为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

植物抗寒性的生理生态学机制研究进展

2017-12-07 21页 doc 48KB 26阅读

用户头像

is_601191

暂无简介

举报
植物抗寒性的生理生态学机制研究进展植物抗寒性的生理生态学机制研究进展 植物抗寒性的生理生态学机制研究进展 第43卷第4期 2007年4月 林业科学 SCIENTIASILVAESINICAE Vo1.43.No.4 Apr.,2007 植物抗寒性的生理生态学机制研究进展* 徐燕薛立屈明 (华南农业大学林学院广州510642) 摘要:综述植物在冷驯化过程中发生的一系列生理生化变化.环境对植物抗寒性的影响主要与光诱导,温湿 度以及气候的变化有关.植物表面形成冰层会引起植物的无氧呼吸,导致植物受害;光抑制诱导活性氧的产生,从 而导致植物光合系...
植物抗寒性的生理生态学机制研究进展
植物抗寒性的生理生态学机制研究进展 植物抗寒性的生理生态学机制研究进展 第43卷第4期 2007年4月 林业科学 SCIENTIASILVAESINICAE Vo1.43.No.4 Apr.,2007 植物抗寒性的生理生态学机制研究进展* 徐燕薛立屈明 (华南农业大学林学院广州510642) 摘要:综述植物在冷驯化过程中发生的一系列生理生化变化.环境对植物抗寒性的影响主要与光诱导,温湿 度以及气候的变化有关.植物面形成冰层会引起植物的无氧呼吸,导致植物受害;光抑制诱导活性氧的产生,从 而导致植物光合系统的退化,抗寒能力下降,而短日照诱导植物休眠,有利于植物抗寒.光敏色素则被认为是启动 冷驯化的光受体;植物通过冷驯化增加碳水化合物的积累及病原体相关蛋白的合成,以增强对低温病原体的抵抗 能力;气候的变化使植物遭受了更大的冷伤害风险.微管最初遇冷时部分的解体可以有效诱导植物抗寒性;抗氧 化酶活性增强,植物体内糖,脯氨酸,多胺等内含物含量上升.植物休眠状态中的生理变化(种子的休眠,芽的休 眠)与ABA敏感性的差异有关.对植物抗寒性分子机制的研究表明:COR基因的表达对于植物抗寒性和冷驯化是 十分关键的;与气候梯度有关的基因梯度的分布说明寒冷地区的树种更为抗寒;多表型性状的数量性状分析,为 重要的农艺性状标记辅助选择(MAS)提供基础.对植物抗寒过程中的信号转导进 行研究发现,ca2是低温下参与 调节冷驯化应答机制中信号转导途径的重要的第二信使.未来植物抗寒领域的研 究热点为信号转导和基因调节, 低温抗性的遗传学和遗传应用及代谢组学,气候变化对于植物抗寒的影响等方面. 关键词:植物;环境;抗寒;生理;分子机制 中图分类号:$718.43;Q945.78文献标识码:A文章编号:1001—7488(2007)04—0088 —07 PhysiologicalandEcologicalMechanismsofPlantAdaptationtoLowTemperature XuYanXueLiQuMing (CollegeofForestry,SouthChinaAgriculturalUniversityGuangzhou510642) Abstract:Chillinginjuryisoneoftheecologicalfactorscausingenvironmentalstressinplants.Exploringthephysiologicaland ecologicalmechanismsofcoldtoleranceinplantscanunderstandhowplantsgrowatlowtemperature,whichhasimportant meaningintheoryandpractice.Atpresent.studyoncoldtoleranceinplantsfocusesonphysiology,genes,andrelationship betweenplantsandenvironmentandSOon.Thisarticlereviewsthephysiologicalandecologicalresponseofplantstolow temperaturedu6ngcoldacclimation.Overwinteringplantsencasedinicecanbeexposedtoanaerobicconditionsandsuffer phytotoxicity.Photoinhibitioninducedtheincreaseofreactiveoxygenspecies(ROS),causingthedegradationofphotosystems, whichisunfavorableforcoldhardinessofplants.Shortdaysinducedormancyinplants,resultinginaincreaseincoldhardiness ofplants.Phytochromehasbeenconsideredtobethephotoreceptorresponsiblefortriggeringtheinitiationofthefirststageof coldacclimation.Theaccumulationofcarbohydratesandpathogenesis— relatedproteinsenhancestheresistanceofplantstolow— temperaturepathogens.Scientistspredictthatplantswillsuffergreaterriskoflow— temperaturedamagewiththechangesin climate.Aninitialpartialdisassemblyofmicrotublesissufficienttotriggerefficientcoldacclimation.Theadaptationofplantsto coldalsoassociateswiththeincreasedlevelsofantioxidantsenzymes,sugar,proline,polyminesandSOon.Changesin dormancystatusaremorelikelyrelatedtochangesinABAsensitivitythantovariationsinABAlevels.TheexpressionofCOR (coldresponsive)genesiscriticalinplantsforbothchillingtoleranceandcoldacclimation.Genotypesfromcolderenvironments havegreatercoldhardinessinsituthanthosefrommilderenvironments.TheQTLanalysisofmultiplephenotypictraitsprovides thebasisformarkerassistedselection(MAS)ofimportantagronomiccharacters.Calciumisanimportantsecondmessengerina lowtemperaturesignaltransductionpathwayinvolvedinregulationofcold— acclimationresponse.Signaltransduction,gene regulation,genetics,metabolomics,andclimatechangeaffectingtheplantsurvivalareimportantaspectsinthefuturestudyof coldtoleranceinplants. Keywords:plants;environment;coldtolerance;physiology;molecularmechanism 收稿日期:2006—01—2o. 基金项目:广东省林业局项目(44OO—F02084,440O—F05004). *薛立为通讯作者. 第4期徐燕等:植物抗寒性的生理生态学机制研究进展89 低温寒害是农林业生产中一种严重的自然灾害,据统计,世界每年因此造成的损失 达2000亿美元(卢 存福,2004).因此,探索植物抗寒性的生理和生态学机制,不仅在理论上具有重要意 义,而且在生产上也具 有广泛的应用价值.长期以来,植物抗寒研究受到了研究者的重视.Mazur(1963)对 低温下植物细胞失去水 分的机制进行了研究,Lyons等(1970)提出了植物低温伤害来自膜脂变相的假说,即低温下膜脂以液晶相向 凝胶相转变,造成细胞膜膜相分离,从而引起低温伤害.植物对低温的敏感可由水的冻结程度来分类.零上 低温伤害称为冷害型,如果植物能够忍受组织结冰,则称为抗寒型.不管是冷害型还是抗寒型都可以通过冷 驯化来增强对寒害的耐受能力,如越冬的植物通过秋末和初冬的低温来适应冬季的严寒.在这个适应的过 程中,植物体内发生一系列的生理生化变化,包括细胞骨架结构的变化,与植物抗寒性密切相关的抗氧化酶 系统的变化,内含物含量的变化,脱落酸(ABA)在植物抗寒中的作用亦不容忽视.随着分子生物学理论和技 术的发展,植物抗寒的分子生物学机制倍受关注,基因方面的研究日益增多.低温信号传人植物细胞,启动 或阻遏基因表达需要一个复杂的信号系统,故信号转导亦是植物抗寒机制研究的一个方面.近年来的研究 已经确认,低温下众多生物和非生物胁迫的相互作用,以及冷诱导引起的一系列变化,与植物对低温病原体 的抗性有关.另外,气候变化如何引起植物抗寒的变化,也进入了科学家的视野.本文对植物受寒害的原 因,环境与植物抗寒性,冷驯化的生理,抗寒基因的表达及信号转导与植物抗寒性等方面的研究进行了综述. 1低温引起植物受害的原因 1.1植物内部结冰 避免细胞内结冰是植物避冻或耐冻的重要机制.冰核的形成可以被内外因所诱导,一旦形成冰核,植物 组织体内外冰核扩增的阻遏物和通道,决定着随后的结冰机制(沈洪波等,2002).植物内部结冰可分为胞内 结冰和细胞间隙结冰.温度的骤然降低可导致细胞内溶质过冷,进而导致细胞内部 结冰.一般先在原生质 内结冰,然后在液泡内结冰.原生质内形成的冰晶体体积比蛋白质等分子的体积大得多,冰晶体就会破坏生 物膜,细胞器和衬质的结构,对细胞造成致命伤害.冰冻温度下,多数植物在质外体空间诱导冰晶体,这种现 象称为细胞间隙结冰.细胞间隙结冰伤害的主要原因是原生质过度脱水,破坏蛋白质分子,原生质凝固变 性.电子显微扫描研究表明,许多冻敏感型植物有明显的细胞间隙结冰现象(Ashwortheta1.,2002).当高度 冻敏感的树种表现细胞间隙结冰的征状时,诱导细胞脱水与胞内结冰两者的结合,引起植物冻害. 1.2膜伤害 植物细胞内部结冰主要的伤害部位是膜.零上低温首先引起膜从液晶态变为凝胶态,出现裂缝,接着引 起代谢紊乱,导致植物死亡.Guy(2003)提出由冰冻一融化胁迫引起的膜伤害的3种形式:第1种形式是由 于冰冻一融化的循环引起脱水,从而导致渗透应答机制的丧失;第2种形式发生在冰冻一融化胁迫下离体 的原生质体内,通常被称作"膨胀诱导型裂解";第3种伤害形式在黑麦(Secalecereale)原生质体中确定,从非 冷驯化的黑麦植株叶片上离体的原生质体的伤害与H?(对称六角形倒置结构II)阶段有关,从冷驯化黑麦 离体的原生质体伤害与有裂痕平面上裂痕定位的偏移有关,被称为"断裂跃变伤害". 2环境与植物抗寒性 2.1光诱导 在田间环境中,叶片的冷伤害通常与光合过程有关:低温环境中的叶片受光可导致光合细胞器的受损, 这种现象就是光合作用中的光抑制.光抑制启动了活性氧(ROS)的诱导,这个过程 可能导致光合系统的退 化,类囊体膜的脂质过氧化,以及碳代谢过程中酶的失活(Asada,2000).在木本植物中,短日照诱导休眠并 被认为是诱导芽休眠的主要信号(Cheneta1.,2002),并且短日照信号的感知与光敏色素光受体有关(Olsen eta1.,2002).以光敏色素为媒介的生长停止是植物组织中水分含量的减少与有机储藏物质积累的先决条 件(Wellingeta1.,2002).光敏色素已经被认为是启动冷驯化的光受体.在木本植物中,在夏末逐渐减少的 日照长度是刺激冷驯化开始的第一个阶段.最近的试验证据说明,低温和光在诱导植物冷驯化时是相互独 立的(Wellingeta1.,2002). 2.2低温与高湿 病害主要是由于适应低温的病原体引起的.长期覆盖的厚层积雪营造了一个近零度而潮湿的环境,非 林业科学43卷 常适合某些病原体的繁殖.Tronsmo等(1993)报道冷驯化不仅可以增加植物对寒冷的耐受力,并且可以增强 其对非专一性低温病原体的抵抗力.这种抵抗力的生理基础与植物体内碳水化合物的积累,特别是果聚糖 的积累有关(Yoshidaeta1.,1998),而且,在许多植物种类中这种积累与冷诱导病原体相关(PR)蛋白的合成 有关,这些蛋白包括几丁质酶,3-1,3葡聚糖酶,与奇异果(Actinidiaarguta)甜蛋白类似的蛋白(Kuwabaraet a/.,2002).在冬小麦(Triticumaestivum)幼苗中一种与奇异果蛋白类似的并具有抗真菌活性的蛋白在质外体 中积累(Kuwabaraeta1.,2002).Hiilovaara.Teijo等(1999)发现只有冷诱导的PR蛋白表现抗冷活性,而雪霉菌 (Microdochiumnivale)诱导的PR蛋白不具抗冷性,这表明冷诱导的PR蛋白具有阻止病原体感染和改变冰晶 体生长的双重功能. 2.3气候变化 Repo等(1996)发现由于气候变暖,生长在北温带区域的欧洲赤松(Pinussylvestris) 延迟了冷锻炼并且提 早解除了冷锻炼,这有可能增加松树在秋季和春季时遭受霜冻的风险.在温暖的环境下,呼吸引起的糖类消 耗的增加导致树木抗寒性的下降,也可能产生冷伤害(0greneta1.,1997).B61anger 等(2002)了气候变 化对多年生作物越冬的影响,认为气候变化使它们承受着更大的冷伤害风险.因为突然的天气变化使植物 难以适应,遭受的危害更不稳定,例如:冷冻一融化,冻雨或是寒冷冬季中积雪非常少,都可能导致植物死亡 (Crawford.2000). 3冷驯化与植物抗寒生理 3.1冷驯化 冷驯化是将植物置于低温而非冰冻温度中(0,12oC),以获得抗寒性的过程.对油菜(Brassicanapus)种 子在不同冷驯化时间下的抗寒性研究表明,春季栽培种冷驯化3d时抗寒性达到最大值,冬季栽培种则在 6,9d内达到.所有被测试的株系经过7d的温暖期后,抗寒性都有所下降,但仍然高于未经驯化的植株所 具有的耐寒水平.而所有经冷驯化植株在5?环境中持续7d后,可恢复解除冷驯化之前的耐寒水平.如 果冷驯化时间过长,植株抗寒性则下降(Rifeeta1.,2003).杨亚军等(2004)对茶树(Camelliasinensis)的抗寒 性研究表明,低温驯化对提高茶树的抗寒力是有效的,可以通过低温驯化的处理来提高茶树对低温寒害的抵 御能力. 3.2细胞骨架与植物抗寒性 目前,对于植物抗寒性与细胞骨架的关系研究较多的是微管系统对于低温的适应机制.对抗寒性差的 黄瓜(Cucumissativus)和马铃薯(Solanumtuberosum)的研究发现,当温度降到10?时,以肌动球蛋白(组成微 丝的一种蛋白)为载体的胞质流动受阻(Tuckereta1.,1986),而抗寒性强的植物在0oC下胞质流动仍可继续. 冷伤害伴随着微管网状结构的解体,而ABA能抑制微管的解体(Rikineta1.,1983). 如果冷驯化完全,由于 骤冷引起的微管解体可被抑制(Wangeta1.,2001).Abdrakhamanova等(2003)在研究微管解体是否启动冷驯 化的问后指出,如果微管最初遇冷时倾向于解聚因子(冷蛋白),则表示植株可进行有效冷驯化.Wang等 (2001)在中国冬小麦栽培种皮层微管对低温反应的研究中得出结论,微管经冷驯化处理后获得抗寒性,微管 蛋白呈现细,横束状;ABA处理亦能使微管获得抗寒性,但微管蛋白呈现陡,斜束状,说明冷驯化并非是诱导 微管抗寒性的唯一途径. 3.3抗氧化酶与植物抗寒性 已有研究表明,植物遇低温会积累大量对膜和膜相关的生物大分子有害的活性氧(AOS),而冷驯化可使 植物体内抗氧化物酶系统加强,从而提高植物对活性氧的耐受力(Scebbaeta1.,1998).研究发现,冷驯化提 高了锦橙(C~russinensis)的CAT和SOD活性(林定波等,1999).植物中超氧化物歧化酶(SOD)活性水平的提 高与植物的胁迫耐受力有关.Sato等(2001)对水稻(Oryzasativa)先热处理然后冷处理的试验结果得出,抗坏 血酸过氧化物酶(APX)在水稻幼苗抗冷伤害保护中可能起着作用.抗氧化酶在维 管束鞘细胞和叶肉细胞中 的超量产生,可增强转基因植物抵抗氧化和冷胁迫的能力.对水稻植株冷驯化的研究发现,水稻植株叶片内 的过氧化氢酶(CAT),APX,以及根部的SOD,CAT,APX和谷光甘肽还原酶(GR)的活性显着增强,其中CAT 和APX在水稻冷驯化与抗寒中起的作用最为重要(Kuketa1.,2003).植物叶绿体中SODs的超量产生可保 护植物不受冷伤害(Mckemieeta1.,1996). 第4期徐燕等:植物抗寒性的生理生态学机制研究进展91 3.4植物内含物与植物抗寒性 3.4.1糖类可溶性糖以及与之共存的可溶性物质,如甘氨酸甜菜碱,脯氨酸在冷保护中的作用已被广泛 报道.转基因拟南芥(Arabidopsisthaliana)中蔗糖磷酸合酶的超表达可促进蔗糖水平的提高,同时也提高了 植株的耐寒程度(Strandeta1.,2003).丛生型拟南芥冷驯化过程中抗寒性的研究,在拟南芥的莲座状叶 片中,中央幼嫩的叶片比外围的叶片能更快更高地获得抗寒性的提高,这部分可能与冷处理早期幼嫩叶片积 累糖类的水平高于外围叶片有关(Takagieta1.,2003). 3.4.2多胺植物中多胺含量的升高,可以提高植物抗寒性.经甲基乙二醛一双脒腙(MGBG)处理的菠菜 (Spinaciaoleracea)植株与对照相比较,其类囊体膜电子传导的活性及碳代谢过程中酶活性较低,而类囊体膜 的膜脂过氧化程度较高.这些结果表明腺苷甲硫氨酸脱羧酶(SAMDC)活性的增强,叶绿体中随之上升的亚 精胺(Spd)对菠菜叶片中的光合细胞器的冷驯化有重要作用(Heeta1.,2002).黄瓜的抗寒性栽培种在低温 (黑暗中3oC)环境时,其叶片内Spd的合成增强,而冻敏感性栽培种则没有这种变 化(Sheneta1.,2000). 3.5脱落酸(ABA)与植物抗寒性 大量研究表明,植物体内ABA在低温下所起的作用非常重要.在最近关于枝干休眠中ABA作用的综 述中,Chen等(2002)指出,植物休眠状态中的生理变化更多地与ABA敏感性差异有关,而与ABA含量差异 的关系较小.Chen等(1983)研究后提出假设,冷驯化是由ABA的作用启动的,例如:低温引起ABA含量的 增加,从而引起抗寒机制的运行.在接下来的研究中,确定了多种树种在冷驯化过程中ABA水平只是暂时 升高;在温暖的非驯化温度下,外源施用的ABA可以增加某些经过冷驯化植物种类的抗寒性(Ishikawaet oz.,1990).由此可见,ABA确实在启动植物冷驯化中起着重要的作用. 4植物抗寒性的分子机制 4.1冷诱导基因的表达 抗冻基因(COR)的表达对于植物抗寒性和冷驯化是很关键的.冷驯化通常与编码多肽的冷响应基因的 诱导联系在一起,特别是亲水性多肽(Thomashow,1998).Artus等(1996)从拟南芥中得到了一种冷诱导亲水 性多肽COR15a,它能增加质膜在低温下的稳定性.对苜蓿(Medicagosativa)基因表达的研究结果确定了许多 苜蓿COR基因在冻敏感和抗寒型栽培种的基因组中都存在,但是它们的表达水平依据低温程度的差异而显 着不同(Castonguayeta1.,1997).在COR基因表达的调控过程中,冷诱导转录因子(CBF1,C.repeatbinding faetor1)的超量表达,可同时引起许多COR基因的表达,并且能在非诱导条件下增加植物的抗寒性(Jaglo. Ottoseneta1.,1998).超量表达CBF3的拟南芥植株积累可溶性糖和脯氨酸的水平高于野生型拟南芥植株 (Gilmoureta1.,2000). 4.2基因梯度变异 植物种群对寒冷的适应性不是随机的,而是与气候和地理纬度有较大关系.产自较冷地区,具有较短生 长季的种群在秋季较早地停止生长和进行芽休眠(Aitkeneta1.,2001).植物早期生长的停止与其抗寒能力 的上升有关,生长停止早的植物多倾向于矮小粗壮,并且具有较强的抗寒能力(Aitkeneta1.,2001).杨盛昌 等(1998)对潮滩红树植物抵抗低温的生态学研究表明,生长在高纬度的种群抗寒性强,生长在低纬度的种群 抗寒性弱.所以,依据植物冷适应性状的不同可以将种群很好地划分开来. 4.3与植物抗寒性相关基因的数量性状定位 多表型性状的数量性状分析,为重要的农艺性状标记辅助选择(MAS)提供了基础.低温下玉米(o mays)中参与功能型叶绿体发育的关键基因位于近着丝点的染色体3上(Fracheboudeta1.,2002).对回交茄 子(Solanummelongena)种群的个体进行标记辅助基因分析得出,未经冷驯化的抗寒性状位点(QTL)和具有冷 驯化能力QTL位于染色体V的一个连锁图谱上(Vegaeta1.,2003).对沿海花旗松(Pseudotsugamenziesii)克 隆家系抗寒性的基因研究显示,就其抗寒性的数量遗传而言,与育种所得的种群相比,全同胞族内在相关遗 传估计量和基因相关上有显着的相似性. 5信号转导与植物抗寒性 植物细胞感受外界温度的变化而发生相应的生理生化反应,需要能察知低温的感应子(sensors),诱发与 林业科学 植物抗冷性相关的生化反应和基因表达的转导器(transducers).抗寒锻炼能使冬小麦幼苗和小偃麦 (Trititrigia)质膜上的Ca2.ATPase保持较高的活性(王红等,1998;Jianeta1.,200O).许多证据表明,Ca2是 低温下参与调节冷驯化应答机制中信号转导途径的重要的第二信使(初级信使为环境低温)(王红等,1994). 最近有研究涉及到胞质ca2调节中的ca通道,如药理学研究表明,苜蓿和欧洲油菜(Brassicanapus)中膜流 动性与细胞骨架的重组对冷诱导的胞质Ca2浓度的波动(钙信号)非常重要,说明了剪切力敏感Ca2通道的 参与(Sangwaneta1.,2001).又有试验表明,抗寒锻炼能使冬小麦幼苗和小偃麦质膜上的Ca2.ATPase保持 较高的活性,以维持细胞内Ca2水平的平衡(简令成等,2002).通过化学和药理试剂的使用,表明ca的上 升是某些冷调节基因完全表达的必要条件(Tahtiharjueta1.,1997).另外,钙依赖型蛋白激酶(CDPK)亦参与 了冷胁迫应答机制的信号途径.Saijo等(2000)对水稻的研究发现,冷诱导转基因水稻超量表达OsCDPK,并 且这些植株具有较高的抗盐胁迫和干旱胁迫的能力.再者,转录激活因子表达的诱导子1(ICE1)途径亦对 冷胁迫响应基因的表达起调节作用. 6展望 植物抗寒性研究在生理,基因,以及与环境的关系等方面取得了长足的进步.植物抗寒性在生理生化方 面的表现,最终由植物体基因表达来控制,所以基因方面的研究有利于从根本上改善植物的抗寒性能.因 此,信号转导和基因调节,低温抗性的遗传学和遗传应用及代谢组学是今后的研究热点.随着植物抗寒性研 究的深入,新技术和新方法及时应用到了植物抗寒性研究领域,如用代谢组学的技术研究低温锻炼后拟南芥 代谢物的变化,用基因芯片技术在拟南芥筛选克隆新的抗寒基因.分子遗传方面的 技术日益强大,精细,现 已可探测到响应环境胁迫的整个基因组,确定与耐胁迫相关的染色体区域,并且已经找到了与环境相适应的 候选基因或是具有等位基因变种的定位.科学家们开始理解植物感知低温信号的机制,鉴定参与低温驯化 的基因,以及这些基因调节表达的调控机制;甚至通过基因转化成功地使植物抗寒性得以提高. 植物内部结冰主要的伤害部位是膜,所以冰冻伤害和低温驯化的膜生物学是今后研究的重要内容之一. 低温驯化的生理生化仍然是抗寒研究的重要内容.对于木本植物,尤其是园艺植物的低温驯化及其抗寒力 的研究具有很高的经济价值.因而,木本植物低温适应的机制将成为抗寒领域的研究热点.目前,林木冷驯 化的研究亦趋向于分子基因水平,林木冷驯化特有性状已经得到确认,基因和环境的相互联系已经建立,基 因变异的地理和环境模型已经得到阐述.这有助于进一步了解林木进化与环境的关系,也有助于提高林木 育种进程的效率. 植物周围的环境信号直接影响植物细胞的能量平衡和代谢速率,光周期,光强,水分吸收以及温度等环 境信号作用于细胞,并调节控制植物内休眠,生长和发育以及耐寒性基因的表达.定量研究光强,光周期,水 分吸收和温度对植物的抗寒性的影响,也是植物抗寒性今后的一个研究方向. 随着气候温暖化现象的加剧,气候变化对于植物抗寒的影响将成为该领域的研究热点之一.气候变化, 包括冰雨量增加,雪层覆盖减少,冰冻温度频率上升,都可能加剧植物在零下低温死亡的可能性,从而增加了 未来环境因子影响植物抗寒的不确定性.多学科专家的协作,在全球范围内进行区域性研究有助于确定气 候变暖的影响. 另外,研究抗寒性的同时,结合抗盐碱性,抗旱涝性等其他抗逆性是未来的研究方向之一.生态,微生 物,基因,生理,生化,农学,林学等各领域的专家合作,可以使植物抗寒性的理论研究与植物培育有机结合起 来,采取科学的栽培和管理措施,加强抗寒品种选育,从而把低温伤害的损失减少到最低程度,获得最大的生 态效益和经济效益. 尽管在植物抗寒的基因研究方面取得了显着的进步,但是在林木冷驯化过程中,形成这些复杂性状的基 因如何在个体,种群和树种之问变化,以及如何对环境低温作出应答,还没有明确的解释.随着温室效应的 增强,暖冬出现的频率越来越高,这一气候变化对植物和农业生态系统的影响还不能确定.这些内容有待于 今后深入研究. 参考文献 简令成,王红.2002.钙(Ca2+)在植物抗寒中的作用.细胞生物学杂志,24(3):166—171 第4期徐燕等:植物抗寒性的生理生态学机制研究进展93 林定波,颜秋生,沈德绪.1999.柑橘抗寒细胞变异体的获得及抗性遗传稳定性的研究.植物,41(2):135—141 卢存福.2004.第七界国际植物抗寒会议概况.植物学,21(5):617 沈洪波,陈学森,张艳敏.2002.果树抗寒性的遗传与育种研究进展.果树,19(5):292—297 王红,简令成,张举仁.1994.低温胁迫下水稻幼叶细胞内Ca2水平的变化.植物,36(8):587—591 王红,孙德兰,卢存福,等.1998.抗寒锻炼对冬小麦幼苗质膜Ca2.ATPase的稳定作用.植物,4o(12):1098—1101 杨盛昌,林鹏.1998.潮滩红树林低温适应的生态学研究.植物生态,22(1):60—67 杨亚军,郑雷英,王新超.2004.冷驯化和ABA对茶树抗寒力及其体内脯氨酸含量的 影响.茶叶科学,24(3):177—182 AbdrakhamanovaA,WangQY,KhokhlovaL,eta1.2003.Ismicrotubledisassemblyatriggerforcoldacclimation'7.Plant&CellPhysiology,44(7):676—686 AitkenSN,HannerzM.2001.Genecologyandgeneresourcemanagementstrategiesforconifercoldhardiness//BigrasFJ,ColumboSJ.Conifercoldhardiness. K1uwerAcademicPublishers,Dordrecht,TheNetherlands:23—53 ArtusNN,UemuraM,SteponkusPL,e/a/.1996.Constitutiveexpressionofthecold— regulatedArabldops~thalianaCOD15ageneaffectsbothe~omplastand protoplastfreezingtolerance.ProceedingsoftheNationalAcademyofScienceUSA,93:13404—13409 AsadaK.2000.Thewater-watercycleasalternativephotonandelectronsinks.PhilosophicalTransactionsoftheRoyalSocietyofLondon:SeriesB,Bidogical Sciences,355:1419—1431 AshworthEN,PearceRS.2002.Extracellularfreezinginleavesoffreezing-sensitivespecies.Planta.214:798—805 B61angerG,RochetteP,CastonguayY,eta1.2002.Climatechangeandwintersurvivalofperennialforagecropsin~tsternCanada.A~onomyJournal,94: 1120—1130 CastonguayY,NadeauP,LabergeS,eta1.1997.Changesingeneexpressioninsixalfalfacultivarsacclimatedunderwinterhardeningconditions.Crop Science,37:332,342 ChenHH,LiPH,BrennerML.1983.Involvementofabscisicacidinpotatocoldacclimation.PlantPhysiology,71:362—365 ChenTHH,HoweGT,BradshawHDJr.2002.Moleculargeneticsanalysisofdormancy— relatedtraitsinpoplars.WeedScience,50:232—240 CrawfordRMM.2000.Ecologicalhazardsofoceanicenvironments.NewPh~ologist.147:257—281 FracheboudY,RibautJM,Varg~M.2002.Identificationofquantitativetraitlociforcold— toleranceofphotosynthesisinmaize(ZeamaysL.).Journalof ExperimentalBotany,53(376):1967—1977 GilmourS,SebohAM,SlazarMP.2000.Over-expressionoftheArabidopsisCBF3transcriptionalactivatormimicsmultiplebiochemicalchangesassociated withcoldacclimation.PlantPhysiology,124:1854—1865 GuyCL.2003.Freezingtoleranceofplants:currentunderstandingandselectedemergingconceopts.CanadianJournalofBonny,81(12):1216—1223 HeLX,NadaK,KashihisaY,eta1.2002.Enhancedsusceptibilityofphotosynthesistolow— temperaturephotoinhibitionduetointerruptionofchill+induced increaseofs— aden0sylmethi0ninedecarboxylaseactivityinleavesofspinach(SpinaciaoleraceaL.).Plant&CellPhysiology,43(2):196—206 Hiilovaara-TeijoM,HannukkalaA,GriffithM,ela1.1999.Snow—mold— inducedapoplasticproteinsinwinterryeleaveslackantifreezeactivity.Plant Physiology,121:665—673 IshikawaM,RobertsonAJ,GustaLV.1990.Effectoftemperature,light,nutrientsanddehardeningonabscisicacid—inducedcoldhardinessinBrom~inermis Leysssuspensioncuhuredcells.PlantCellPhysiology,31:51—59 Jaglo-OttosenKR,GilmourSJ,ZarkaDG.1998.ArabidopsisCBFIover-expressioninducesCORgenesandenhancesfreezingtolerance.Science (Washington,DC),280:104—106 JianLingchen,SunLonghua,LiJihong,eta1.2000.Ca2一 homeostasisdiffersbetweenplantspecieswithdifferentcold.toleranceat4? chiHing.ActaBotanica Sinlca,42(2):358—366 KukYI,ShinJS,BurgosNR.2003.Antioxidativeenzymesofferprotectionfromchillingdamageinriceplants.CropScience,43(6):2109—2117 KuwabaraC,TakezawaD,ShimadaT.2002.Abscisicacid—andcold—inducedthaumatin —likeproteininwinterwheathasanantifungalactivityagainstsnow mould,Microdochiumnivale.PhysiologyofPlant,115:101—110 LyonsJM,RaisonJK.1970.Oxidativeactivityofmitochondriaisolatedfromplanttissuesens itiveandresistanttochillinginjury.PlantPhysiology,45:386 MazurP.1963.Kineticsofwaterlossfromcellsatsubzerotemperaturesandlikelihoodofintracellularfreezing.JournalofGeneralPhysiology,47:347—369 MckersieBD,BowleySR,HarjantoE.1996.Water— deficittoleranceandfieldperformanceoftransgenicalfalfaoverexpressingsuperoxidedismutase.Plant Physiology,111:1177—1181 OgrenE,NilssonT,SundbladLG.1997.Relationshipbetweenrespiratorydepletionofsugarsandlossofcoldhardinessinconiferousofdifferentsensitivitiesof spruceandpine.Plant,CellandEnvironment,20:247,253 OlsenJE,JunttilaO.2002.Farredend—obdaytreatmentrestoreswildtype— likeplantlengthinhybridaspenover—expressingphytochromeA.Physiologyof P1ant,115:448—457 RepoT,HaaninnenH,KellomaldS.199
/
本文档为【植物抗寒性的生理生态学机制研究进展】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索