为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > 最强的数字解析

最强的数字解析

2009-04-22 50页 doc 361KB 15阅读

用户头像

is_671975

暂无简介

举报
最强的数字解析公务员考试吧 www.gwykaoba.com 鸡兔同笼问题 “鸡兔同笼”是一类有名的中国古算题.最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--“假设法”来求解.因此很有必要学会它的解法和思路. 例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只? 解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是 244÷2=122(只). 在122这个数里,鸡的头数算了一次,兔...
最强的数字解析
公务员考试吧 www.gwykaoba.com 鸡兔同笼问题 “鸡兔同笼”是一类有名的中国古算题.最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--“假设法”来求解.因此很有必要学会它的解法和思路. 例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只? 解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是 244÷2=122(只). 在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子.当然鸡就有54只. 答:有兔子34只,鸡54只.    上面的计算,可以归结为下面算式: 总脚数÷2-总头数=兔子数. 上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算就行不通.因此,我们对这类问题给出一种一般解法. 还说例1. 如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了88×4-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)= 54(只).说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式: 鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数) 当然,我们也可以设想88只都是“鸡”,那么共有脚2×88=176(只),比244只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,68÷2=34(只). 说明设想中的“鸡”,有34只是兔子,也可以列出公式: 兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数). 上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数. 假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”. 现在,拿一个具体问题来试试上面的公式. 例2 红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?    解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了. 利用上面算兔数公式,就有: 蓝笔数=(19×16-280)÷(19-11)=24÷8=3(支). 红笔数=16-3=13(支). 答:买了13支红铅笔和3支蓝铅笔.    对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是8×(11+19)=240.比280少40.40÷(19-11)=5. 就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3. 30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算.实际上,可以任意设想一个方便的兔数或鸡数. 例如,设想16只中,“兔数”为10,“鸡数”为6,就有脚数 19×10+11×6=256. 比280少24. 24÷(19-11)=3, 就知道设想6只“鸡”,要少3只. 要使设想的数,能给计算带来方便,常常取决于你的心算本领. 下面再举四个稍有难度的例子.    例3一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时? 解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打 甲每小时打30÷6=5(份),乙每小时打30÷10=3(份). 现在把甲打字的时间看成“兔”头数,乙打字的时间看成“鸡”头数,总头数是7.“兔”的脚数是5,“鸡”的脚数是3,总脚数是30,就把问题转化成“鸡兔同笼”问题了. 根据前面的公式 “兔”数=(30-3×7)÷(5-3) =4.5, “鸡”数=7-4.5 =2.5, 也就是甲打字用了4.5小时,乙打字用了2.5小时. 答:甲打字用了4小时30分.    例4 今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年? 解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作“鸡”头数,弟的年龄看作“兔”头数.25是“总头数”.86是“总脚数”.根据公式,兄的年龄是: (25×4-86)÷(4-3)=14(岁). 1998年,兄年龄是 14-4=10(岁). 父年龄是 (25-14)×4-4=40(岁). 因此,当父的年龄是兄的年龄的3倍时,兄的年龄是 (40-10)÷(3-1)=15(岁). 这是2003年. 答:公元2003年时,父年龄是兄年龄的3倍.    例5蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只? 解:因为蜻蜓和蝉都有6条腿,所以从腿的数目来考虑,可以把小虫分成“8条腿”与“6条腿”两种.利用公式就可以算出8条腿的 蜘蛛数=(118-6×18)÷(8-6)=5(只). 因此就知道6条腿的小虫共 18-5=13(只). 也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式 蝉数=(13×2-20)÷(2-1)=6(只). 因此蜻蜓数是13-6=7(只). 答:有5只蜘蛛,7只蜻蜓,6只蝉.    例6某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人? 解:对2道、3道、4道题的人共有 52-7-6=39(人). 他们共做对 181-1×7-5×6=144(道). 由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)÷2=2.5).这样兔脚数=4,鸡脚数=2.5,总脚数=144,总头数=39. 对4道题的有(144-2.5×39)÷(4-1.5)=31(人). 答:做对4道题的有31人. 习题一 1.龟鹤共有100个头,350只脚.龟、鹤各多少只? 2.学校有象棋、跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副? 3.一些2分和5分的硬币,共值2.99元,其中2分硬币个数是5分硬币个数的4倍,问5分硬币有多少个? 4.某人领得工资240元,有2元、5元、10元三种人民币,共50张,其中2元与5元的张数一样多.那么2元、5元、10元各有多少张? 5.一件工程,甲单独做12天完成,乙单独做18天完成,现在甲做了若干天后,再由乙接着单独做完余下的部分,这样前后共用了16天.甲先做了多少天? 6.摩托车赛全程长281千米,全程被划分成若干个阶段,每一阶段中,有的是由一段上坡路(3千米)、一段平路(4千米)、一段下坡路(2千米)和一段平路(4千米)组成的;有的是由一段上坡路(3千米)、一段下坡路(2千米)和一段平路(4千米)组成的.已知摩托车跑完全程后,共跑了25段上坡路.全程中包含这两种阶段各几段? 7.用1元钱买4分、8分、1角的邮票共15张,问最多可以买1角的邮票多少张? 二、“两数之差”的问题 鸡兔同笼中的总头数是“两数之和”,如果把条件换成“两数之差”,又应该怎样去解呢? 例7 买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?    解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多. (680-8×40)÷(8+4)=30(张),这就知道,余下的邮票中,8分和4分的各有30张. 因此8分邮票有40+30=70(张). 答:买了8分的邮票70张,4分的邮票30张.    也可以用任意假设一个数的办法.    解二:譬如,假设有20张4分,根据条件“8分比4分多40张”,那么应有60张8分.以“分”作为计算单位,此时邮票总值是4×20+8×60=560.比680少,因此还要增加邮票.为了保持“差”是40,每增加1张4分,就要增加1张8分,每种要增加的张数是: (680-4×20-8×60)÷(4+8)=10(张). 因此4分有20+10=30(张),8分有60+10=70(张). 例8 一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天工程要多少天才能完成? 解:类似于例3,我们设工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一的方法,晴天有 (150-8×3)÷(10+8)= 7(天). 雨天是7+3=10天,总共7+10=17(天). 答:这项工程17天完成.    请注意,如果把“雨天比晴天多3天”去掉,而换成已知工程是17天完成,由此又回到上一节的问题.差是3,与和是17,知道其一,就能推算出另一个.这说明了例7、例8与上一节基本问题之间的关系. 总脚数是“两数之和”,如果把条件换成“两数之差”,又应该怎样去解呢?    例9 鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?    解一:假如再补上28只鸡脚,也就是再有鸡28÷2=14(只),鸡与兔脚数就相等,兔的脚是鸡的脚4÷2=2(倍),于是鸡的只数是兔的只数的2倍. 兔的只数是:(100+28÷2)÷(2+1)=38(只). 鸡是:100-38=62(只). 答:鸡62只,兔38只. 当然也可以去掉兔28÷4=7(只).兔的只数是(100-28÷4)÷(2+1)+7=38(只). 也可以用任意假设一个数的办法. 解二:假设有50只鸡,就有兔100-50=50(只).此时脚数之差是: 4×50-2×50=100, 比28多了72.就说明假设的兔数多了(鸡数少了).为了保持总数是100,一只兔换成一只鸡,少了4只兔脚,多了2只鸡脚,相差为6只(千万注意,不是2).因此要减少的兔数是: (100-28)÷(4+2)=12(只). 兔只数是: 50-12=38(只). 另外,还存在下面这样的问题:总头数换成“两数之差”,总脚数也换成“两数之差”.    例10 古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首. 解一:如果去掉13首五言绝句,两种诗首数就相等,此时字数相差 13×5×4+20=280(字). 每首字数相差:7×4-5×4=8(字). 因此,七言绝句有:28÷(28-20)=35(首). 五言绝句有:35+13=48(首). 答:五言绝句48首,七言绝句35首.    解二:假设五言绝句是23首,那么根据相差13首,七言绝句是10首.字数分别是20×23=460(字),28×10=280(字),五言绝句的字数,反而多了:460-280=180(字).与题目中“少20字”相差:180+20=200(字). 说明假设诗的首数少了.为了保持相差13首,增加一首五言绝句,也要增一首七言绝句,而字数相差增加8.因此五言绝句的首数要比假设增加 200÷8=25(首). 五言绝句有 23+25=48(首). 七言绝句有 10+25=35(首).    在写出“鸡兔同笼”公式的时候,我们假设都是兔,或者都是鸡,对于例7、例9和例10三个问题,当然也可以这样假设.现在来具体做一下,把列出的计算式子与“鸡兔同笼”公式对照一下,就会发现非常有趣的事.    例7,假设都是8分邮票,4分邮票张数是(680-8×40)÷(8+4)=30(张). 例9,假设都是兔,鸡的只数是(100×4-28)÷(4+2)=62(只). 例10,假设都是五言绝句,七言绝句的首数是(20×13+20)÷(28-20)=35(首).    首先,请读者先弄明白上面三个算式的由来,然后与“鸡兔同笼”公式比较,这三个算式只是有一处“-”成了“+”.其奥妙何在呢?当你进入初中,有了负数的概念,并会列二元一次方程组,就会明白,从数学上说,这一讲前两节列举的所有例子都是同一件事. 例11 有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只? 解:如果没有破损,运费应是400元.但破损一只要减少1+0.2=1.2(元).因此破损只数是(400-379.6)÷(1+0.2)=17(只). 答:这次搬运中破损了17只玻璃瓶.    请你想一想,这是“鸡兔同笼”同一类型的问题吗?    例12 有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分? 解一:如果小明第一次测验24题全对,得5×24=120(分).那么第二次只做对30-24=6(题)得分是:8×6-2×(15-6)=30(分). 两次相差:120-30=90(分). 比题目中条件相差10分,多了80分.说明假设的第一次答对题数多了,要减少.第一次答对减少一题,少得5+1=6(分),而第二次答对增加一题不但不倒扣2分,还可得8分,因此增加8+2=10分.两者两差数就可减少6+10=16(分).(90-10)÷(6+10)=5(题). 因此,第一次答对题数要比假设(全对)减少5题,也就是第一次答对19题,第二次答对:30-19=11(题). 第一次得分:5×19-1×(24- 9)=90. 第二次得分:8×11-2×(15-11)=80. 答:第一次得90分,第二次得80分.    解二:答对30题,也就是两次共答错 24+15-30=9(题). 第一次答错一题,要从满分中扣去5+1=6(分),第二次答错一题,要从满分中扣去8+2=10(分).答错题互换一下,两次得分要相差6+10=16(分). 如果答错9题都是第一次,要从满分中扣去6×9.但两次满分都是120分.比题目中条件“第一次得分多10分”,要少了6×9+10.因此,第二次答错题数是:(6×9+10)÷(6+10)=4(题)· 第一次答错 9-4=5(题). 第一次得分 5×(24-5)-1×5=90(分). 第二次得分 8×(15-4)-2×4=80(分). 习题二 1.买语文30本,数学书24本共花83.4元.每本语文书比每本数学书贵0.44元.每本语文书和数学书的价格各是多少? 2.甲茶叶每千克132元,乙茶叶每千克96元,共买这两种茶叶12千克.甲茶叶所花的钱比乙茶叶所花钱少354元.问每种茶叶各买多少千克? 3.一辆卡车运矿石,晴天每天可运16次,雨天每天只能运11次.一连运了若干天,有晴天,也有雨天.其中雨天比晴天多3天,但运的次数却比晴天运的次数少27次.问一连运了多少天? 4.某次数学测验共20道题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分.问小华做对了几道题? 5.甲、乙二人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分.每人各射10发,共命中14发.结算分数时,甲比乙多10分.问甲、乙各中几发? 6.甲、乙两地相距12千米.小张从甲地到乙地,在停留半小时后,又从乙地返回甲地,小王从乙地到甲地,在甲地停留40分钟后,又从甲地返回乙地.已知两人同时分别从甲、乙两地出发,经过4小时后,他们在返回的途中相遇.如果小张速度比小王速度每小时多走1.5千米,求两人的速度. 巧算和与差 一天,小明对一些小朋友说:“请你们随意说出2个数来,我会一下子算出它们的和减去它们的差的结果来!” “真的吗?”小光惊奇地问。 “那当然,请出题吧!”小明自信地说。 于是,小光写出了两道题: (348+256)-(348—256) (7564+3125)-(7564-3125) 小光刚写完第2题,小明就立刻说出两题的得数分别是512、6250。大家一起算,得的结果跟小明的一样。 小兰想弄明白小明计算的奥秘,又说出下面4组数:47和23,400和278,120与80,16840与3020。结果小明总是很快就说出了答案。 这时,小明问小兰:“你找出规律了吗?” “还没找到。不过,我觉得关键在两数中的较小数上。”小兰回答。 “对!你再研究一下得数跟较小数的关系就会明白!” “我知道了,得数是较小数的2倍!”小光兴奋地说。 小明给大家解释:当我们从两个数的和中减去这两个数的差时,就是从两个数的和中减去了较大数比较小数多的一部分,得到的结果是两个较小数的和,也就是较小数的2倍。” 三只船运货 西方传入我国学校里的第一本算术教科书是美国人狄考文编的《笔算数学》,这本书中有这样一道题:     甲、乙、丙三艘船共运货9400箱,甲船比乙船多运300箱,丙船比乙船少运200箱。求三艘船各运多少箱货?     这道题如果思路不对的话,就很难抓住解题的关键。事实上,它代着一类广泛的问题,其共同特点就是有两个或两个以上的未知量。     思考时,一般先假设几个未知量相等,或假定要求的一未知量是题里的某一已知量;然后按照题里的已知条件推算。所得结果常与题里对应的已知量不符,再加以调整,即可得到正确的答案。     因此,这道题就可以这样来思考:根据已知甲船比乙船多运30O箱,假设甲船同乙船运的一样多,那么甲船就要比原来少运300箱,结果三船运的总箱数就要减少300箱,变成(9400-300)箱。     又根据丙船比乙船少运200箱,假设丙船也同乙船运的一样多,那么丙船就要比原来多运200箱,结果三船总箱数就要增加200箱,变成(9400-300+200)箱。     经过这样调整,三船运的总箱数为(9400-300+200)。根据假设可知,这正好是乙船所运箱数的3倍,从而可求出动船运的箱数。     乙船运的箱数知道了,甲、丙两船运的箱数马上就可得到。 微软招聘员工试题 1. 有7克、2克砝码各一个,天平一架,如何只用这些物品三次将140克的盐分成50克、90克各一份?   砝码称重是常见的数学问题。要使称的次数最少需要讲究方法技巧。经过思考按下述步骤操作:(1) 把2克重的砝 放在天平左端,分盐于天平两端直到平衡,此时,左端有盐69克,右端有盐71克。(2) 取下天平左端的2克砝码换上7克重的砝码, 端重(69+7)76克,右端仍重71克,从左端取出5克盐后,天平两端平衡,这时左端 余64克盐。 在取下天平两端物品。(3) 用刚才称出的5克盐当作"砝码",与2克、7克砝码合成14克砝码。从64克盐 取出14克,恰好剩下50克盐。则其余盐的重量就是90克。   2. 有两个房间,其中一间房里有三盏灯,另一间房里有控制这三盏灯的开关。这两间房是相对独立、相对封闭的,没有空 上的直接联系;三盏灯与三个开关也没有顺序上的必然联系。现在只允许你分别进入这两个房间一次,然后判断三盏灯分别是由哪个开关控制的   对于这个问题,我们更多 虑的可能是灯与线之间怎样连结及如何开关等,这样就步入了解题的歧途。利用灯亮的发热特性操作如下:(1) 先走进有开关的房间,将三个开关编号为A、B、C。(2) 将开关A打开数分钟后关闭,再打开B。(3) 立即进入有灯的房间,此时亮着的灯则由开关B控制。用手摸另外两盏灯:发热的由开关A控制,不热的由开关C控制。   3. U2合唱团赶往演唱会场,途中必需经过一座桥,天色很暗,而他们只有一只手电筒。一次 时最多 以有两人一起过桥,而过桥的时候必须持有手电筒,所以就得有人把手电筒带来带去,来回于桥的两端。手电筒是不能用丢的方式来传递的。四个人的步行速度各不同,若两人同行则以较慢者的速度为准。Bono需花1分钟过桥,Edge需花2分钟过桥,Adam需花5分钟过桥,Larry需花10分钟过桥,他们如何在17 钟内过桥?   此题属于策略优化问题。从题中我们知道,同行两人的过桥时间应该尽量接近,且来回传递电筒者应尽量选用速度快的人。根据以上分析,作如下安排:(1) Bono和Edge两人先行过桥后,Bono带手电 回,共用时3分钟。 2) Adam和Larry两人同时过桥,Edge带手电返回。共用时12分钟。(3) Bono和Edge两人再次过桥,用时2分钟。至此,四人全部过桥,一共用时3+12+2=17(分钟)。   4. 有一列火车以每小时140千米的速度离开洛杉矶直奔纽约,同时,另一列火车以每小时160千米的速度从纽约开往洛杉矶。如果有一只鸟以每小时30千米的速度和两列 车同时启动,从洛杉矶出发,碰到另一列车后返回,往返在两列火车间,直到两列火车相遇为止。已知洛杉矶到纽约的铁路长4500千米,请问,这只小鸟飞行了多远路程?   小鸟在两列火车之间往返飞行,思维也很容易随着"跑"起来。如果我们试图算出那些越来越短的路程,问题就会十分复杂。其实大可不必,因为这只小鸟一直在两列火车间一刻不停地飞,所以,火车的相遇时间就是小鸟的飞行时间。这样,小鸟的飞行路程为:30×[4500÷(140+160)]=450(千米)。   5. 对一批编号为1-100,全部开关朝上(开)的灯进行以下操作:凡是1的倍数反方向拨一次开关;2的倍数 方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编 是哪些?   若实际操作求解会相当繁琐。我们知道,就某个亮着的灯而言,如果拨其开关的次数是奇数次,那么,结果它一定是关着的。根据题意可知,号码为N的灯,拨开关的次数等于N的约数的个数,约数个数是奇数,则N一定是平方数。因为10=100,可知100以内共有10个平方数,即,最后关熄状态的灯共有10盏,编号为1、4、9、16、25、36、49、64、81、100。   6. 一个大院子里住了50户人家,每家都养了一条狗。有一天他们接到通知说院子里有狗生病了,并要求 所有主人在知道自家狗生病的当天应立即把狗枪杀掉。所有主人和他们的狗都不得离开自家的房子,主人与主人之间也不准进行任何沟通,他们能看到其他49条狗,且能准确判断是否生病,但看不到自家的狗。院中第一天、第二天都没有枪声,第三天传出了一阵枪声,问有多少条病狗被枪杀。 这是一道逻辑推理趣题。分析如下:(1) 如果50条狗中只有1条病狗。比如说张家的狗有病,那么,张看到的另49条狗 是正常的,从而判断自家的狗一定病了,张就会把自家的狗枪杀掉,但第1天没有枪声,说明病狗多于1条。(2 如果50条狗中只有2条病狗,比如说王家和李家的狗是病狗,那么,除了王和李以外,其余的人都看到了2条病狗,而王和李只能看到1条病狗和48条正常的狗,已经知道病狗数量多于1,所以王和李可以判断出自家的狗一定是病狗,按照规定应该枪杀,但第2天没有枪声,说明病狗又多于2条。(3) 如果有4条或4条以上病狗,那么每个病狗的主人至少看到了3条病狗,由于病狗数量是不是3条无法确定,故每个人也就不能判断自家的狗是否有病,第3天也就不会有枪声,这与已知矛盾 综上可以判定,病狗的数量是3条 “和倍问题”怎样思考? 【典型问题】   1. 四年级有4个班,不算甲班其余三个班的总人数是131人;不算丁班其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人,问这四个班共有多少人?   解答:用131+134=265,这是1个甲、丁和2个乙、丙的总和,因为乙、丙两班的总人数比甲、丁两班的总人数少1人,所以用265-1=264就刚好是3个乙、丙的和,264÷3=88,就是说乙丙的和是88,那么甲丁和是88+1=89,所以四个班的和是88+89=177人.   2. 有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?   解答:大家想想,我如果把4个数全加起来是什么?实际上是每个数都加了3遍!大家一定要记住这种思想!(45+46+49+52)÷3=64就是这四个数的和,题目要求最小的数,我就用64减去52(某三个数和最大的)就是最小的数,等于12.   3. 在一个两位数之间插入一个数字,就变成一个三位数。例如:在72中间插入数字6,就变成了762。有些两位数中间插入数字后所得到的三位数是原来两位数的9倍,求出所有这样的两位数。   解答:对于这个题来说,首先要判断个位是多少,这个数的个位乘以9以后的个位还等于原来的个位,说明个位只能是0或5!先看0,很快发现不行,因为20×9=180,30×9=270,40×9=360等等,不管是几十乘以9,结果百位总比十位小,所以各位只能是5。略作计算,不难发现:15,25,35,45是满足要求的数   你会解答下面的题目吗?   1. 某班买来单价为0.5元的练习本若干,如果将这些练习本只给女生,平均每人可得15本;如果将这些练习本只给男生,平均每人可得10本。那么,将这些练习本平均分给全班同学,每人应付多少钱?   2. 动物园的饲养员给三群猴子分花生,如只分给第一群,则每只猴子可得12粒;如只分给第二群,则每只猴子可得15粒;如只分给第三群,则每只猴子可得20粒,那么平均分给三群猴子,每只可得多少粒? “还原问题”怎样思考? 【典型问题】   1. 某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是多少?   解答:(6×6+6)÷6-6=1,这个数是1.   2.有砖26块,兄弟二人争着去挑。弟弟抢在前面,刚摆好砖,哥哥赶到了。哥哥看弟弟挑的太多,就抢过一半。弟弟不肯,又从哥哥那儿抢走一半。哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?   解答:先算出最后各挑几块:(和差问题)哥哥是(26+2)÷2=14,弟弟是26-14=12,然后来还原:1. 哥哥还给弟弟5块:哥哥是14-5=9,弟弟是12+5=17;2. 弟弟把抢走的一半还给哥哥:抢走了一半,那么剩下的就是另一半,所以哥哥就应该是9+9=18,弟弟是17-9=8;3. 哥哥把抢走的一半还给弟弟:那么弟弟原来就是8+8=16块.   3. 甲、乙、丙三人钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了两倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的钱最多;最后丙拿出一些钱给甲和乙,使甲和乙的钱数都比原来增加了两倍,结果三人钱数一样多了。如果他们三人共有81元,那么三人原来的钱分别是多少元?   解答:三人最后一样多,所以都是81÷3=27元,然后我们开始还原:1. 甲和乙把钱还给丙:每人增加2倍,就应该是原来的3倍,所以甲和乙都是27÷3=9,丙是81-9-9=63;2. 甲和丙把钱还给乙:甲9÷3=3,丙63÷3=21,乙81-3-21=57;3. 最后是乙和丙把钱还给甲:乙57÷3=19,丙21÷3=7,甲81-19-7=55元.   你会解答下面的题目吗?   1. 甲、乙、丙三人各有糖豆若干粒,甲从乙处取来一些,使自己的糖豆增加了一倍;接着乙从丙处取来一些,使自己的糖豆也增加了一倍;丙再从甲处取来一些,也使自己的糖豆增加了一倍。现在三人的糖豆一样多。如果开始时甲有51粒糖豆,那么乙最开始有多少粒糖豆?   2. 有一筐苹果,把它们三等分后还剩2个苹果;取出其中两份,将它们三等分后还剩两个;然后再取出其中两份,又将这两份三等分后还剩2个。问:这筐苹果至少有几个? 巧用工程法解题 有一辆自行车,前轮和后轮都是新的,并且可以互换,轮胎在前轮位置可以行驶5000千米,在后轮位置可以行驶3000千米,问使用两个新轮胎,这辆自行车最多可以行多远?     如果我们考虑在中途某个时刻将车轮调换,则非常麻烦。如果将这个问题转化成工程问题:把一个车轮的使用寿命看作单位“1”,则每行1千米,前轮被使用了1/5000,后轮被使用了1/3000,这样用两个轮子的寿命2÷(1/5000+1/3000)=3750(千米),很容易就求出使用这两个轮子最多可以行3750千米,就不用考虑何时调换轮子这个恼人的问题。 时间问题转化为行程问题 星期六,某同学离家外出时看了看钟,2个多小时后回到家又看了看钟,发现时针和分针恰好互换位置。请计算,该同学离家外出多少小时?     这看上去是个时间问题,但如果我们仅仅局限于钟面上的时间问题去思考,很难找到解题思路。可以将这个问题转化成行程问题,这样想:在这两个多小时中,分钟转两圈多(红线表示),时针走了两个多大格(绿线表示),两针交换了位置,如下图,两针这段时间里正好走了三圈,相当于这段时间内时针和分针合走了三圈,这样就将钟面的时间问题转化成了行程中的相遇问题。     用总路程3(3圈)除以速度和(1+1/12)【想:分针1小时走1圈,时间1小时走1大格,即1/12】,列式为3÷(1+1/12)=2又13分之10(小时)。 一笔糊涂帐 一个男子到一家手杖店去买了一根30元的手杖,付出一张50元的钞票。店主找不出零钱,就到隔壁小店去竞零票。零票兑来,付给顾客20元的找头,顾客就离去了。隔了一会,隔壁店主慌张地过来说,那张50元的钞票是伪钞,手杖店的店主不得不赔了50元。事后,店主觉得很伤心。他算了一下找给顾客20元,又赔给隔壁的店主50元,一共损失了70元。但又一想,顾客只占了50元的便宜,隔壁店主没有损失,也没有占便宜。这相差的20元咋回事呢?     其实,当手杖店主与隔壁小店没有发生经济往来。手杖店主与顾客的经济往来是,顾客给小店50元伪钞,而小店给顾客一根手杖(30元)和20元找头,计50元。所以,手杖店主损失50元,而不是70元。 巧用假设法 同学们,我们在学习过分数乘、除法和倒数的知识后,会遇到这样的问题:甲的2/5和乙的3/4相等,求甲与乙的比是什么?这样的问题不少同学觉得很难下手,实际上只要用假设法,首先列出等式:甲×2/5=乙×3/4,然后假设等式的结果都是1,利用倒数的知识,可知甲是5/2,乙是4/3,则可求出甲与乙的比是15∶8。     又如,“有两根同样长的绳子(长于1米),第一根剪去1/2米,第二根剪去1/2,剩下的相比较,哪一根长?”这样的问题用假设法解决起来也很容易,设这两根分别长10米,第一根还剩9.5米,第二根还剩5米,很容易知道第一根剩下的长。同学们,你还能假设其他数来解决这个问题吗?如果两根绳子的长度都等于1米或都小于1米,结果又会如何呢?请你们用假设法来解决这两个问题。 《换个角度、整体思考》 题目:一次考试共有五道试题,做对第(原题没有“第”字)1、2、3、4、5题的分别占考试人数的84%、88%、72%、80%、56%,如果做对三道或三道以上为及格,那么这次考试的及格率至少是多少?     解法:假设这次考试有100人参加,那么五题分别做对的人数为84、88、72、80、56人。全班共做对84+88+72+80+56=380(题)。要求及格率最少,也就是让不及格人尽量的多,即仅做对两题的人尽量的多;要让及格的人尽量的少,也就是说共做对5题和共做对4题的人要尽量的多。我们可以先假设所有人都只做对两题,那么共做对100×2=200(题)。由于共做对5题的最多有56人,他们一共多做了56×3=168(题),这时还剩下380-(200+168)=12(题)。因为做对4题的人要尽量的多,所以每2题分给一个人,可以分给12÷2=6(人),即最多6个人做对4题。加上做对5题的56人,那么及格的人最少有56+6=62(人),也就是及格率至少为62%。 骑驴找驴 一次师生座谈会,老师看学生,人数一样多,学生看老师,老师的人数是学生的3倍,问老师和学生各有多少人? 分析: (方法一) 设:老师= X , 学生=Y; 老师看学生,人数一样多(在看的老师不包括在内)即可以列为方程:X-1=Y; 学生看老师,老师的人数是学生的3倍(在看的学生不包括在内)即可列为方程: 3×(Y-1)=X; 所以:解得Y=2,X=3 分析: (方法二) 3个老师,当其中一位老师看学生的时候,把自己忽略了,2个学生。2个老师一样多;2学生中的一个看老师的时候也是把自己给忽略了,所以就剩一个学生了,老师还是3个。 “凑比法”解题例谈 在小学数学竞赛中,常常遇到这样一类题目:已知两个量的和(差),以及它们的某种关系,而这种关系又无法转化成其中一个量是另一个量的几分之几(统一单位“1”),也无法求出这两个量的比。因此,常规解法极为繁杂。若将其中的一个量增加(减少)一个特定数量后,则常很容易“凑”出它们的比,从而使问题化繁为简,化难为易。 生1999年第十五届《迎春杯》决赛题)   还多10个”得:       INCLUDEPICTURE "http://www.aoshu.cn/UpF_Article/2005-10/20051012101716797.JPG" \* MERGEFORMATINET   从而知,师傅加工零件个数是3份,(徒弟加工零件个数+40个)是4份,也就是(师徒二人共加工零件个数+40个)(3+4=)7份,即(170+40) 弟加工零件个数为(170-90=)80(个)。 11人参加数学竞赛。这个班男、女生各多少人?            从而知,男生人数是3份,(44人-女生)是2份,也就是(男生-女生+44人)(3+2=)5份。又因“男生比女生多6人”,故(6+44)人是5 例3 甲桶油比乙桶油多3.6千克,如果从两桶中各取出1千克后,甲 (1999年小奥预赛B卷) INCLUDEPICTURE "http://www.aoshu.cn/UpF_Article/2005-10/20051012101718436.JPG" \* MERGEFORMATINET        从而知,(甲桶油-1千克)是3份,(乙桶油-1千克)是2份,即(甲桶油-1千克)比(乙桶油-1千克)多(3-2)份,也就是甲桶油比乙桶油多(3-2)份,而甲桶油比乙桶油多3.6千克,因此,每份重为3.6÷(3-2)=3.6(千克),(甲桶油-1千克)为3.6×3=10.8(千克),甲桶原有油10.8+1=11.8(千克)。 例4 大小球共100个,取出大球的75%,取出小球的50%,则大小球共剩30个。问原有大小球各多少个?(见贵刊1998年第1、2期第22页《注意求异思维训练》中的例1,这里用“凑比法”解较容易) 分析与解 依题意“取出大球的75%,取出小球的50%,则大小球共剩30个”得:   大球个数×(1-75%)+小球个数×(1-50%)=30   大球个数×25%=30-小球个数×50%   大球个数×25%=(60-小球个数)×50%即,大球个数∶(60-小球个数)=50%∶25%=2∶1 从而知,大球个数是2份,(60-小球个数)是1份,大球个数比(60-小球个数)多(2-1)份,即[大球个数-(60-小球个数)]为(2-1)份,也就是(大球个数+小球个数-60)为(2-1)份,又知大小球共100个,故(100-60)个为(2-1)份,又知大小球共100个,故(100-60)个为(2-1)份,即40个是1份。因此,大球个数有(40×2=)80(个),小球个数有(100-80=)20(个)。 巧分数字和 题目 将1至9九个数字写在一条纸带上,如下图:   将它剪成三段,每段上数字联在一起算一个数,把这三个数相加,使和能被77整除,那么中间一段的数是____。   这是1997年小学数学奥林匹克决赛中的一道整除的问题。将纸带剪成三段,要剪两刀,共有28种不同的剪法,逐一去试,分别计算出结果,再去试除,这样做太繁琐,不可取。可以结合整除的有关知识,从这九个数字的数字和去考虑。   分析与解答 由于77=7×11,(7、11)=1,所以能被77整除的数,必能分别被7和11整除。   先考虑能被11整除。一个数若能被11整除,其奇位数字之和与偶位数字之和的差必能被11整除。对于这一性质,可以得到这样的推论:如果几个加数的和能被11整除,那么这几个加数所有奇位数字之和与偶位数字之和的差必能被11整除。   对于这条纸带上的九个数字,不管怎样剪,奇位数字和总大于偶位数字和。由于1+2+3+4+5+6+7+8+9=45,45=39+6=28+17,39-6=11×3,28-17=11,所以奇数、偶数的所有数字和分别是39和6或28和17。   (一)当奇位数字之和是39,偶位数字之和是6时,因为6=1+2+3=5+1=4+2,只剪两刀,使另外的6个或7个数字都在奇位上,这显然是办不到的。   (二)当奇位数字之和是28,偶位数字之和是17时,因为   ???????????? (?)   ?????????? (?)   ?????????? (?)   ?????????? (?)   ?????????? (?)   ?????????? (?)   ?????????? (?)   (1)如果9、8、7、3、1在奇位上,无法使相邻的三个数字4、5、6都在偶位上。   (2)如果9、8、6、3、2在奇位上,无法使相邻的两个数字4、5都在偶位上。   (3)如果9、8、6、4、1在奇位上,无法使相邻的两个   (4)如果9、8、5、4、2在奇位上,无法使相邻的两个数字6、7都在偶位上。   (5)如果9、7、6、5、1在奇位上,无法使相邻的三个数字2、3、4都在偶位上。   (6)如果9、7、6、4、2在奇位上,相邻的两个数字6、7都在奇位上,因此必在6、7之间剪一刀,另一刀的剪法有三种:   第一种剪法得到的三个数的和:12+3456+789=4257,4257÷7=608……1   第二种剪法得到的三个数的和:1234+56+789=2079,2079÷7=297,由此可知,剪后中间一段的数是56。   第三种剪法得到的三个数的和:123456+7+89=123552,123552÷7=17650……2。   (7)如果9、7、5、4、3在奇位上,无法使相邻的两个数字1、2都在偶位上。 让静止的图形动起来 以静变动,让静止的图形动起来,这是一种动态的思想方法,这种思想方法在求解几何图形面积时是常常用到的。现举例如下:   一、旋转的思想方法   将所给图形中的某一部分绕一个固定点旋转一定(或适当)的角度,变为较明显的简单而又直观的图形。   例1 如图1中的两个三角形都是正三角形,大三角形的面积是小三角形面积的多少倍?   分析与解 观察图1可见,只需将小三角形绕圆心旋转60°,得到如图2所示的图形。小三角形将大三角形分别割成面积相等的四块。因此大三角形的面积是小三角形面积的4倍。   例2 求图3中阴影部分的面积。(π取3)(单位:厘米)     分析与解 观察图3发现,只要将图中右边的阴影部分绕圆心逆时针方向旋转90°就得到图4所示的形状。所求的阴影部分的面积就是大扇形的面积与空白部分(三角形)面积的差。即      二、移动的思想方法   1.点的移动:将图中的某一点看作一个“动点”沿直线移动,使原来分着的空白部分合并在一起变成一个简单明了的图形。   例3 如图5,已知长方形的长是8厘米,宽是4厘米,图中阴影部分面积是10平方厘米,求OD长多少厘米?   分析与解 观察图5,把图中的阴影部分看作两个三角形(即△ABO和△CBO),将这两个三角形中的A点和C点分别看作“动点”平移到如图6所示的A'点和C'点(等底等高,面积相等),等积变形为一个简单的三角形A'C'O。因为阴影部分面积是10平方厘米,A'C'的长为4厘米,所以OB的长度为(10×2÷4=)5(厘米),因此OD的长度是(8-5=)3(厘米)。   2.面的移动:将所给图形中的某个图形沿直线上下左右移动,把复杂的图形转化成简单的图形,使原来面积不等变成相等。   例4 有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合(如图7),已知露在外面的部分中,红色面积是20,黄色面积为14,绿色面积是10,那么正方形盒子的面积是多少?   分析与解 根据题目的条件,观察图7,发现黄色正方形沿着正方形盒子的边线慢慢向左平移,黄色纸片的小部分逐渐被红色纸片所盖没,绿色纸片却逐渐在增加,黄色纸片盖住的部分就是绿色纸片增加的部分。直移到红色与黄色两纸片下上对齐。此时绿色纸片也暴露到了最大的程度(如图8),而且黄色纸片与绿色纸片的面积是相等的。即黄色和绿色的面积都为((10+14)÷2=)12。我们把留出的空白部分假设为白色,从图中可看出,红、黄两纸片有一边相同,绿、白两纸片也有一边相同,所以它们各自面积之比等于相应边长的比。便有:      因此,所求正方形盒子的面积为   20+12+12+7.2=51.2   三、翻折的思想方法   将所给图形的某一部分以某一直线为对称轴翻折,使原来复杂的图形变为直观图形。   例5 如图9,长方形的长是8,宽是6,A和B是宽的中点,求长方形内阴影部分的面积。   分析与解 观察图9,根据题目的条件可知直线AB将原大长方形分成大小一样的两个小长方形。只需把下面的小长方形以直线AB为对称轴向上翻折,就把下面长方形内的阴影部分合并到如图10所示的上面的长方形中。我们知道阴影部分的面积就是小长方形面积的一半,即所求阴影部分的面积为   8×(6÷2)÷2=12。   例6 在图11中,圆的半径为r,求阴影部分的面积。   分析与解 以图11中的水平直径作为对称轴,将上半部分往下翻折,使阴影部分拼合成两个三角形(如图12)。可以看出,所求的阴影部分面积等于梯形面积与空白部分(即三角形面积)的差。所以 阴影部分面积=(2r+4r)×r÷2-2r×r÷2=2r2。 运用“取中法”解题举隅 根据题目特征,以中间一个数为突破口进行解题,是一种常用的解题策略。运用取中法解答课本中的思考题和数学竞赛题,不仅能激发学生的学习兴趣,而且能使解题思路简捷、达到事半功倍的效果。现举数列说明。   一、运用取中法解答数值计算   对于由相近的一组数相加的计算题,解答时可选择一个中间数作为计算基础,通过“移多补少”变加为乘,能使计算简便。   例1 计算   (4845+4847+4836+4838+4840+4839+4842)÷7   分析和解 例1括号内是7个相近的数相加,按顺序排列可知中间的数是4840,以4840为基数,可作如下计算:   原式=[4840×7+(5+7-4-2-1+2)]÷7=4841   二、运用取中法解答整除问题   涉及整除问题的填数题,可根据填数的诸种可能性,先假设中间一个数进行试探,进而再进行调整,可使问题得到解决。   例2 如果六位数,1992□□能被95整除,那么,它的最后两位数是_____。   (1992年小学数学奥林匹克初赛(B)卷第4题)   分析和解最后两位数只能是“00”到“99”一百个数中的一个数,先假设这两位数是中间数50。那么,199250 ÷95=2097……35,显然,假设偏大35,故从199250中减去35所得的差能被95整除。即:199250-35=199215,所以,它的最后两位数是“15”。   三、运用取中法解答估算问题   在小学数学竞赛中,常出现这样一类题,它不要求算式的精确值,只要求算式结果的整数部分。对这类题,解答时取中间一个数代换其它数进行计算,先求出近似结果,再加以确定能较快地求出结果。      分析和解 观察可知,繁分数中共有12个分母数字较大的分数,按常规的通分方法显然行不通。若取最大值和最小值来讨论算式的取值范围,也较 找出算式的整数部分。      因此,S的整数部分是165。   四、运用取中法巧填数字题   填数字是一种常见的数学题型,其填法多种多样,但以中间数为突破口,通过分组试调,得到的一种解法,过程简捷、规律性强,便于操作,学生尤其是低年级学生易于接受。   例4 把1、3、5、7、9、11、13填进7个空中,使每个圆圈里四个数字的和都相等。(九年义务教材第四册88页思考题)   分析和解 观察题图发现,图中有一中心格,它是三圆交叉的公共格,此处所填的数三个圆圈都得用。因此,确定此格的数字至关重要,由于中间数7即是7个数的平均数(49÷7=)7,所以中心格应填7,中间数把另6个数分成两组,前面三个数为较小数,后三个数为较大数,将较小数1、3、5填入三个较小空中或填入三个较大的空中,再将三个较大数9、11、13与之搭配,采取较小数配较大数的方法试调。使每个圆圈里的四个数的和都相等。这样便得到如下两解。 偶数题详解加法与减法 【内容概述】 各种加法和减法的速算与巧算方法,如凑整,运算顺序的改变,数的组合与分解,利用基准数等。 【例题分析】 1.计算:1966+1976+1986+1996+2006 分析1:通过仔细观察发现前面一个数都比后面一个数大10,因此可以设一个基准数。 详解:我们不妨设1986为基准数。 1966+1976+1986+1996+2006 =(1986-20)+(1986-10)+1986+(1986+10)+(1986+20) =1986*5 =9930 评注:通过仔细观察题目后,通常会发现一些规律。找到规律,就能轻而一举的解决问题。 分
/
本文档为【最强的数字解析】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索