为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

800吨土霉素工艺设计

2017-11-27 42页 doc 89KB 49阅读

用户头像

is_591137

暂无简介

举报
800吨土霉素工艺设计800吨土霉素工艺设计 北京化工大学制药工艺设计(论文) 北京化工大学 生命科学与技术学院制药工程系 课程设计 题目:年产800吨土霉素工厂设计 设计内容 36 页 8 张 图纸 指导老师: 周延 学生姓名: 赖奥琳 学 号: 200782114 所在班级: 制药0704 1 北京化工大学制药工艺设计(论文) 年产800吨土霉素车间工艺设计 摘 要 本次设计为生产规模800吨/年的土霉素车间。 本次设计主要涉及到土霉素发酵生产的具体工艺流程,分为三级发酵、酸化、过滤、脱色、结晶、干燥等。物料衡算...
800吨土霉素工艺设计
800吨土霉素工艺设计 北京化工大学制药工艺设计(论文) 北京化工大学 生命科学与技术学院制药工程系 课程设计 题目:年产800吨土霉素工厂设计 设计内容 36 页 8 张 图纸 指导老师: 周延 学生姓名: 赖奥琳 学 号: 200782114 所在班级: 制药0704 1 北京化工大学制药工艺设计(论文) 年产800吨土霉素车间工艺设计 摘 要 本次设计为生产规模800吨/年的土霉素车间。 本次设计主要涉及到土霉素发酵生产的具体工艺流程,分为三级发酵、酸化、过滤、脱色、结晶、干燥等。物料衡算主要包括三级发酵工段衡算及分离提取工段的物料衡算;并对于设备进行选型设计,对主要设备的规格和台数做以确定,并进行了管路的选择和管线的布置,最后进行了5个工艺车间的布置。 设计中借鉴了实际相关发酵车间的布置,设计为3层车间,共安装7个三级发酵罐、5个二级发酵罐、3个一级发酵罐及相关补料设备;提取车间包括酸化罐、稀释罐、板框过滤机、脱色罐、结晶罐、干燥器等设备,在合理利用现有设备的条件下,使厂房满足工厂设计的基本要求。 2 北京化工大学制药工艺设计(论文) 目录 第一章 绪论 ...................................................................................... 6 1.1引言 .......................................................................................................... 6 1.1.1土霉素化学式及性状 .............................................................................................................. 6 1.1.2作用机理 .................................................................................................................................. 6 1.1.3土霉素的应用 .......................................................................................................................... 7 1.1.4 土霉素的生产 ......................................................................................................................... 71.2设计目标任务 .......................................................................................... 7 1.3 本次设计的基本内容 .............................................................................. 8 第二章 工艺流程设计 .................................................................................. 9 2.1 土霉素发酵工艺流程 .............................................................................. 9 2.1.1 菌种介绍 ................................................................................................................................. 9 2.1.2菌种的保藏 .............................................................................................................................. 9 2.1.3孢子的制备 ............................................................................................................................ 10 2.1.4 种子制备 ............................................................................................................................... 10 2.1.5 发酵培养基介绍 ................................................................................................................... 10 2.1.6 灭菌 ........................................................................................................................................11 2.1.7 发酵 ........................................................................................................................................11 2.2土霉素的提取生产工艺流程及各单元操作简介 .................................. 12 2.2.1发酵液的预处理 .................................................................................................................... 12 2.2.2发酵液的纯化 ........................................................................................................................ 12 2.2.3滤液脱色 ................................................................................................................................ 12 2.2.4沉淀结晶 ................................................................................................................................ 13 2.2.5干燥 ........................................................................................................................................ 13 2.3 土霉素生产总工艺流程图 .................................................................... 13 2.4相关工艺的改进 .................................................................................... 13 3 北京化工大学制药工艺设计(论文) 第三章 物料衡算 ........................................................................................ 15 3.1霉素提取工段物料衡算 ......................................................................... 15 3.1.1干燥工段 ................................................................................................................................ 15 3.1.2酸化稀释过滤工段 ................................................................................................................ 16 3.1.3沉淀结晶工段 ........................................................................................................................ 16 3.2土霉素发酵工段物料衡算 ..................................................................... 17 3.2.1计算基础数据 ........................................................................................................................ 17 3.2.2大罐的物料衡算 .................................................................................................................... 18 3.2.3中罐的物料衡算 .................................................................................................................... 20 3.2.4小罐的物料衡算 .................................................................................................................... 22 第四章 设备选型 ........................................................................................ 24 4.1 工艺计算依据 ........................................................................................ 24 4.2土霉素工艺设备计算 ............................................................................. 24 4.2.1发酵罐 .................................................................................................................................... 24 4.2.2补料罐 .................................................................................................................................... 25 4.2.3通氨罐 .................................................................................................................................... 25 4.2.4酸化罐 .................................................................................................................................... 25 4.2.5稀释罐 .................................................................................................................................... 25 4.2.6板框过滤机 ............................................................................................................................ 26 4.2.7脱色罐 .................................................................................................................................... 26 4.2.8 液氨储罐 ............................................................................................................................... 26 4.2.9结晶罐 .................................................................................................................................... 26 4.2.10干燥器 .................................................................................................................................. 26 4.3车间设备一览表 .................................................................................... 27 第五章 管道设计 ........................................................................................ 28 5.1 管路计算方法 ........................................................................................ 28 5.1.1 最佳经济管径的求取 ........................................................................................................... 28 4 北京化工大学制药工艺设计(论文) 5.1.2利用液体流速计算管径 ........................................................................................................ 28 5.2土霉素工艺管路设计 ............................................................................. 28 5.2.1发酵罐(三级罐)的接管设计 ................................................................................................. 28 5.2.2酸化设备的流体输送 ............................................................................................................ 31 5.2.3稀释设备的流体输送 ............................................................................................................ 31 5.2.4板框过滤设备的输送 ............................................................................................................ 31 5.2.5脱色工段的流体输送 ............................................................................................................ 32 5.2.6结晶过程的流体输送 ............................................................................................................ 32 第六章 车间布置设计 ................................................................................ 35 6.1 车间布置基本要求 ................................................................................ 35 6.2 车间的组成 ............................................................................................ 35 6.3车间的总体布局 .................................................................................... 35 第七章 结论 ................................................................................................ 36 第八章 参考文献 ........................................................................................ 37 5 北京化工大学制药工艺设计(论文) 第一章 绪论 1.1引言 目前,全世界的医药产品生产已有一半以上由生物技术合成,其中,抗生素、维生素、激素这三大类药物主要由微生物发酵生产。抗生素在世界范围内的应用十分广泛,从而有效地控制了许多传染疾病,同时也促进了发酵工业的发展。 1.1.1土霉素化学式及性状 土霉素(Terramycin)又称地霉素、氧四环素(Oxytetracycline),化学名:(4s,4аR,5S,5аR,6S,12аS)-N-4-二甲胺基-1,4,4а,5,5а,6,11,12а-八氢,5, 6,10,12,12а-六羟基-6-甲基-1,11-二氧代并四苯-2-甲酰胺,是四环素类抗生素的一种,因结构上含有四并苯基的母核而得名。化学式如下: 本品为灰白色至黄色的结晶粉末,无臭,味苦,熔点是180?,在空气中性质稳定,在日光下颜色变暗在碱性溶液中易破坏失效。土霉素的盐酸盐为黄色结晶,味苦,熔点190,194?,有吸湿性,但水分和光线不影响其效价,在室温下长期保存不变质,不失效。盐酸盐易溶于水,溶于甲醇,微溶于无水乙醇,不溶于三氯甲烷和乙醚,在酸性条件下不稳定。添加到饲料中,在室温下保存四个月,效价下降4%,9%,制粒时效价下降5%,7%。 1.1.2作用机理 本品为广谱抑菌剂,能特异性地与细菌核糖体30S亚基的A位置结合,抑制肽链的增长和影响细菌蛋白质的合成,能抑制动物肠道内的有害微生物,激活大肠中有利于营养物质合成的微生物。可使动物肠壁变薄,更有利于营养物质的吸收和利用,从而提高肠道吸收效率。许多立克次体属、支原体属、衣原体属、螺旋体、阿米巴原虫和某些疟原虫也对本品敏感。肠球菌属对其耐药。其他如放线菌属、炭疽杆菌、单核细胞增多性李斯特菌、梭状芽孢杆菌、奴卡菌属、弧菌、布鲁菌属、弯曲杆菌、耶尔森菌等对本品敏感。 6 北京化工大学制药工艺设计(论文) 1.1.3土霉素的应用 土霉素为四环类抗生素,生产工艺简单、生产成本较低,可作为生产其它新型抗生素的原料。 土霉素价格低廉,可以作为饲料添加剂用于养殖业。实践表明:土霉素用于饲料添加剂,可以改善饲料转化效率,促进畜禽生长,提高畜禽抗疾病能力。 土霉素对多数革兰氏阳性菌(如肺炎球菌,溶血性链球菌,草绿色链球菌以及部分葡萄糖球菌,炭疽杆菌)和革兰氏阴性菌(如大肠杆菌,产气杆菌,破伤风,肺炎杆菌,流感杆菌,百日咳杆菌等)均有抗菌作用。临床上主要用于肺炎、败血症、斑疹、伤寒了、淋巴肉芽肿、砂岩及其他细菌性感染等,对伤寒有效,也可用于阿米巴痢疾和阴道滴虫病患者。此外还能抑制立克次体和砂岩病毒及淋巴肉芽肿病毒 。 作为抗生素,上世纪六七十年代时,土霉素曾在抗菌药市场上占重要地位,但伴随着其它多种高效抗生素的诞生与发展,土霉素市场快速走向衰落。目前,土霉素已经极少用于临床了。 1.1.4 土霉素的生产 土霉素通常由龟裂链丝菌(streptomyces rimosus)发酵得到,目前国内提取工艺一般以草酸(或部分盐酸替代草酸)作酸化剂调节发酵液pH值,利用黄血盐钠 3+和硫酸锌作净化剂生成普鲁士蓝沉淀协同去除Fe及高分子杂质,再经122-2树 [1]脂脱色,调节pH至4.6晶得干燥到土霉素成品。 1.2设计目标任务 本设计主要内容为:了解土霉素生产中的原料预处理、发酵、提取部分的生产方法和生产流程,根据实际情况来选择发酵工段合适的生产流程,并对流程中的原料进行物料衡算、热量衡算及设备的选择。最后,画出发酵工段的工艺流程图和平面布置图。 7 北京化工大学制药工艺设计(论文) 1.3 本次设计的基本内容 设计年产800吨(成品含量:96%)土霉素生产工厂。其中年产量M = 800t/a,成品效价Ud = 1000U/mg,年平均发酵水平Uf = 35000U/mg,年工作日m =335d/a。 8 北京化工大学制药工艺设计(论文) 第二章 工艺流程设计 2.1 土霉素发酵工艺流程 2.1.1 菌种介绍 龟裂链丝菌(streptomyces rimosus)属放线菌,孢子丝初旋至螺旋形。孢子长圆形至柱形,表面光滑。 蔗糖硝酸盐琼脂:气丝白色,斑片状,在边缘。基丝薄,乳脂色,后较丰厚,红褐色至橙色。可溶色素略微黄色。葡糖天冬素琼脂:气丝白色,基丝初乳脂色,后变微褐色至橙褐色。可溶色素微黄色至金色。淀粉琼脂:无气丝。基丝乳脂色,中心褐色。甘油天冬素琼脂(ISP)、无机盐淀粉琼脂(ISP)、酵母精麦芽精琼脂 (ISP)、燕麦粉琼脂(ISP):气丝白色或淡黄色、淡橙黄色、灰黄粉色。基丝反面灰黄色,在第一和第三种培养基上略加红色(橙黄色至暗橙黄色)。基丝色对pH不敏感。可溶色素迹量黄色,对pH不敏感。营养琼脂:气丝白色或无。基丝少,乳脂色至黄褐色、鼠灰色。可溶色素无或微黄色。葡萄糖酵母精琼脂:气丝初白色,后变鼠灰色。基丝较好,乳脂色至微褐色。可溶色素微黄至金色。马铃薯块:气丝白色至灰色、暗褐色。基丝乳脂色至红褐色。可溶色素黄褐色。 明胶液化慢。牛奶胨化,不凝固。淀粉水解有限。纤维素上不生长。硝酸盐还原。不产生类黑色素、酪氨酸酶和HS。利用D-葡萄糖、L-2 阿拉伯糖、D-果糖、鼠李糖、肌醇、D-甘露醇;对D-木糖利用可疑;不利用蔗糖、棉子糖。产生对革兰氏阳性和阴性细菌、原虫都有作用的土霉素(oxytetracycline)和抑制丝状真菌、酵母的龟裂杀菌素(rimocidin)。 2.1.2菌种的保藏 菌种的保藏方法有:斜面菌种低温保藏法、砂土管保藏法、甘油封藏法、真空冷冻干燥法。 斜面菌种低温保藏法:利用低温对微生物生命活动有抑制作用的原理进行保藏。把斜面菌种、固体穿刺培养物或菌悬液等,直接放入4,5?冰箱中。保藏时间一般不超过3个月,到时必须进行移接传代,再放回冰箱。 砂土管保藏法:将干燥砂粒与细土混合后灭菌制成砂土管,然后接种保藏。若把砂土管放在低温或抽气后密封,效果更佳。此法适用于产孢子及芽孢菌种的 9 北京化工大学制药工艺设计(论文) 保藏。保藏期1,10年。 甘油封藏法:向培养好的菌种斜面上,加入灭菌甘油,高出斜面1cm,然后蜡封管口,放入冰箱。该法既可防止培养基水分蒸发,又能使菌种与空气隔绝。保藏期1,2年。 真空冷冻干燥法:是目前比较理想的一种方法。在低于-15?下,快速将细胞冻结,并保持细胞完整,然后 在真空中使水分升华致干。在此环境中,微生物的生长和代谢都暂时停止,不易发生变异,故可长时间保存,一般为5,10年,最多可达15年之久。此法兼备了 低温、干燥及缺氧几方面条件,使微生物可以保存较长时间,但过程较麻烦,需要一定的设备。 2.1.3孢子的制备 这是发酵工序的开端,是一个重要环节。抗生素产量和成品质量同菌种性能以及同孢子和种子的情况有密切关系。生产用的孢子需经过纯种和生产能力的检验,符合规定的才能用来制备种子。保藏在砂土管或冷冻干燥管仲的菌种经无菌手续接入又麸皮、琼脂和水组成的斜面培养基中,在36.5-36.8?、50%相对湿度的条件下培养4-5天,挑选菌落正常的孢子作为种子。在孢子制备的过程中,蒸馏水中可适当添加0.005%MgSO、0.01%KHPO及0.015%(NH)HPO,避免水424424质波动对孢子质量的影响,还可以缩短孢子的成熟期。 2.1.4 种子制备 种子制备是指孢子接入种子罐后,在罐中繁殖成大量菌丝的过程,其目的是使孢子发芽、繁殖和获得足够数量的菌丝,以便接种到发酵罐当中去。种子制备所使用的培养基及其它工艺条件,都要有利于孢子发芽和菌丝繁殖。种子培养基的成分基本与发酵培养基近似,培养30?、30小时左右培养液趋于浓厚并转为黄色。pH一般在6.0-6.4时可以移入下一级罐。移入发酵罐时pH>6.0,效价在800u/ml左右。种子罐级数是在指制备种子需逐级扩大培养的次数,一般根据种子的生长特性、孢子发芽及菌体繁殖速度,以及发酵罐的容积而定。土霉素种子制备一般为二级种子罐扩大培养。 2.1.5 发酵培养基介绍 培养基是供微生物生长繁殖和合成各种代谢产物所需要的按一定比例配制 10 北京化工大学制药工艺设计(论文) 的多种营养物质的混合物。培养基的组成和比例是否恰当,直接影响微生物的生长、生产和工艺选择、产品质量和产量等。土霉素的发酵培养基由碳源、氮源、无机盐及金属离子、添加前体、消泡剂五部分组成。 碳源的主要作用是:为微生物菌种的生长繁殖提供能源和合成菌体所必需的碳成分;为合成目的产物提供所需的碳成分。生产上曾以单糖—葡萄糖、双糖—饴糖、及多糖—籼米粉、玉米粉及淀粉的解酶液作为碳源。本设计采用淀粉作为碳源,发酵相对容易控制。 氮源的作用是供应菌体合成氨基酸的原料。主要有机氮源为黄豆粉饼、花生粉饼、蛋白胨、酵母粉、玉米浆等,通常使用黄豆粉饼。无机氮如氨水、硫酸铵等可适量使用。 由于在发酵过程中二氧化碳的不断产生,加上培养基中有很多有机氮源含有蛋白质,因此在发酵罐内会产生大量泡沫,如不严加控制,就会产生发酵液逃液,导致染菌的后果。采用植物油消沫仍旧是个好方法,一方面作为消沫剂,另一方面还可以起到碳源作用,但现在已普遍采用泡敌代替豆油。 无机盐:磷酸盐浓度对放线菌的生长和抗生素的合成影响很大,故应该严格控制磷酸盐的浓度。 2.1.6 灭菌 灭菌指的是用化学或物理的方法杀灭或除去物料及设备中所有的有生命物质的技术或工艺流程。灭菌实质上可分杀菌和溶菌两种,前者指菌体虽死,但形体尚存,后者则指菌体杀死后,其细胞发生溶化、消失的现象。工业上常用的方法有:干热灭菌、湿热灭菌、化学药剂灭菌、射线灭菌和介质过滤除菌等几种。 在土霉素的生产中,对培养基和发酵罐主要采用的是湿热蒸汽灭菌和空气过滤除菌的方法。 2.1.7 发酵 这一过程的目的主要是为了使微生物分泌大量的抗生素。发酵开始前,有关设备和培养基必须先经过灭菌,后接入种子。接种量一般为20%。发酵周期一般为194小时。发酵全程30-31?分段培养,通气量为2.0v/v/m。当接种后发酵pH 11 北京化工大学制药工艺设计(论文) 低于6.4时开始通氨,培养20-40小时,每4小时补一次,每次10-15L,控氨水平在45mg/100ml以上。根据发酵液残糖值补入总糖,一般在100小时前残糖控制4.0%-5.0%,100小时-150小时控制3.5%-4.0%,150小时至放罐前6小时控制在3.0%。在整个过程中,需要不断通气和搅拌,维持一定的罐温和罐压,并隔一段时间取样进行生化和无菌试验,观察代谢变化、抗生素产生情况和有无杂菌污染。 2.2土霉素的提取生产工艺流程及各单元操作简介 2.2.1发酵液的预处理 土霉素因能和钙、镁等金属离子,某些季铵盐、碱等形成复合物而沉淀,在发酵过程中,这些复合物聚集在菌丝中,而在液体中浓度不高,因此,应对发酵液进行酸化的预处理使之释放出来,以保证沉淀的收率和质量。通常采用草酸作为酸化剂,其去钙较完全,析出的草酸钙还能促进蛋白质的凝结,提高滤液质量,草酸属于弱酸,比盐酸、硫酸等对设备的腐蚀性小。但其价格较贵,并促使差向土霉素等异构物的产生,因此在草酸做酸化剂时,温度必须在15?以下,且尽量缩短操作时间。通常在考虑土霉素稳定性和成品质量及成本的前提下,pH控制在1.6-1.9。 2.2.2发酵液的纯化 发酵液中同时存在着许多有机和无机的杂质,为了进一步提高滤液质量,为直接沉淀创造有利条件,可加入黄血盐进而硫酸锌协同作用除去蛋白质,同时除去铁离子(黄血盐和铁离子生成普鲁士蓝沉淀),并加入硼砂,以提高滤液质量。 2.2.3滤液脱色 进一步除去滤液中的色素和有机杂质以提高滤液质量,将滤液通过122-2树脂进行脱色,该树脂在酸性滤液中氢离子不活波,不能发生电离及离子交换作用,但能生成氢键,其生成的氢键能吸附溶液中的带正电的铁离子、色素及其他有机杂质,故能使土霉素滤液的色泽和质量有所提高。树脂在氢氧化钠溶液中又氢型变成纳型,失去氢键的活性,能使其吸附的色素和杂质解离出来,再经酸作用仍能回复活性,可重复使用。现多采用板框式过滤机。 12 北京化工大学制药工艺设计(论文) 2.2.4沉淀结晶 经预处理过的滤液加入碱化剂调pH至等电点,使之沉淀结而从滤液中分离。通常使用氨水(含2-3%NaHSO或NaCO及尿素),既节约成本,又能起到323 抗氧化脱色作用,效果较好。条件控制为pH4.5-4.6,28-30?、结晶通常需要2小时。目前通常采用连续结晶法。经旋风分离,离心送至干燥。 2.2.5干燥 物料经粉碎后,通常采用旋风干燥机干燥,并经除尘可得到最终产物。 2.3 土霉素生产总工艺流程图 孢子培养 种子培养 砂土孢子 斜面孢子 36.5? 4-5天 30? 38h 0.65v/v/m 发酵 种子扩大培养 一级种子培养液 二级种子培养液 30? 48h 1.0v/v/m 30? 194h 1:2.0v/v/m 补加液氨 酸化 稀释 板框过滤 发酵液 酸化液 稀释液 2.3%g/ml草酸调pH1.75-1.85 200%v/v ZnSO4 0.18% 黄血盐0.23% 树脂脱色 分离洗涤 结晶 滤液 脱色液 结晶液 12%氨水 122-2树脂 用滤后水淋洗再甩干 调pH4.5-4.6 28-30? 旋风干燥 湿晶体 土霉素碱成品 2.4相关工艺的改进 尽管现有的生产工艺已较为成熟,但是相关的工艺改进仍在继续,主要在以下几个方面: 在结晶工艺中,为缩短结晶时间,提高结晶设备的利用率,通过研究结晶过程中影响晶型的各种因素,改进了发酵液预处理、结晶工艺。结果表明,在控制发酵液酸化pH值1.95-2.05、黄血盐钠加量0.3%、黄血盐钠和硫酸锌配比3:2、结晶温度等条件,找到了一个较为适宜的发酵液预处理和结晶工艺,在结晶时间 13 北京化工大学制药工艺设计(论文) 仅为47min 的情况下,可明显改善土霉素晶型,使晶体粒度分布均匀,产品内 [1]在质量得到进一步提高。 在酸化提取工艺中,最佳酸化条件为:pH值控制在1.43左右,黄血盐钠的 [2]用量控制在发酵液体积的0. 35%时得到土霉素效价最高,为5102U/g。 [3]在脱色吸附的过程中,改变树脂的高径比,可以提高铲平的色泽。 目前,也有报道称通过复合诱变(经饥饿培养、52FU、UV、咖啡因复合诱变处理)的方法得到新的菌株,再用含高磷酸盐的培养基定向筛选, 得到高产突变菌 3株遗传特性稳定,代谢特性优于出发菌株,经57m发酵罐生产验证, 生产稳定, 低效价罐批减少59.5%,在磷酸盐浓度提高到0.04%,0.05% 时,统计一年的正 [4]常罐批平均发酵效价比对照菌株提高5.76%。 14 北京化工大学制药工艺设计(论文) 第三章 物料衡算 3.1霉素提取工段物料衡算 年产800t/a(成品含量:96%),工作日335天,则日产量 G=800*0.96/335=2.292t/d 2 提取基本工艺参数 名称 参数 名称 参数 99.24% 脱色岗位收率 发酵液效价 35000u/mL 86% 结晶干燥岗位收率 滤液效价 11000u/mL 116% 过滤岗位收率 母液效价 1370u/mL 99% 总收率 湿晶体含水量 30% 1.58kg/L 发酵液密度 酸化液中草酸含量 2.3% g/mL 1.02kg/L 滤液密度 酸化加黄血盐量 0.25% g/mL 0.92kg/L 20%氨水密度 酸化加硫酸锌量 0.18% g/mL 12% 氨水加量 成品含水量 1.5% 脱色保留时间 30-50分钟 酸化加水量 200%v/v 滤液通过树脂罐的线速度控制在0.001-0.002m/s 土霉素提取操作工艺参数一览表 名称 反应时间( τ + τ、)/h 装料系数φ 4 酸化稀释 0.70 8 结晶 0.70 3.1.1干燥工段 湿晶体 干晶体 干燥 含水量ω30% 含水量ω1.5% 12 G*(1-ω)=G*(1-ω) 1122 G*(1-30%)=2.292*(1-1.5%) 1 G=3.23t 1 912 湿晶体效价=G*U=2.292*10*1000=2.292*10U 2d 15 北京化工大学制药工艺设计(论文) 3.1.2酸化稀释过滤工段 0.18%ZnSO40.25%黄血盐 200%v/vHO 22.3%草酸 发酵 发酵液 滤液 稀释 过滤 菌丝 板框过滤收率η=116%,脱色收率η=99.24%,干燥洁净收率η=86%,总收率123 η=99%。 1212 脱色液效价=2.292*10U/86%=2.67*10U 1212 滤液效价=2.67*10U/99.24%=2.69*10U 1212 稀释液效价=2.69*10U/116%=2.32*10U 忽略该过程损失,菌丝体带走的效价不计 (m+ v*(2.3%+0.25%+0.18%)+200% *v*ρ*116%=m+m 发酵液发酵液发酵液水滤液菌丝) 1235000* v*116%=2.67*10U 发酵液 m= v*ρ 发酵液发酵液发酵液 12m=2.69*10U /11000U/ml*ρ 滤液滤液 将数据带入以上方程得 解得 3 v65.76mm=107.56t m=28.9t 发酵液发酵液菌丝= 36则加入草酸m=65.76m*10*2.3%=1.51t 36加入黄血盐m=65.76m*10*0.25%=0.164t 36加入ZnSOm=65.76m*10*0.18%=0.118t 4 3 加入水V=200%* v=131.5 m水发酵液 3V=208.85 m 稀释液 3.1.3沉淀结晶工段 16 北京化工大学制药工艺设计(论文) 12%NH3 沉淀结晶 脱色液 湿晶体 母液 假设该过程体积不变,损失效价全部由母液带走 1212效价平衡 2.67*10U=1370U/mL*V+2.425*10U 3 V=273m 3 加入NH体积=273*12%=32.8 m3 3 加入NH质量=32.8*10*0.92=30.2t3 由此可得提取过程的物料衡算表 进料量 出料量 输入物质名称 含量 质量 输出物质名称 含量 质量 35000U/mL 110.52t 28.9t 发酵液 菌丝体 32.3%g/mL 1.51t 1370U/mL 273 m 草酸 母液 0.25% g/mL 0.164t 1000 U/mg 2.292t 黄血盐 干晶体 0.18% g/mL 0.118t ZnSO 4 3 131.5 m 水 12% 32.8t NH 3 1212 2.76*10U 2.84*10U 总进入 总出料 3.2土霉素发酵工段物料衡算 3.2.1计算基础数据 设计年产量M = 800t/a(成品含量:96%),成品效价U= 1000U/mg,年平d 均发酵水平U= 35000U/mg,年工作日m = 335 d/a。 f 发酵基础工艺参数 土霉素的发酵周期T为184小时,辅助时间为10小时, 发酵中罐周期为44小时,辅助时间4小时 17 北京化工大学制药工艺设计(论文) 发酵周期为35小时,辅助时间3小时 接种比为20%,液体损失率为15% 3 大罐一个发酵周期内所需全料的量为:32m 3大罐一个发酵周期内所需稀料的量为:17m 逃液、蒸发、取样、放罐损失总计为总料液的15% 大、中、小罐通气量分别为2.0、1.5、0.65(每分钟内单位体积发酵液通入的空气的量) 氨氮的利用情况,培养20-40小时,每4小时补一次,每次10-15L,控氨水平在45mg/100mL以上 培养基配比: 小罐 中罐 大罐 全料 稀料 组成 配比(%) 配比(%) 配比(%) 配比(%) 配比(%) 3.0 2.5 3.0 3.5 3.0 黄豆饼粉 2.5 2.5 8.0 6.5 3.0 淀粉 0.4 0.36 0.2 0.4 氯化钠 0.6 0.4 1.1 0.4 0.4 碳酸钙 0.005 0.003 磷酸二氢钾 0.005 0.003 磷酸氢二钾 4 2.67 0.4 1 植物油 3.2.2大罐的物料衡算 全料量 蒸汽带入水量 稀料量 培养基 液氨 发酵罐 二级种子液 发酵液 液体损失率为15% 设发酵开始的培养基体积为V,蒸汽带入的水量按20%计 加入氨水体积 培养20-40小时,每4小时补一次,共6次,每次15L,共计90L, 18 北京化工大学制药工艺设计(论文) 30.09 m 由体积衡算 (V*20%+V*20%+V+32+17+0.09)*(1-15%)= v 发酵液 3 v=65.76m发酵液 3V=22.30m 3 则加入的二级种子液体积=22.30*20%=4.46m 3 蒸汽带入水量=22.30*20%=4.46m 3 全料量=32 m 其中:黄豆饼粉=32*3.5%=1.12t 淀粉=32*6.5%=2.08t 碳酸钙=32*0.4%=0.128t 3 稀料量=17 m 其中:黄豆饼粉=17*3%=0.51t 淀粉=17*3%=0.51t 氯化钠=17*0.4%=0.068t 碳酸钙=17*0.4%=0.068t 植物油=17*1%=0.17t 3 培养基22.30m 其中:黄豆饼粉=22.30*3%=0.67 t 淀粉=22.30*8%=1.78 t 氯化钠=22.30*0.2%=0.045t 碳酸钙=22.30*1.1%=0.25t 植物油=22.30*1%=0.22t 由此得三级罐物料衡算表 进料量 出料量 进入物质名称 含量 质量/体积 产出物质名称 含量 质量/体积 3320% 4.46 m 35000U/ml 65.76 m 二级种子液 发酵液 33 4.46m 12.34 m 蒸汽带入水量 损失 3 22.30m 培养基 19 北京化工大学制药工艺设计(论文) 3% 0.67t 黄豆饼粉 8% 1.78t 淀粉 0.2% 0.045t 氯化钠 1.1% 0.25t 碳酸钙 1% 0.34t 植物油 3 32 m 全料量 3.5% 1.12t 黄豆饼粉 6.5% 2.08t 淀粉 0.4% 0.128t 碳酸钙 3 17 m 稀料量 3% 0.51t 黄豆饼粉 3% 0.51t 淀粉 0.4% 0.068t 氯化钠 0.4% 0.068t 碳酸钙 1% 0.17t 植物油 3 0.09 m 氨水 33 80.2m 80.3 m 总 总 3.2.3中罐的物料衡算 蒸汽带入水量 培养基 发酵罐 一级种子液 二级种子液 液体损失率为15% 接种损失15% 设发酵开始的培养基体积为V,蒸汽带入的水量按20%计 (V*20%+V*20%+V)*(1-15%)= V 二级种子液 20 北京化工大学制药工艺设计(论文) V*(1-15%)=V二级种子液三级接种量 3V=4.74 m 三级接种量 3 V=4.69 m 3 则加入的一级种子液=4.69*20%=0.94 m 3 蒸汽带入水量=4.69*20%=0.94 m 3加入的培养基体积=4.69 m 其中:黄豆饼粉=4.69*2.5%=0.12t 淀粉=4.69*2.5%=0.12t 氯化钠=4.69*0.36%=0.017t 碳酸钙=4.69*0.4%=0.019t 磷酸二氢钾=4.69*0.003%=0.14kg 磷酸氢二钾=4.69*0.003%=0.14kg 植物油=4.69*2.67%=0.13t 由此可以得到二级发酵的物料衡算表 进料量 出料量 进料物质名称 含量 质量/体积 出料物质名称 含量 质量/体积 3320% 0.94 m 5.58 m 一级种子液 二级种子液 33 0.94 m 0.98m 蒸汽带入水量 损失 3 4.69 m 培养基 2.5% 0.12t 黄豆饼粉 2.5% 0.12t 淀粉 0.36% 0.017t 氯化钠 0.4% 0.019 碳酸钙 0.003% 0.14kg 磷酸二氢钾 0.003% 0.14kg 磷酸氢二钾 2.67% 0.13t 植物油 33 6.57 m 6.56m 总 总 21 北京化工大学制药工艺设计(论文) 3.2.4小罐的物料衡算 蒸汽带入水量 培养基 发酵罐 斜面孢子 一级种子液 液体损失率为15% 接种损失15% 设发酵开始的培养基体积为V,蒸汽带入的水量按20%,斜面孢子体积忽略不计 (V*20%+V)*(1-15%)= V 一级种子液 V*(1-15%)=V一级种子液二级接种量 3V=0.94 m 二级接种量 3 V=1.08m 3则 蒸汽带入水量=1.08*20%=0.22 m 3加入的培养基体积=1.08 m 其中:黄豆饼粉=1.08*3%=32.4kg 淀粉=1.08*2.5%=27kg 氯化钠=1.08*0.4%=4.32kg 碳酸钙=1.08*0.6%=6.48kg 磷酸二氢钾=1.08*0.005%=0.054kg 磷酸氢二钾=1.08*0.005%=0.054kg 植物油=1.08*4%=43.2kg 由此可以得到一级发酵的物料衡算表 进料量 出料量 进料物质名称 含量 质量/体积 出料物质名称 含量 质量/体积 33 0.22m 1.11m 蒸汽带入水量 一级种子液 33 1.08m 0.19m 培养基 损失 3.0% 32.4kg 黄豆饼粉 2.5% 27kg 淀粉 22 北京化工大学制药工艺设计(论文) 0.4% 4.32kg 氯化钠 0.4% 6.48kg 碳酸钙 0.005% 0.054kg 磷酸二氢钾 0.005% 0.054kg 磷酸氢二钾 4% 43.2kg 植物油 33 1.3 m 1.30m 总 总 23 北京化工大学制药工艺设计(论文) 第四章 设备选型 4.1 工艺计算依据 满足《药品生产质量管理》(1998年修订)中有关设备选型的要求,根据该厂生产特点,结合企业生产经验,以保证产品质量为前提,充分利用公司现有的符合GMP要求的设备。 4.2土霉素工艺设备计算 4.2.1发酵罐 4.2.1.1三级发酵罐 3 V=81.1m根据《味精工业手册》中提供的发酵罐参数,选取公称容积为0 33100m的发酵罐,实际体积为102 m,装料系数0.8,发酵周期194h。 ,V69.95*1940,,,6.93N'24*0.8*10224V,, 故选取7台发酵罐。 其主要参数如下表 公称容罐内径 圆筒高 封头高 罐体总高不计上全容搅拌器搅拌转电机功积VN D/mm Hmm hmm H/mm 封头容积V 直径速n 率N m/0/0 积 Di/mm /r/min /kw 33400 10000 900 11800 96.4 102 950 150 132 100 m 33m m 4.2.1.2二级种子罐 33取公称容积10m的罐,实际体积10.9m。接种比为20%,则每个大罐需要 333接种量100m*0.2=20m,考虑接种损失为15%。则需要二级种子液体积23.53m, 37个罐共需要164.71 m,二级种子罐发酵周期48/24=2天,是大罐的1/4,则每 3个种子罐发酵周期需要产生41.18 m,考虑装料系数为0.8,即需要容积为51.46 3m,因此,需要二级种子罐51.46/10.9=4.72台,故取证选5台。 4.2.1.3一级种子罐 24 北京化工大学制药工艺设计(论文) 33 取公称容积5m的发酵罐,全容积6.27 m。每台二级种子罐的接种量为 33310m*0.2=2m,考虑接种损失为15%。则需要一级种子液体积2.35m,则5台 3二级罐供需11.75 m,一级种子的发酵周期为38/24=1.58天,近似认为2天与中 3罐相同,则每个一级罐周期需要生产11.75m,考虑装料系数0.8,即需要容积为 314.69m,因此,需要一级种子罐14.69/6.27=2.34台,故取证选3台。 4.2.2补料罐 全料罐 3 每罐三级发酵需要32m的全料,且有7个发酵罐均连续操作,考虑装料系数 3332*7/0.7=320 m故选用公称容积为100m的储罐,故选取4个全料罐。 为0.7, 稀料罐 3 每个三级发酵罐需要17 m的稀料,且有7个发酵罐均连续操作,考虑装料 33系数为0.7,17*7/0.7=170 m故选取公称容积为100 m的储罐2个。 4.2.3通氨罐 3 每罐三级发酵需要0.09m的液氨,且有7个发酵罐均连续操作,考虑装料系 33数为0.7,0.09*7/0.7=0.9 m,故选取公称容积为1m的罐一个 4.2.4酸化罐 储酸罐 3每天产生1大罐发酵液共69.95m,酸化工程中加入草酸1.61t,二水合草酸 3密度为1.653kg/L,则可推算出体积为0.97m,考虑装料系数为0.7,实际体积为 331.39 m,则选择公称容积为2.5m的储液罐即可满足生产要求。酸化稀释共需4小时,属间歇操作,因此一个罐可以满足8大罐的需要,即每天工作4小时。 酸化罐 3 酸化罐中包含原料发酵液和加入的酸液,总体为70.61m,考虑到装料系数 33为0.7,则实际需要的罐体积为100.87m,因此,选用1个公称容积为100m的酸化罐即可满足生产要求。 4.2.5稀释罐 3 在稀释的过程中加入两倍体积的水,使得酸化液的体积变为209.85m,考虑 33装料系数为0.7,则实际需要的罐体积为299.78m,因此,选取公称容积为100m的罐3个,可满足每天生产一批的要求。 25 北京化工大学制药工艺设计(论文) 4.2.6板框过滤机 3 处理液密度=29.7t/209.7m3=0.138t/m,处理时间取30min,板框压滤机处理 3600V3600*209.73能力,M=419.4*0.138=58t,因此选用如Q,,,419.4(m/h)T30*60 下设备,因考虑到两级脱色,故选2台: 型号 过滤面积滤板数量滤框面最大工作处理能力质量/t 22/m /pcs 积/m 压力/MPa /t 96 16 96 1.6 70 73 Larox-PF 96 4.2.7脱色罐 脱色保留时间30-50分钟,取40min,液通过树脂罐的线速度控制在0.001-0.002m/s,取0.0015m/s,则物料在罐内停留的距离即0.0015*40*60=3.6m,考虑装料系数0.7,则3.6/0.7=5.14m,因此选取罐体高度超过5.14m的罐即可。因此,选取公称容积50m3的储液罐,其罐内部圆筒高度为6m。 4.2.8 液氨储罐 33 加入的液氨体积为34.6m,考虑装料系数为0.7,实际需要体积为49.23m, 3则选用公称容积为50m的储液罐即可满足要求,结晶时间为8小时,属间歇操作,则每天只一次,因此只需1个罐。 4.2.9结晶罐 采用三级连续结晶,设三级罐的总体积为V V/(V处理量/24)>8 33 V处理量288 m,则V>96 m 为了晶核的形成和形成晶体的饱满,三级罐应依次由小到大 333 则分别选择 公称容积为5m 10m 100m的三个罐串联即可满足要求。 4.2.10干燥器 每天生产湿晶体重量3.41t,干晶体重量2.425t,则须除去水分0.985t,每小时处理量为0.985/24=41kg,因此选用蒸发水分为50kg/h的脉冲旋风式气流干燥器,具体参数见下表 2型号 蒸发水分/(kg/h) 装机功率/kw 占地面积/m 高度/m 26 北京化工大学制药工艺设计(论文) 50 7 17 8 XQG50 4.3车间设备一览表 设备名称 所属车间 数量 型号 3 7 一级发酵罐 发酵车间 公称容积100 mφ3400 3 5 二级发酵罐 发酵车间 公称容积10m φ1800 3 3 三级发酵罐 发酵车间 公称容积5mφ1500 3 1 通氨罐 发酵车间 公称容积1m φ900 3 4 补料罐(全料罐) 发酵车间 公称容积100 mφ3400 3 2 补料罐(稀料罐) 发酵车间 公称容积100 mφ3400 31 酸化反应罐 酸化过滤车间 公称容积100 m φ3400 31 酸化储罐 酸化过滤车间 公称容积2.5m φ1200 33 稀释罐 酸化过滤车间 公称容积100 m φ3400 22 板框过滤机 酸化过滤车间 Larox-PF 96 过滤面积96m 3 1 脱色罐 脱色结晶车间 公称容积50 m φ3400 3 1 液氨储罐 脱色结晶车间 公称容积50 m φ3400 3333 结晶罐 脱色结晶车间 公称容积分别为5m、10m、100m 1 旋风干燥器 干燥车间 XQG50,蒸发水分50kg/h 27 北京化工大学制药工艺设计(论文) 第五章 管道设计 5.1 管路计算方法 发酵生产的个阶段物料主要靠管道来实现,因此,管道安装设计的好坏,关系到生产操作的正常进行及生产费用,是设计中重要的组成部分。 5.1.1 最佳经济管径的求取 通常在某一输量下,投资总额随管径变化的曲线必有极小值存在,即存在使投资总额最低的管径,经营费用主要由两种类型的费用组成:一类费用随管径的变化与曲线的变化趋势相仿。如管线设备折旧、税金、管理及维修等费用,它们是按投资总额提成一定比例计算的。另一类费用是随管径的增大而减少。如能耗费等,这是因为在一定输量下,管径越大,流体越容易流动,即动力消耗越小的缘故。对于某一输量,总费用(投资总额与经营总费用之和)最低的管径叫做最佳管径D,该输量即是管径D佳所对应的经济输量,此时管内流速即为经济流速。 5.1.2利用液体流速计算管径 管径的计算主要又流速确定,通常状态下流速范围如下 流体的种类及情况 常用流速范围 流体的种类及情况 常用流速范围 /(m/s) /(m/s) 1-3 水及一般流体 饱和水蒸气 0.5-1 <800KPa 40-60 粘度较大的液体 8-15 <300KPa 20-40 低压气体 <8 30-50 易燃易爆低压气体 过热水蒸气 15-25 <10 压力较高气体 真空操作下气体 5.2土霉素工艺管路设计 5.2.1发酵罐(三级罐)的接管设计 5.2.1.1通气管 3 大罐的通气量为2.0v/v/m(0.1MPa,20?),体积为102 m,通风量 28 北京化工大学制药工艺设计(论文) '33Q,102,2.0,204m/min,3.4m/s 折算到工作状态(0.1MPa,30?)下的风量 273,303Q,3.4,,3.52m/sf273,20 Q3.52f2S,,,0.14m取风速v=25m/s,则通风管截面积fv25 S0.14f通风管径 d,,,0.42m,420mmf0.7850.785 故选用不锈钢焊接钢管取φ450×5,其内径440mm>420mm。 5.2.1.2输液管 1)排料管 33发酵罐装料102m,发酵液体积69.95 m,2h之内排空,物料体积流量 69.95,33Q,,9.71*10m/s3600,2 发酵液流速取v=1m/s,排料管截面积 ,3Q9.71*10,32S,,,9.71*10m料v1 ,3S9.71*10料管径 d,,,0.11m0.7850.785 取不锈钢焊接钢管φ133×5,其内径123mm>110mm,适用。 2)进液管 ?种子液 二级种子液4.74m3,半小时之内接种完毕,则物料的体积流量。 4.74,33Q,,2.63*10m/s 3600,0.5 发酵液流速取v=1m/s,排料管截面积 ,3Q2.63*10,32S,,,2.63*10m料v1 29 北京化工大学制药工艺设计(论文) ,3S2.63*10料管径 d,,,0..058m,58mm0.7850.785 取不锈钢焊接钢管φ76×5,其内径66mm>58mm,适用。 ?补全料输液管 3 全料液32m,184小时之内补料完毕,则物料的体积流量。 32,53Q,,4.83*10m/s3600,184 发酵液流速取v=1m/s,排料管截面积 ,5Q4.83*10,52S,,,4.83*10m料v1 ,5S4.83*10料管径 d,,,7.84mm0.7850.785 取不锈钢焊接钢管φ12×1.5,其内径9mm>7.84mm,适用。 ?补稀料输液管 3 稀料液17m,184小时之内补料完毕,则物料的体积流量。 17,53Q,,2.56*10m/s3600,184 发酵液流速取v=1m/s,排料管截面积 ,5Q2.56*10,52S,,,2.56*10m料v1 ,5S2.56*10料管径 d,,,5.72mm0.7850.785 取不锈钢焊接钢管φ12×1.5,其内径9mm>5.72mm,适用。 ?通氨管 3 液氨共0.09m,20-40h内补6次,平均每次补十分钟,共计耗时1h, 0.09,53Q,,2.5*10m/s则物料的体积流量。3600,1 发酵液流速取v=1m/s,排料管截面积 ,5Q2.5*10,52S,,,2.5*10m料v1 30 北京化工大学制药工艺设计(论文) ,5S2.5*10料管径 d,,,5.64mm0.7850.785 取不锈钢焊接钢管φ12×1.5,其内径9mm>5.64mm,适用。 5.2.2酸化设备的流体输送 酸化液进料管即采用发酵液的排空管不锈钢焊接钢管φ133×5。 33酸化液排出的体积近似认为与发酵液相等,即69.95m,酸化罐装料102m, 3发酵液体积69.95 m,2h之内排空,物料体积流量 69.95,33Q,,9.71*10m/s3600,2 发酵液流速取v=1m/s,排料管截面积 ,3Q9.71*10,32S,,,9.71*10m料v1 ,3S9.71*10料管径 d,,,0.11m0.7850.785 取不锈钢焊接钢管φ133×5,其内径123mm>110mm,适用。 5.2.3稀释设备的流体输送 稀释罐进料管即采用酸化罐的排空管不锈钢焊接钢管φ133×5 3稀释液的体积为209.85m,采用三个酸化罐,即每个罐内液体的体积为69.95 33m,装料102m,2h之内排空,物料体积流量 69.95,33Q,,9.71*10m/s3600,2 发酵液流速取v=1m/s,排料管截面积 ,3Q9.71*10,32S,,,9.71*10m料v1 ,3S9.71*10料管径 d,,,0.11m0.7850.785 取不锈钢焊接钢管φ133×5,其内径123mm>110mm,适用。 5.2.4板框过滤设备的输送 进入板框过滤机的管道与稀释液流出的管道相同,不锈钢焊接钢管 31 北京化工大学制药工艺设计(论文) φ133×5、 3 经板框过滤后,由滤液效价可知体积为258.18 m,处理时间30min 258.183Q,,0.14m/s物料体积流量 3600,0.5 发酵液流速取v=1m/s,排料管截面积 Q0.142S,,,0.14m料v1 S0.14料管径 d,,,0.43m0.7850.785 故选用不锈钢焊接钢管取φ450×5,其内径440mm>420mm。 5.2.5脱色工段的流体输送 进入脱色罐的管道与板框过滤流出的管道相同,不锈钢焊接钢管φ450×5。 流出脱色罐的管道V=288m3,操作时间为40min, 2883Q,,0.12m/s物料体积流量 3600,(40/60) 发酵液流速取v=1m/s,排料管截面积 Q0.122S,,,0.12m料v1 S0.12料管径 d,,,0.39m0.7850.785 故选用不锈钢焊接钢管取φ450×5,其内径440mm>390mm。 5.2.6结晶过程的流体输送 液氨的输送 3需要加入的液氨体积为34.6m,结晶的停留时间为8小时,物料体积流量 34.6,33Q,,1.2*10m/s 3600,8 发酵液流速取v=1m/s,排料管截面积 ,3Q1.2*10,32S,,,1.2*10m料v1 32 北京化工大学制药工艺设计(论文) ,3S1.2*10料管径 d,,,0.039m0.7850.785 取不锈钢焊接钢管φ48×2.5,其内径43mm>39mm,适用 结晶罐之间的流体输送 3结晶总处理体积为288 m,结晶的停留时间为8小时,物料体积流量 2883Q,,0.01m/s 3600,8 发酵液流速取v=1m/s,排料管截面积 Q0.012S,,,0.01m料v1 S0.01料管径 d,,,0.113m0.7850.785 取不锈钢焊接钢管φ133×5,其内径123mm>113mm,适用。 5.3管道汇总表 由此可以的到所有车间的管路总表 管道名称 所属车间 管道材料 管径/mm 管壁厚/mm 450 5 发酵罐通气管 发酵车间 不锈钢焊接钢管 76 5 种子罐进液管 发酵车间 不锈钢焊接钢管 133 5 排料管 发酵车间 不锈钢焊接钢管 12 1.5 补全料输液管 发酵车间 不锈钢焊接钢管 12 1.5 补稀料输液管 发酵车间 不锈钢焊接钢管 12 1.5 通氨管 发酵车间 不锈钢焊接钢管 133 5 酸化液进料管 酸化稀释车间 不锈钢焊接钢管 133 5 酸化液出料管 酸化稀释车间 不锈钢焊接钢管 133 5 稀释液进料管 酸化稀释车间 不锈钢焊接钢管 133 5 稀释液出料管 酸化稀释车间 不锈钢焊接钢管 133 5 板框过滤进料管 酸化稀释车间 不锈钢焊接钢管 33 北京化工大学制药工艺设计(论文) 450 5 板框过滤出料管 酸化稀释车间 不锈钢焊接钢管 450 5 脱色罐进料管 过滤结晶车间 不锈钢焊接钢管 450 5 脱色罐出料管过滤结晶车间 不锈钢焊接钢管 48 2.5 液氨输送管 过滤结晶车间 不锈钢焊接钢管 133 5 结晶罐输液管 过滤结晶车间 不锈钢焊接钢管 34 北京化工大学制药工艺设计(论文) 第六章 车间布置设计 6.1 车间布置基本要求 ?最大限度地满足工艺生产包括设备维修的要求。 ?有效地利用车间建筑面积(包括空间)和土地。 ?要为车间的技术经济指标先进合理以及节能等要求创造条件。 ?考虑其他专业对本车间布置的要求。 ?要考虑车间的发展和厂房的扩建。 ?车间中所采取的劳动保护、防腐、防火、防毒、防爆及安全卫生等措施是否符合要求。 ?本车间与其他车间在总平面图上的位置合理,力求使它们之间输送管线最短,联系最快 ?考虑建设地区的气象、地质、水文等条件。 ?人流物流不能交错。 6.2 车间的组成 车间按照工艺过程分为三个工序,即种子制备、配料的消毒和发酵及发酵产物的分离提纯三部分,故车间由种子制备区,配料区、发酵区、辅助工艺区及人净更衣区组成。 车间的区域布置按工艺流程及工序来划分,合理布置,充分考虑到发酵车间的自然通风,和自然采光措施。遵循操作方便、生产安全、维修便利、布局美观的原则。 本车间属于戊类厂房,其中更衣室、变电间的局部为丙类,卫生的等级属3、4级。 6.3车间的总体布局 见后附图纸 35 北京化工大学制药工艺设计(论文) 第七章 结论 本次设计的生产规模800吨/年的土霉素车间,其中成品含量:96%,年产量M = 800t/a,成品效价Ud = 1000U/mg,年平均发酵水平Uf = 35000U/mg,年工作日m =335d/a。 本次设计主要涉及到土霉素发酵生产的具体工艺流程,即由龟裂链丝菌(streptomyces rimosus)发酵得到,并以草酸(或部分盐酸替代草酸)作酸化剂调节发 3+酵液pH值,利用黄血盐钠和硫酸锌作净化剂生成普鲁士蓝沉淀协同去除Fe及高分子杂质,再经122-2树脂脱色,调节pH至4.6晶得干燥到土霉素成品。主要工艺包括三级发酵、酸化、过滤、脱色、结晶、干燥等,并确定了各个车间的工艺流程图。物料衡算主要包括三级发酵工段衡算及分离提取工段的物料衡算;对于设备进行选型设计,对主要设备的规格和台数做以确定,并进行了管路的选择和管线的布置,最后进行了5个工艺车间的布置。 设计中借鉴了实际相关发酵车间的布置,设计为3层车间,共安装7个三级发酵罐、5个二级发酵罐、3个一级发酵罐及相关补料设备;提取车间包括酸化罐、稀释罐、板框过滤机、脱色罐、结晶罐、干燥器等设备,在合理利用现有设备的条件下,使厂房满足工厂设计的基本要求。 总体说来,该设计能满足工厂的生产要求,并且做到操作方便、生产安全、维修便利、布局美观。 36 北京化工大学制药工艺设计(论文) 第八章 参考文献 [1]. 田彩霞, 赵建强. 土霉素结晶工艺改进的研究[J]. 中国抗生素杂志, 2006, 31(3): 178-180. [2]. 李永丽. 土霉素酸化提取工艺的研究[J]. 内蒙古石油化工, 2009(11): 6-7. [3]. 张玉钧, 刘晶, 吕兵, 等. 土霉素提炼工艺的改进[J]. 黑龙江医药, 1995, 8(1): 18-19. [4]. 边艳青, 李保荣, 石振华, 等. 耐磷酸盐土霉素菌株选育和发酵的研究[J]. 中国抗生素 , 2003, 28(8): 456-458. 杂志 [5]. 于信令. 味精工业手册[M]. 中国轻工业出版社, 北京, 1995. [6]. JB/T4746-2002钢制压力容器用封头. [7]. 杨祖荣. 化工原理[M]. 化学工业出版社, 北京, 2000. [8]. 中国石化集团上海工程有限公司. 化工工艺设计手册[M]. 第三版, 化学工业出版社, 北京, 2003. [9]. 金国淼. 干燥器[M]. 化学工业出版社, 北京, 2008. [10]. 康永. 液体过滤与过滤介质[ M]. 化学工业出版社, 北京, 2008. 37
/
本文档为【800吨土霉素工艺设计】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索