为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

可分离变量的微分方程

2017-12-21 6页 doc 18KB 25阅读

用户头像

is_841159

暂无简介

举报
可分离变量的微分方程可分离变量的微分方程 第二节 可分离变量的微分方程 微分方程的类型是多种多样的,它们的解法也各不相同. 从本节开始我们将根据微分方 程的不同类型,给出相应的解法. 本节我们将介绍可分离变量的微分方程以及一些可以化为 这类方程的微分方程,如齐次方程等. 内容分布图示 ? 可分离变量微分方程 ? 例1 ? 例2 ? 例3 ? 例4 ? 例5 ? 例6 ? 例7 ? 逻辑斯谛方程 ? 齐次方程 ? 例8 ? 例9 ? 例10 ? 例11 ? 例12 ? 例13 ? 可化为齐次方程的微分方程 ? 例14 ? 例1...
可分离变量的微分方程
可分离变量的微分方程 第二节 可分离变量的微分方程 微分方程的类型是多种多样的,它们的解法也各不相同. 从本节开始我们将根据微分方 程的不同类型,给出相应的解法. 本节我们将介绍可分离变量的微分方程以及一些可以化为 这类方程的微分方程,如齐次方程等. 内容分布图示 ? 可分离变量微分方程 ? 例1 ? 例2 ? 例3 ? 例4 ? 例5 ? 例6 ? 例7 ? 逻辑斯谛方程 ? 齐次方程 ? 例8 ? 例9 ? 例10 ? 例11 ? 例12 ? 例13 ? 可化为齐次方程的微分方程 ? 例14 ? 例15 ? 例16 ? 例17 ? 内容小结 ? 课堂练习 ? 习题12—2 ? 返回 内容要点: 一、可分离变量的微分方程 设有一阶微分方程 dy, ,F(x,y)dx 如果其右端函数能分解成F(x,y),f(x)g(x),即有 dy,f(x)g(y). (2.1) dx f(x),g(x)则称方程(2.1)为可分离变量的微分方程,其中都是连续函数. 根据这种方程的特 点,我们可通过积分来求解. 求解可分离变量的方程的方法称为分离变量法. 二、齐次方程:形如 dyy,,,f (2.8) ,,dxx,, 的一阶微分方程称为齐次微分方程,简称齐次方程.. 三、 可化为齐次方程的方程:对于形如 ,,ax,by,cdy111,,,f ,,dxax,by,c222,, 的方程,先求出两条直线 ax,by,c,0,ax,by,c,0 111222 (x,y)的交点,然后作平移变换 00 X,x,xx,X,x,,00 即 ,,YyyyYy,,,,00,, dydY这时,,于是,原方程就化为齐次方程 ,dxdX ,,aX,bYdY11,,,,f ,,dXaX,bY22,, 例题选讲: 可分离变量的微分方程 dy例1(讲义例1)求微分方程的通解. ,2xydx 2dx,xydy,ydx,ydy例2(讲义例2)求微分方程的通解. 注:在用分离变量法解可分离变量的微分方程的过程中, 我们在假定的前提下, g(y),0用它除方程两边, 这样得到的通解, 不包含使的特解. 但是, 有时如果我们扩大任g(y),0 意常数C的取值范围, 则其失去的解仍包含在通解中. 如在例2中,我们得到的通解中应该 ,但这样方程就失去特解,而如果允许,则仍包含在通解y,,1y,,1C,0C,0 22y,1,C(x,1)中. 22,f(sinx),cos2x,tanx,例3 已知 当时,求 f(x).0,x,1 例4(讲义例3)设一物体的温度为100?,将其放置在空气温度为20?的环境中冷却. t试求物体温度随时间的变化规律. 注:物体冷却的数学模型在多个领域有广泛的应用. 例如,警方破案时,法医要根据尸体当时的温度推断这个人的死亡时间,就可以利用这个模型来计算解决,等等. 例5(讲义例4)设降落伞从跳伞塔下落后, 所受空气阻力与速度成正比, 并设降落伞离 (t,0)开跳伞塔时速度为零, 求降落伞下落速度与时间的关系. 下面我们借助树的增长来引入一种在许多领域有广泛应用的数学模型——逻辑斯谛方程. 一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型. 如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度, 又与最大高度与目前高度之差成正比. 设树生长的最大高度为H(m), 在t(年)时的高度为h(t),则有 dh(t),kh(t)[H,h(t)] (2.8) dt 其中的是比例常数. 这个方程称为Logistic方程. 它是可分离变量的一阶常微分方程. k,0 注:Logistic的中文音译名是“逻辑斯谛”.“逻辑”在字典中的解释是“客观事物发展的规律性”, 因此许多现象本质上都符合这种S规律. 除了生物种群的繁殖外, 还有信息的传播、新技术的推广、传染病的扩散以及某些商品的销售等. 例如流感的传染, 在任其自然发展(例如初期未引起人们注意)的阶段, 可以设想它的速度既正比于得病的人数又正比于未传染到的人数. 开始时患病的人不多因而传染速度较慢; 但随着健康人与患者接触, 受传染的人越来越多, 传染的速度也越来越快; 最后, 传染速度自然而然地渐渐降低, 因为已经没有多少人可被传染了. 例如,837年, 荷兰生物学家Verhulst提出一个人口模型 dy (2.9) ,y(k,by),y(t),y00dt 其中的称为生命系数. k,b 这个模型称为人口阻滞增长模型. 我们不细讨论这个模型, 只提应用它预测世界人口数的两个有趣的结果. 有生态学家估计k的自然值是0.029. 利用本世纪60年代世界人口年平均增长率为2%以及1965年人口总数33.4亿这两个数据, 计算得,从而估计得: b,2 (1) 世界人口总数将趋于极限107.6亿. (2) 到2000年时世界人口总数为59.6亿. 后一个数字很接近2000年时的实际人口数, 世界人口在1999年刚进入60亿. 例6 有高为1米的半球形容器,水从它的底部小孔流出,小孔横截面积为1平方厘米. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面的高度(水面与孔口中心间的h t距离)随时间的变化规律. 例7 某车间体积为12000立方米, 开始时空气中含有0.1%的C0, 为了降低车间内空2 气中C0的含量, 用一台风量为每秒2000立方米的鼓风机通入含0.03%的C0的新鲜空气, 22同时以同样的风量将混合均匀的空气排出, 问鼓风机开动6分钟后, 车间内C0百分比降低2到多少? 齐次方程 dyyy,,,tan例8(讲义例5)求解微分方程 满足初始条件的特解. y,x,1dxxx6 dxdy,.例9 求解微分方程 222x,xy,yy,xy2 dydy22y,x,xy例10(讲义例6)求解微分方程 . dxdx 例11 求下列微分方程的通解: x(lnx,lny)dy,ydx,0. 例12 抛物线的光学性质. 实例:车灯的反射镜面 ——旋转抛物面. 例13(讲义例7)设河边点O的正对岸为点A, 河宽, 两岸为平行直线, 水流速OA,h ,b(b,a)度为, 有一鸭子从点A游向点O, 设鸭子(在静水中)的游速为, 且鸭子游动方向a 始终朝着点O, 求鸭子游过的迹线的方程. 可化为齐次方程的方程 dyx,y,1例14(讲义例8)求,的通解. dxx,y,3 dy2例15(讲义例9)利用变量代换法求方程的通解. ,(x,y)dx 12,例16 求微分方程的通解. y,tan(x,2y)2 例17 求下列微分方程的通解. 22x,y22x,yx,2yy,e,,2x. x 课堂练习 dyx,yx,y1.求微分方程的通解. ,cos,cosdx22 x22,,2y(t),t,y(t)dt,xy(x)2.方程是否为齐次方程? ,,,0,, yy3.求齐次方程的通解. (x,ycos)dx,xcosdy,0xx
/
本文档为【可分离变量的微分方程】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索