为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

核心力量练习对提高体育院校篮球专修学生专项弹跳力实验研究

2017-10-11 50页 doc 104KB 73阅读

用户头像

is_358746

暂无简介

举报
核心力量练习对提高体育院校篮球专修学生专项弹跳力实验研究电工钢电工钢知识汇总电工钢亦称硅钢片,是电力、电子和军事工业不可缺少的重要软磁合金,亦是产量最大的金属功能材料,主要用作各种电机、发电机和变压器的铁心。它的生产工艺复杂,制造技术严格,国外的生产技术都以专利形式加以保护,视为企业的生命。电工钢板的制造技术和产品质量是衡量一个国家特殊钢生产和科技发展水平的重要标志之一。目前我国冷轧电工钢数量、质量、规格牌号,还不能满足能源(电力)工业发展的需求,在生产技术、设备、管理及科研等方面与日本相比,存在较大差距。全世界电工钢的总产量约700万吨。近年来,特别这几年随着中国电力、电器工业的...
核心力量练习对提高体育院校篮球专修学生专项弹跳力实验研究
电工钢电工钢知识汇总电工钢亦称硅钢片,是电力、电子和军事工业不可缺少的重要软磁合金,亦是产量最大的金属功能,主要用作各种电机、发电机和变压器的铁心。它的生产工艺复杂,制造技术严格,国外的生产技术都以专利形式加以保护,视为企业的生命。电工钢板的制造技术和产品质量是衡量一个国家特殊钢生产和科技发展水平的重要标志之一。目前我国冷轧电工钢数量、质量、规格牌号,还不能满足能源(电力)工业发展的需求,在生产技术、设备、管理及科研等方面与日本相比,存在较大差距。全世界电工钢的总产量约700万吨。近年来,特别这几年随着中国电力、电器工业的迅猛发展,中国的硅钢片需求量快速增加,2004年的消费量几乎已占全世界硅钢片产量的一半,导致中国的硅钢产量进入了一个快速发展时期,但仍然无法满足国内需求,2004年进口硅钢片164万吨。电工钢已有上百年的历史,电工钢包括Si<0.5%电工钢和Si含量0.5~6.5%的硅钢两类,主要用作各种电机、变压器和镇流器铁芯,是电力、电子和军事工业中不可缺少的重要软磁合金。电工钢在磁性材料中用量最大,也是一种节能的重要金属功能材料。电工钢,特别是取向硅钢的制造工艺和设备复杂,成分控制严格,制造工序长,而且影响性能的因素多,因此常把取向硅钢产品质量看作是衡量一个国家特殊钢制造技术水平的重要标志,并获得特殊钢中“艺术产品”的美称。电工钢的发展历史热轧硅钢发展阶段(1882~1955年)铁的磁导率比空气的磁导率高几千到几万倍,铁芯磁化时磁通密度高,可产生远比外加磁场更强的磁场。普通热轧低碳钢板是工业上最早应用的铁芯软磁材料。1886年美国Westinghouse电气公司首先用杂质含量约为0.4%的热轧低碳钢板制成变压器叠片铁芯。1890年已广泛使用0.35mm厚热轧低碳钢薄板制造电机和变压器铁芯。但由于低碳钢电阻率低,铁芯损耗大;碳和氮含量高,磁时效严重。1882年英国哈德菲尔特开始研究硅钢,1898年发了4.4%Si-Fe合金的磁性结果。1903年美国取得哈德菲尔特专利使用权。同一年美国和德国开始生产热轧硅钢板。1905年美国已大规模生产。在很短时间内全部代替了普通热轧低碳钢板制造电机和变压器,其铁损比普通低碳钢低一半以上。1906~1930年期间,是生产厂与用户对热轧硅钢板成本、力学性能和电机、变压器设计制造改革方面统一认识、改进产品质量和提高产量的阶段。冷轧电工钢发展阶段(1930~1967年)此阶段主要是冷轧普通取向硅钢(GO)板的发展阶段。1930年美国高斯采用冷轧和退火方法开始进行大量实验,摸索晶粒易磁化方向<001>平行于轧制方向排列的取向硅钢带卷制造工艺。1933年高斯采用两次冷轧和退火方法制成沿轧向磁性高的3%Si钢,1934年申请专利并公开发表。1935年Armco钢公司按高斯专利技术与Westinghouse电气公司合作进行生产。之后,Armco钢公司采用快速分析微量碳等技术和不断改进制造工艺及设备,使产品质量逐步提高。直到1958年在掌握MnS抑制剂和板坯高温加热两个前工序制造工艺后,制造取向硅钢的专利技术已基本完善,产品磁性大幅度提高且稳定。1959年开始生产0.30mm厚产品,1963年生产0.27mm产品。40年代初,Armco钢公司开始生产冷轧无取向硅钢板。1963~1967年期间,英国、日本等国家陆续停止生产热轧硅钢板。热轧硅钢板逐步被冷轧无取向电工钢和冷轧取向硅钢板所代替。高磁感取向硅钢发展阶段(1961~1994年)1961年,新日铁在引进Armco专利基础上,首先试制AlNMnS综合抑制剂的高磁感取向硅钢。1964年开始试生产并命名为Hi-B,但磁性不稳定。经过15年的持续改进,Hi-B钢制造工艺已日臻完善,并于1968年正式生产Z8H牌号。从1979年开始,新日铁和川崎公司采用提高硅含量、减薄产品钢带厚度和细化磁畴技术,陆续生产了0.30、0.27、0.23及0.18mm高磁感取向硅钢新牌号。电工钢的分类一、硅钢片分类:A、硅钢片按其含硅量不同可分为低硅和高硅两种。低硅片含硅2.8%以下,它具有一定机械强度,主要用于制造电机,俗称电机硅钢片;高硅片含硅量为2.8%-4.8%,它具有磁性好,但较脆,主要用于制造变压器铁芯,俗称变压器硅钢片。两者在实际使用中并无严格界限,常用高硅片制造大型电机。B、按生产加工工艺可分热轧和冷轧两种,冷轧又可分晶粒无取向和晶粒取向两种。冷轧片厚度均匀、表面质量好、磁性较高,因此,随着工业发展,热轧片有被冷轧片取代之趋势(我国已经明确要求停止使用热轧硅钢片,也就是前期所说的"以冷代热")。二、无取向硅钢片的定义:无取向硅钢片是按照一定生产工艺,形成无取向性变形织构结晶结构的硅钢片。三、无取向硅钢片和取向硅钢片的关系:1、二者都是冷轧硅钢片,但含硅量不同。冷轧无取向硅钢片含硅量0.5%-3.0%,冷轧取向硅钢片含硅量在3.0%以上。2、生产工艺及性能的不同:无取向硅钢片较取向硅钢片工艺要求相对较低。无取向硅钢片是将钢坯或连铸坯热轧成厚度约2.3mm带卷。制造低硅产品时,热轧带卷酸洗后一次冷轧到0.5mm厚。制造高硅产品时,热轧带酸洗后(或先经800~850℃常化后再酸洗),冷轧到0.55或0.37mm厚,在氢氮混合气氛连续炉中850℃退火,再经6~10%小压下率冷轧到0.50或0.35mm厚。这个小压下率的冷轧可使退火时晶粒长大,铁损降低。这两种冷轧板都在20%氢氮混合气氛下连续炉中850℃最终退火,然后涂磷酸盐加铬酸盐的绝缘膜。经冷轧至成品厚度,供应态多为0.35mm和0.5mm厚的钢带。冷轧无取向硅钢的Bs高于取向硅钢。取向硅钢片要求钢中氧化物夹杂含量低,并必须含有C0.03~0.05%和抑制剂(第二相弥散质点或晶界偏析元素)。抑制剂的作用是阻止初次再结晶晶粒长大和促进二次再结晶的发展,从而获得高的(110)[001]取向。抑制剂本身对磁性有害,所以在完成抑制作用后,须经高温净化退火。采用第二相抑制剂时,板坯加热温度必须提高到使原来粗大第二相质点固溶,随后热轧或常化时再以细小质点析出,以便增强抑制作用。冷轧成品厚度为0.28、0.30或0.35mm。冷轧取向薄硅钢带是将0.30或0.35mm厚的取向硅钢带,再经酸洗、冷轧和退火制成。与冷轧无取向硅钢相比,取向硅钢要比无取向硅钢铁损低很多,磁性具有强烈的方向性;在易磁化的轧制方向上具有优越的高磁导率与低损耗特性。取向钢带在轧制方向的铁损仅为横向的1/3,磁导率之比为6:1,其铁损约为热轧带的1/2,磁导率为后者的2.5倍。电工钢除上表品种类别外,还有一些特殊用途的电工钢板,如0.15和0.20mm厚3%Si冷轧无取向硅钢薄带和0.025、0.05及0.1mm厚3%Si冷轧取向硅钢薄带,用作中、高频电机和变压器以及脉冲变压器等;继电器和电力开关用的0.7mm厚3%Si高强度冷轧无取向硅钢板;新型高转速电机转子用的高强度冷轧电工钢板;医用核磁共振断层扫描仪等磁屏蔽和高能加速器电磁铁用的低碳电工钢热轧厚板和冷轧板;高频电机和变压器以及磁屏蔽用的4.5%~6.5%Si高硅钢板等。性能及用途:由于二者性能特点不同,在使用方向上存在差异冷轧无取向硅钢片最主要的用途是用于发电机制造,故又称冷轧电机硅钢。冷轧取向硅钢带最主要的用途是用于变压器制造,所以又称冷轧变压器硅钢。(1)硅钢片性能指标:A、铁损低。质量的最重要指标,世界各国都以铁损值划分牌号,铁损越低,牌号越高,质量也高。B、磁感应强度高。在相同磁场下能获得较高磁感的硅钢片,用它制造的电机或变压器铁芯的体积和重量较小,相对而言可节省硅钢片、铜线和绝缘材料等。C、叠装系数高。硅钢片表面光滑,平整和厚度均匀,制造铁芯的叠装系数提高。D、冲片性好。对制造小型、微型电机铁芯,这点更重要。E、表面对绝缘膜的附着性和焊接性良好,能防蚀和改善冲片性。F、磁时效现象小G、硅钢片须经退火和酸洗后交货。(2)相关:(一)电工用热轧硅钢薄板(GB5212-85)电工用热轧硅钢薄板以含碳损低的硅铁软磁合金作材质,经热轧成厚度小于1mm的薄板。电工用热轧硅钢薄板也称热轧硅钢片。热轧硅钢片按其合硅量可分为低硅(Si≤2.8%)和高硅(Si≤4.8%)两种钢片。(二)电工用冷轧硅钢薄板(GB2521-88)用含硅0.8%-4.8%的电工硅钢为材质,经冷轧而成。冷轧硅钢片分晶粒无取向和晶粒取向两种钢带。冷轧电工钢带具有表面平整、厚度均匀、叠装系数高、冲片性好等特点,且比热轧电工钢带磁感高、铁损低。用冷带代替热轧带制造电机或变压器,其重量和体积可减少0%-25%。若用冷轧取向带,性能更佳,用它代替热轧带或低档次冷轧带,可减少变压器电能消耗量45%-50%,且变压器工作性能更可靠。用于制造电机和变压器。通常,晶粒无取向冷轧带用作电机或焊接变压器等的状态;晶粒取向冷轧带用作电源变压器、脉冲变压器和磁放大器等的铁芯。钢板规格尺寸:厚度为0.35、0.50、0.65mm,宽度为800-1000mm,长度为≤2.0m。(三)家电用热轧硅钢薄板(GBH46002-90)家电用热轧硅钢薄板的牌号以J(家)D(电)R(热轧)表示,即JDR。JDR后数字为铁损值*100,横线后数字为钢板厚度(mm)*100。家电用热轧硅钢片对电磁性能要求可稍低一点,铁损值(P15/50)最低值为5.40W/kg。一般不经配洗交货。用于各种电风扇、洗衣机、吸尘器、抽油烟机等家用电器的微分电机等。性能要求一般要求电机、变压器和其他电器部件效率高,耗电量少,体积小和重量轻。电工钢板通常是以铁芯损耗和磁感应强度作为产品磁性保证值。对电工钢板性能的要求如下:铁芯损耗(PT)低铁芯损耗是指铁芯在≥50Hz交变磁场下磁化时所消耗的无效电能,简称铁损,也称交变损耗,其单位为W/kg。这种由于磁通变化受到各种阻碍而消耗的无效电能,通过铁芯发热既损失掉电能,又引起电机和变压器的温升。电工钢的铁损(PT)包括磁滞损耗、涡流损耗(Pe)和反常损耗(Pa)三部分。电工钢板铁损低,既可节省大量电能,又可延长电机和变压器工作运转时间,并简化冷却装置。由于电工钢板的铁损所造成的电量损失占各国全年发电量的2.5%~4.5%,因此各国生产电工钢板总是千方百计设法降低铁损,并以铁损作为考核产品磁性的最重要指标,按产品的铁损值作为划分产品牌号的依据。磁感应强度高磁感应强度是铁芯单位截面积上通过的磁力线数,也称磁通密度,它代表材料的磁化能力,单位为T。电工钢板的磁感应强度高,铁芯的激磁电流(也称空载电流)降低,铜损和铁损都下降,可节省电能。当电机和变压器功率不变时,磁感应强度高,设计Bm可提高,铁芯截面积可缩小,这使铁芯体积减小和重量减轻,并节省电工钢板、导线、绝缘材料和结构材料用量,可降低电机和变压器的总损耗和制造成本,并且有利于大变压器和大电机的制造、安装和运输。取向硅钢设计Bm高达1.7~1.80T,接近B8值,因此以B8作为磁感保证值。电机设计Bm约为1.5T,接近冷轧无取向电工钢B50值,因此冷轧无取向硅钢以B50作为磁感保证值。热轧硅钢的磁感更低,通常以B25作为保证值。对磁各向异性的要求电机是在运转状态下工作,铁芯是用带齿圆形冲片叠成的定子和转子组成,要求电工钢板为磁各向同性,因此用无取向冷轧电工钢或热轧硅钢制造。一般要求纵横向铁损差值<8%,磁感差值<10%。变压器是在静止状态下工作。大中型变压器铁芯是用条片叠成,一些配电变压器、电流和电压互感器以及脉冲变压器是用卷绕铁芯制造,这样可保证沿电工钢板轧制方向下料和磁化,因此都用冷轧取向硅钢制造。冲片性良好用户使用电工钢板时冲剪工作量很大,因此要求电工钢板应具有良好的冲片性,这对微、小型电机尤为重要。冲片性好可以提高冲模和剪刀寿命,保证冲剪片尺寸精确以及减小冲剪片毛刺。影响冲片性的因素主要有:1)冲模或剪刀材料。如硬质合金冲模的冲片性比工具钢冲模提高一倍以上。2)冲头与冲模的间距。合适的间距一般为钢板厚度的5%~6%。3)冲片用润滑油种类。4)冲片形状。5)钢板表面绝缘膜种类和质量。6)钢板的硬度等。后两个因素与电工钢板质量有关。钢板表面光滑、平整和厚度均匀要求电工钢板表面光滑、平整和厚度均匀,主要是为了提高铁芯的叠片系数。叠片系数高可使铁芯有效利用空间增大,空气隙减小,使激磁电流减小。电工钢板的叠片系数每降低1%相当于铁损增高2%,磁感降低1%。绝缘薄膜性能好为防止铁芯叠片间发生短路而增大涡流损耗,冷轧电工钢板表面涂一薄层无机盐或无机盐有机盐的半有机绝缘膜。对绝缘膜有以下要求:1)耐热性好。在750~800℃消除应力退火时不会破坏。2)绝缘膜薄且均匀。3)层间电阻高。4)附着性好。5)冲片性好。6)耐蚀性和防锈性好。7)焊接性好。用途不同,对绝缘膜的要求也有差异。磁时效现象小铁磁材料的磁性随使用时间而变化的现象称为磁时效。这种现象主要是材料中碳和氮等杂质元素引起的。电工钢板中碳和氮含量小于0.0035%时,磁时效明显减小。影响因素化学成分的影响:电工钢成分组成基本包括三大类元素。第一类为基本合金元素,如Si、Al、Mn等;第二类为杂质元素,如C、S、N、O、Ti、Zr等;第三类为微量元素如Sb、Sn等。第一类元素的影响Si、Al、Mn是有益的合金元素,可使铁的磁各向异性常数K1和饱和磁滞伸缩常数λs值降低,磁化更容易,所以Ph降低。另外这些元素还可提高电阻率,使Pe降低。因此提高第一类元素的含量可以明显降低铁损。但当这些元素含量太高时,材料变得既硬又脆而无法冷加工。第二类元素的影响C、S、N、O、Ti、Zr等为有害元素,这些元素的存在可在钢中形成细小弥散的碳化物、硫化物、氮化物及氧化物,阻碍成品退火时晶粒长大,对磁性能不利,因此要求钢中这类元素的含量越低越好。第三类元素的影响在无取向硅钢中添加少量的Sb、Sn,可以改善无取向电工钢再结晶退火后的织构,使(100)和(110)有利织构组分明显增加,使(111)不利织构组分明显减弱,从而降低铁损,提高磁感。添加少量的此类元素,还可以抑制内氧化层和氮化层的形成,改善磁性。晶粒尺寸晶粒尺寸大,晶界数量少,畴壁移动的阻力小,磁滞损耗降低。另一方面,晶粒尺寸大,磁畴尺寸增大,涡流损耗和反常损耗都增加。因此为了降低总铁损有一个合适的临界晶粒尺寸。杂质、夹杂物和内应力无取向电工钢中夹杂物和杂质元素应尽量降低,这是提高磁性的最重要措施。它们不仅阻碍畴壁移动使磁滞损耗和矫顽力增高,同时为了降低其周围静磁能而产生了闭合畴使磁化困难。它们对晶粒长大和织构组分也有很坏的影响。电工钢板中存在任何内应力都使矫顽力增高。晶体织构在取向硅钢中,提高B8使磁滞损耗明显降低。对无取向电工钢来说,(100)面织构高,磁滞损耗和P15最低,(110)织构次之,(111)织构最差。钢板厚度一般来说,钢板厚度减薄,磁滞损耗增高。但厚度减薄,涡流损耗明显降低。因此对总铁损来说也有一个合适的临界厚度。钢板表面状态钢板表面平整光洁,表面自由磁极减少,静磁能降低,畴壁移动阻力减小,则磁滞损耗和矫顽力降低。
/
本文档为【核心力量练习对提高体育院校篮球专修学生专项弹跳力实验研究】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索