为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

18650锂离子电池隔膜的性能特征

2013-09-09 14页 doc 35KB 39阅读

用户头像

is_847722

暂无简介

举报
18650锂离子电池隔膜的性能特征高压 cpuao.com t9k8c 18650锂离子电池隔膜的性能特征 18650锂离子电池隔膜的性能特征表现在哪些方面 锂离子电池/特征资料 1 孔隙率 大多数锂离子电池隔膜的孔隙率在40%-50%之间,其中有些商品隔膜(如表面经表面活性剂处理)其孔隙率低于30%,也有的隔膜孔隙率较高,可达60%左右。高性能的锂离子电池主要依赖于隔膜中所填充液体电解质的离子传导性,锂离子电池的非水液体电解质的离子传导率一般在10的负二次方-10的负三次方S·cm负一次方范围内。尽管隔膜能...
18650锂离子电池隔膜的性能特征
高压 cpuao.com t9k8c 18650锂离子电池隔膜的性能特征 18650锂离子电池隔膜的性能特征现在哪些方面 锂离子电池/特征资料 1 孔隙率 大多数锂离子电池隔膜的孔隙率在40%-50%之间,其中有些商品隔膜(如表面经表面活性剂处理)其孔隙率低于30%,也有的隔膜孔隙率较高,可达60%左右。高性能的锂离子电池主要依赖于隔膜中所填充液体电解质的离子传导性,锂离子电池的非水液体电解质的离子传导率一般在10的负二次方-10的负三次方S·cm负一次方范围内。尽管隔膜能有效阻止正负极之间短路,降低正负极之间的距离,从而相应地降低电池的阻抗,但它的存在导致电解液中有效离子传导率下降,增加了电池的阻抗,有的隔膜甚至可以导致离子传导率下降1~2个数量级。原则上,对于一定的电解质,具有高孔隙率的隔膜可降低电池的阻抗,但是孔隙率并非越高越好,孔隙率越高,它们的抗力学性能及抗开孔性能就越差。即使孔隙率及厚度一致,由于孔的贯通性不一样,其阻抗也可能不相同。2 孔径大小及分布 商品膜的孔径一般在0.03-0.05μm或0.09-0.12μm,大多商品膜的最大孔径与平均孔径分布的差别低于0.01μm,孔径分布较窄。亚微米级孔径对于防止锂电池的正负极短路是极其重要的。隔膜越薄,越有利于溶质通过,从而提高能量密度及降低电池的阻抗,但是为了防止电极上掉下来的活性物质通过隔膜而引起物理短路,其厚度一般为25-35μm。孔径的大小及分布与微孔膜的制备有关,在熔融挤出/拉伸/热定型方法中,与熔融挤出的温度、应力、冷却条件及拉伸条件等工艺条件有很大关系,此外还与加入成核剂的种类及数量密切相关。而在热致相分离方法中,其孔径的大小及分布与添加的第二组分的数量、挤出温度及拉伸条件有关。3 透气度 隔膜的透气度,是指在一定条件下(压力、测定面积),一定量气体通过隔膜所需的时间,称作Gurley指数。透气度是透气膜的一种重要的物化指标,它是由膜的孔径大小、孔径分布、孔隙率等决定的。由于透气度的测定方法比较简便,经常用来作为评价隔膜对电池性能影响的参数。压降随时间下降越快,表明隔膜的透气率越高,反之则越低。一般而言,孔隙率越低,压降下降越慢,透气率越低。双层或多层膜的透气率一般低于同种材料的单层膜,对于孔隙率相同的同种材料,透气率相近;不同材料即使孔隙率相近,但是由于孔径贯通性的差别,其透气率也有很大的差别。4 电性能 隔膜的绝缘性能可以用绝缘耐压性来评价。如果隔膜的绝缘耐压性高,它的电接触耐压能力也就提高。注入电解液前在电池上加电压,如果有电流,那就有电接触。此评价的结果依赖于隔膜的强度和电池装配条件,尤其是依赖于电极的设计。隔膜在保持电解液时电阻要低,如果此时电阻过高必将影响电池的容量特性及电池性能。电阻根据电解不同发生变化,含有锂盐的PC/DME阻抗的数值在Ω·cm2的数量级。5 热性能 与大多数电池一样,在一定的温度以上电池内的组分将发生放热反应而导致“自热”。另外由于充电器失灵、安全电流失灵等将会导致过度充电发生,锂离子电池在过度充电时会产生热量,锂电池中隔膜的自关闭性质是锂离子电池限制温度升高及防止短路的有效方法之一。当温度接近聚合物熔点时,传导离子的多孔聚合物膜变成了无孔的绝缘层,微孔闭合而产生自关闭现象。这时,阻抗明显上升,通过电池的电流也受到限制,因而可防止由于过热而引起的爆炸等现象,这种功能称为隔膜的电流切断(shutdown)特性。 大多数聚烯烃隔膜由于其熔化温度低于200℃,如聚乙烯隔膜的自闭温度为130-140℃,而聚丙烯隔膜的自闭温度为170℃左右。但在某些情况下,即使已经“自闭”,电池的温度仍然可能继续升高,为了提高电池隔膜在shutdown熔化温度的范围,保证隔膜能耐足够高的强度,近年来开发了PP与PE复合膜。由于PP/PE/PP复合隔膜提供了较低的自闭温度,同时又保持了其强度,复合隔膜具有二者的优势,其安全性要比只用单层膜要好。 图7-118为含聚烯烃隔膜的锂离子电池升温时阻抗与温度的关系。图中a为采用单层PP隔膜的锂离子电池,在温度为165℃时阻抗明显升高约2个数量级,但是其阻抗仍然不是很高,此情形下仍有可能继续充电而导致安全问;b为PE隔膜,其自闭温度为135℃,此时阻抗约升高3个数量级,可以看出PE具有较低的自闭温度及高的阻抗;c为PP/PE/PP多层隔膜,其自闭温度宽且自闭时阻抗较高,在锂离子电池中使用较安全。因此多层复合隔膜既具有一定的强度又具有较低的自闭温度,较适合作为锂离子电池隔膜。值得指出的是,并不是所有隔膜都具有相同的关闭行为,其关闭能力与聚合物的分子量、结晶度、加工历史等有关。 6 机械强度 机械强度有两个参数,一个是隔膜在长度方向以及垂直方向的拉伸强度,另一个是在厚度方向上的穿刺强度。锂离子电池对隔膜的强度要求较高,一般而言孔隙率越高,其阻抗越低,强度下降。由于湿法和干法制得的隔膜都是由拉伸形成微孔,所以在拉伸方向上的强度比较高,25μm厚的隔膜拉伸强度在1000kg·cm负二次方以上。采用单轴拉伸时,膜在拉伸方向与垂直拉伸方向的强度不同,典型的锂电池隔膜在垂直拉伸方向上的强度约是拉伸方向的1/10。采用双轴拉伸制备的隔膜其强度在两个方向上基本一致。实际的电池制造中,要求的是长度方向的拉伸强度,目前市售隔膜的拉伸强度都能满足电池制造的要求。穿刺强度和电极板表面的粗糙度有关,电极使用的材料不同,要求隔膜的穿刺强度也不同。例如,碳素材料颗粒如果细而且没有棱角,要求隔膜的穿刺强度值就比较低,相反,如果颗粒粗而大,并且棱角尖锐,则要求的隔膜穿刺强度就高。此外,还用离子电导率、电化学稳定窗口、锂离子迁移数等来表征聚合物电解质膜。多层隔膜既具有一定的强度又具有较低的自关闭温度,较适合作为锂离子电池隔膜。固体聚合物电解质在锂离子电池中作为电解质的同时还可起到隔膜的作用,是很有前途的锂离子电池隔膜材料。 注意事项 电解质,具有高孔隙率的隔膜可降低电池的阻抗 一定的温度以上电池内的组分将发生放热反应而导致“自热”。 电池保养常识: 1 记忆效应镍氢充电电池上常见的现象。具体表现就是:如果长期不充满电就开始使用电池的话,电池的电量就会明显下降,就算以后想充满也充不满了。所以保养镍氢电池的重要方式就是:电必须用完了才能开始充电,充满了电了才允许投入使用。现在常用的锂电池的记忆效应是可以小到忽略不计的。2 完全充电,完全放电 是针对锂电池来说的。 完全放电就是指把用电智能设备,如手机,调整到最低功率状态耗去电量直到手机自动关机的过程。 完全充电就是指把完全放电的用电智能设备,如手机,接到充电器上直到手机上提示“充满”的过程。3 过度放电 是针对锂电池来说的。 完全放电后锂电池内部还会留有少量电量,但这部分电量对于锂电池的活性和寿命至关重要。 过度放电:完全放电后,如果继续采用其它方式,如:强行再次开启手机、电池接小灯泡耗费残留电量的话,这叫过度放电, 会对锂电池造成不可逆转的伤害。4 保护芯片 锂电池对充放电时对接入的电流电压有极为严格的要求,为了保护电池不因为外界电环境失常而损坏,电池本体内部会设置管理电池状态的芯片。这个芯片同时还有记录电池容量,校正电池容量的功能。现在,就算是山寨手机电池也是不会节省这个关键的保护芯片的,不然山寨手机电池根本不可能用很久。5 过冲过放保护电路 用电智能设备内置的全面管理电池的芯片及电路。 比如手机上,就有这样的电路,大概功能如下:6 电时,提供最合适的电压电流给电池。在合适的时机停止充电。7 充电时,时刻检查电池残留电量,在合适的时机命令手机关机,防止过度放电。8 开机时,检查电池是否已被完全放电,如果已被完全放电,则提示用户充电,然后关机。9 避免电池或充电线电力异常,发现异常时断开电路,保护手机。10 过度充电: 是针对锂电池来说的。 正常情况下,锂电池充到一定电压(也就是充满)就会被上级电路截断充电电流,但由于某些设备内置的过冲过放保护电路的电压电流参数不同(如手机电池座充),导致虽已充满,但还未停止充电的现象。 过度充电也会导致电池性能伤害。11 激活 锂电池长期(三个月以上)不使用,会产生电极材料钝化,电池性能下降,可以采用三次完全充电、完全放电来解除纯化,发挥出电池的最高性能。二、常见错误观点: 1 首先使用必须进行完全放电,然后进行完全充电,重复三次,以便于激活电池。否则电池就永远都不好用了!!解答:如果实在闲的没事做,这么做可以,但不是必须的,因为激活操作不是必须放在第一次使用就做的。只要随着不断的使用,电极钝化无需刻意激活也可以慢慢消失。 2 ,充电时不要使用手机,对电池有害,也会产生超大量辐射伤害人体。 解答:充电时使用手机是否对电池有害要根据情况来说(本文后会说明),但是有一点可以确定的是,充电时使用手机绝对不会产生比平时使用手机多的辐射。 锂电池在寿命周期内只能充放电XXX次,所以每次用就尽量用到自动关机,每次充就尽量充到满电。 第一个子句是对的,后面是错的。 这个次数中的每一次,都是指完整的一次,比如从20%充电到30%停止充电,这个只算是1/10次,从80%放电到60%,只能算是1/5次。 前三次充电必须达到12小时,否则就影响电池性能。 如果是为了激活电池,只需要手机提示充满电就已经足够,一般手机,都会在5小时内提示充满,完成后如果继续接着充电器,过冲过放保护电路会截断手机的充电电流。之后电池就处于不状态,和充满后马上拨除充电线的效果是一样的。 前三次充电必须达到12小时是针对镍氢充电电池来说的,结果被很多厂家习惯性地、无知地写在锂电池用户手册上,没文化真可怕。国际大厂,如戴尔,联想,华硕,apple的产品上是绝对不会出现“12小时”这样的文字的。而且对于锂电池来说,这是共性,也是原理的一部分,不可能有的厂家生产的需要12小时,有的厂家的不需要。 需要注意的是,如果采用座充,由于绝大部分座充达不到官方线充的最高电流,充电时间可能会超过6小时,但只要充满电,坐充也会自动断电,和用线充是一样的。 充满电了就最好马上拨除充电线,防止过充。 过冲过放保护电路不是吃素的,OK!!!如果发生过充,多半是因为过冲过放保护电路损坏,但以现在的电子产品工艺和抗压能力来说,这概率实在低到不行,不必提心吊胆。 手机一旦开始提示用户充电,就一定要马上充电,或者马上关机,避免过放。 过冲过放保护电路不是吃素的,OK!!!这个电路会在必要的时候(也就是过放之前)强制关机,不会损坏电池的。手机的提示是为了让用户提前知道,以提前做好处理或者心理准备。 需要注意的是,如果手机已经自动关机就千万不能为了打个电话而强行开机了,因为很有可能造成过放,而且由于保护的存在,开机未完成前多半会被过冲过放保护电路强行断电。三、正确地使用 1 新出厂的电池:无需任何处理,如激活等,可直接投入正常使用。2 闲置不长时间的电池(三个月内):无需任何处理(如激活等),可直接投入正常使用。3 置较长时间的电池(三个月以上):可做激活处理,使得电池活性达到最高,也可不做,使其随着正常使用自然恢复到最高活性。4 子产品的评测人员,为了保证对电池续航时间的正确统计,有必要在测试前进行激活处理。5 锂电池正常充电方法: 随时充电,并可随时停止充电,不要有所顾忌。这点是锂电池的重要优点----无记忆效应决定的,请正视这个优点,并让您的锂电尽量展现它的这个重要优点。四、中的锂电池最怕什么 1 100℃以上高温 会严重影响电池寿命和储电能力,并可能成造成电池熔化,或爆炸。所以,请让锂电池远离火源及其它热源。2 5℃到100℃高温 是的,你没有看错,从35℃开始(人体温一般为36.2℃-37.2℃)电池寿命就开始被温度明显影响,温度越高,影响越大。 锂电池的设计寿命最少也有400次完全充放电,按手机平均每三天充一次电来算,一块电池应该至少能用三年半。但绝大多数电池都没有能活那么久,很大部分的原因是因为电池被人的体温影响,另一部分原因是因为被手机其它芯片发热所影响。 为什么笔记本电脑的电池为怎么总感觉没有手机的耐用,那是因为:其一、笔记本电脑发热比手机多的多,电脑芯片的热量很容易传导到电池上,超过40℃轻轻松。其二、为了更快的充电,笔记本充电电流一般较高,电池容量大,充电放电电池本身也会发热。其三、电池一般位于下面板处,更不容易散热。 再,如果您的设备在使用中会产生更大的热量,如手机长时间打电话,手机玩大型游戏,笔记本电脑玩游戏,并且这个热量会传导到电池上,加上充电时电池本身的发热,虽然不会产生安全风险,但也会影响到电池。 所以如果,发现充电使用中的设备发热明显(如iphone手机边充电边玩3D游戏),则可以考虑先等充满电了,再连着充电线玩。3 -40℃低温以下 会到达冰点彻底冻坏。4 10℃到-40℃低温 会降低电池续航能力,但不会对电池造成永久伤害,只要温度回到室温,电量又会自动恢复回来。五、闲置中的锂电池最怕什么: 1 35℃以上高温,和中锂电相同。2 满电后闲置,电池老化的比平时更快。3 分放电后闲置,电池闲置过程中会自放电,充分放电后电池自放电会造成过放。4 -40℃低温以下,会到达冰点彻底冻坏。5 锂电池理想状态: 中的锂电环境温度在20℃(差不多是室内温度)左右较为合适,此时电池放电充电性能均能最大化。 如果要长时间(三个月以上)闲置电池,请一定要充到40%左右再闲置(短时间就算了,关键是麻烦)。因为这样,所以电池出厂时,电池厂基本上都是充到40%再出厂的。 闲置的电池温度越低,老化越慢,但不要低于-40℃。
/
本文档为【18650锂离子电池隔膜的性能特征】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
热门搜索

历史搜索

    清空历史搜索