时“闭合”或同时“断开”的情况,同时“断开”是可以的,同时“闭合”是绝对不能允许的,因为同时“闭合”,12V的正极和负极就连接到一起,那就是“短路”了,供电电路要烧毁,CPU也会烧毁。为了防止出现K1、K2同时“闭合”导通情况出现,K1、K2轮流开关一次,就要同时都“断开”一次。同时“断开”的时间叫做“死区时间”,因为这段时间K1和K2都不工作,白白消耗电能,所以CPU供电电路的“死区时间”越短,效率就越高,也就越节能。从上面的原理介绍,我们明确以下3点: ?K1(上MOSEFT管,也叫“进”)和K2(下MOSEFT管,也叫“出”)是轮流开关的。 ?K1的负担较轻(导通的时间短,关断的时间长,为了降压),K2的负担最重(导通的时间长,关断的时间短,为了降压),所以K!一般会用1个,K2会用2个,一般习惯称之为“一进二出”。 ?MOSEFT管的开关频率越高,输出的电流越大,功率也就越高。供电电路的供电能力首先与每相的供电功率(电流)密切相关,相数的多少取决于单相的供电能力,还要看CPU需要的最大电流。比如现在的Intel功耗最大的CPU需要125安培电流。如果每一相可提供40安培,那么4相就足够了。如果每相能提供20安培,可能需要8相。这里请注意,“4相就足够了”,并不是指4相供电的总电流就是把每一相的供电电流加在一起。 ?多相供电电路结构和原理 PWM芯片输出1-4相控制信号给4颗驱动芯片,这4颗驱动芯片驱动4组MOSEFT轮流“开 关”。下面我们在看看4相供电是如何工作的,一般人都会认为4相是同时工作的,其实不 然,实际上,这些“相”也是轮流工作的,就是说某一时刻,只有1“相”工作,其他“相” 都在休息。 我们看看4相供电的电压波形图。 上图表示出了4个时钟周期的4相供电,在每一个周期里,每1相仅工作1/4周期的时间,在一个周期里,4“相”轮流工作。控制这些“相”工作时序的也是PWM芯片。 PWM芯片不仅通过脉冲控制MOSEFT的“开关”,还控制着4相供电电路的工作时序。因此,决定供电相数的是PWM芯片,当然,也有通过驱动芯片或其他芯片扩展相数的。所以一般以电感的数量判断供电相数是不准确的。既然4相不是同时工作,4相总供电电流就不是简单的把每一相供电电流加在一起。每一相在工作时都是给电容充电,CPU实际上主要是从电容获取电流。电容就像水库,库容量越大,存储的电流越多,供电能力越强。区分供电的“相”就是看这些“相”工作时序是否相同,如果相同的,那么就属于同一相。比如有两组电感和MOSEFT,如果是工作时序不同的,就是两相,如果是工作时序相同的,就是1相(假2相)。那么供电能力40安培的1相供电,是否可以提供125安培的电流,从理论上讲只要电容够大,供 电电路不断向电容充电,是可以的。但这是超负载工作,很累,供电电路很难长期承受超负载工作,增加供电相数就是增加向电容充电的充电器,使输入给电容的电流大于输出的电流,减轻1相供电的负担。从上面的原理介绍,我们明确以下6点: ?无论是几相供电,某一时刻只有1相工作。 ?多相供电的实质是减轻单相的负载,提高给电容充电的能力,总电流不是简单的算术相加,相数越多并不代表供电能力高。 ?供电电路有一个转换效率的问题,如果转换效率不是很高,那么相数较多的设计其实际供电能力未必会好过相数较少的设计。 ?相数较多的设计使布线复杂化,越复杂越容易出毛病,如果解决不好会带来串扰效应(cross talk),影响主板在极端情况下的稳定性。 ?供电元件都有一个可靠性,电容又是寿命最短的元件,而系统总体可靠性则是所有元件可靠性的乘积,元件越多则可靠性越低。 ?相数、元件太多只会白白浪费其供电能力,增加制造成本。 看了这些 大家就好好研究一下市面上的那些有很多项CPU供电的主板吧
/
本文档为【主板CPU供电电路完全图解[策划]】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索