为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > 在最少条件下的对数律精确渐近性

在最少条件下的对数律精确渐近性

2018-03-24 26页 doc 50KB 21阅读

用户头像

is_037433

暂无简介

举报
在最少条件下的对数律精确渐近性在最少条件下的对数律精确渐近性 应用概率统计 第二三期2006 第二十二卷 年8月 PreciseRates under ChineseJournalofAppliedPI'obability andStatisticsVo1.22No.3Aug.2006 intheLawoftheLogarithm MinimalConditions* ZHANGLIXINLINZHENGYAN (Depar?tmentofMathematics,ZhejiangUniversity,Hangzhou,310028)...
在最少条件下的对数律精确渐近性
在最少条件下的对数律精确渐近性 应用概率统计 第二三期2006 第二十二卷 年8月 PreciseRates under ChineseJournalofAppliedPI'obability andStatisticsVo1.22No.3Aug.2006 intheLawoftheLogarithm MinimalConditions* ZHANGLIXINLINZHENGYAN (Depar?tmentofMathematics,ZhejiangUniversity,Hangzhou,310028) Abstract LetJYl,.Y2..一bei.i.d.randolnvaxiables,andsetS,I=l+???+I=m. a,xlSkl, n>1.ThepreciseratesinthelaxvofthelogaxithmforaxeobtainedunderSUfficientand necessaryconditions. Keywords:Tailt)I.obabilitiesofSUNISofi.i.d.randomvariables,thelawofthelogal'ithm, strongapproximation. AMSSubjectClassification:Primary60F15;Secondary60G50. ?1.IntroductionandMainResults Let{,,;?1)beasequenceofi.i.drandomvariableswithacommondistl'ibution functionF,andsetS,=?,^l=m.,axIsI,礼1.Alsoletlogx=ln(xVe)and()=1.一1n 瓣.Lai(1974)andChowandLai(1975)considerthefollowingresultonthelawofthe logarithm. TheoremASupposetha.tVarX=盯.andr1.Thenthefollowingareequivalent P(McO(n))<? E(n))<?, forallE>盯 f0rallE>盯-二; E(n))<?,forsomeE>0; EX=0andElXl/(1ogIxI)<oo Fol'7?=1,GutandSpgttaru(2000)gavethefollowingpreciseasymptotics TheoremBSupposethatEX=0andEX=<...Then,for051, 一量礼一(1ogn)aP(ISIlime26+2logP(IS礼_.f\o,. ?e~/—nlo—gn)=, +1'' where(+)isthe(25+2)一thabsolutemomentofthestandardnormaldistribution. Thepul'poseofthisimpel'istoCO1raiderthepreciseasymptoticsforallr>1.Weobtainthe sufficientandnecessaryconditionsforsuchkindofresultstohold.Hereareourmain1.esults. Researchsuppo,'tedbyNationalNatul'alScienceFoundationofChina(No.10471126) Received2006.4.7. 儿 ?? S ,lP ? 一 Z 7 ?? S ,lP ? 一 7 ?? 3112应用概率统计 The.rem1.1Let7.>1aI1d.>一1/2andlet.n(E)beafuncti.n.fEsuchthat an(F)log7-47.as佗-??andE\f S1ppose{)isase(11eI1ceofnon—negatiVenilmberssatisfying n" = ?^,?(1og).,n-?.. =1=1 ThenthefollowingaIeequivalent E=0 2 E.=盯(0<盯<O0)and ,F E[IXl(1ogIXI)一】<oo; nr一P{Mn盯(n)(E+0n(E))) exp卜27-)r(0+1/2),仃>0; ). li111fF7?一1)】叶/? (\v/, , nr一.,1P{ISI(n)(e+0n(E))) exp{一27.r(0+1/2),盯>0 r一-.,『】PIME盯))<?ifand.nlyifE>; t=J 一P{IS,IE盯))<..ifand.nlyifE> f::1 EX:0.EX=(0<仃<..)and li】一 一 (7—1)?————————一X (\1v'一1I E[IXl(1ogIX1)1<? ?tr一2P{n以E咖(n)十an}= lira一 @—2_(—7"--1)量P{It,,v,'一1n1 E盯(n)+an)= 2 盯>0: 第二十二卷 (1.8) (1.9) >0.(1.10) Als., T byThe l oIem1, I 1, ja in l】e (1.9)and(1.10)the ( widestanisalsoo(V@logn). .一一一,1: , Remarkum' 一. ' .dw.k3/2dMn.b. <.vilsi 1.1 T— ZhangandBaek ? 2003)andS o p d S~ s taru(200 w 4 o ) rK est o a r b ' l ' ishe d d / (1 a .10 u )to n r 3/2bingtheBe1YEsseeninequalityTheirmethdonot'. 工J usingad:ffe1.entappI..ach,HuangandZhang(2005)pr.vedaresultsimiar.(?5)胁.m ?2.NormalCases Intl1isse'ti.n,wep1..veTI1e.1.eIn1.1inthecaSethat{,1;n1)arenormalrand.m vm.iables.Letfw);t0eastandardwieneI'pr.cessand?astandardn.rmalvariabl.? ?? + 一 一 .一 l a '暑 m 出T .一n 0 一 :一一\ = 缸 IC>?Lr m=1 rh .二.薹 第三期张立新林正炎:在最少条件下的对数律精确渐近性313 Proposition2.1Letr>1anda>一1/2andletan(E)beafunctionofEsatisfying(1.1) Andlet{,t1)satisfy(1.2).Then and lim『F2一 \| 2 , o. 一 1)】卅/?n^P{sup n=10<s<1 exp{一2T)r(0+1/2) lim『F2一 e\? o. 一 1)】a+l/? n=1 (s)IX/,2logn(e) nr-2AP{INIx/~logn(e+an(E))) exp{一2T,/)r(0+1/2)(2.2) ProofByusingthetailprobabilitiesofanormalrandomvariableandWienerprocess ,the proofissimilm'tothatofProposition2.1ofHuangandZhang(2006)fc.f.Zhang(2001)).The detailsareonfittedhere. ?3.Approximation ThepurposeofthissectionistousethestrongapproximationandFeller'S(1945)andEin. mahl'S(1989)truncationmethodstoshowthattheprobabilitiesin(1.4)fortcanbeapproxi. matedbythosefol'sup1(s)Iandthepl'obabilitiesin(1.5)forcanbeapproximatedby u1 thoseforN. SupposethatEX=0andEX.=盯.<?.Withoutlosingofgenerality. weassumethat 盯=1throughoutthissection.LetP>1/2.Foreachnand1Jn,welet = 川Iv~/(1ogn)), S1j -nj 1 lll j | n{=Xj -- I J= 薹=II,=l二? = I(x/n/(1ogn)<II(n)), = XjI(II>(n)), 一 E【】 :Var( 七=l =x5一E[X/[j】 =一 E【】 Andalsodefine,,,, -- ,,Iand--IIsimilarly. Thefollowingpropositionisthemainresultofthissection. Proposition3.1Letr>1,a>--1and2P>P>1/2.Supposethatthecondition (1.3)issatisfied.Andlet{^)satisfy(1.2).Thenthereexist>0andasequenceofpositive numbers{口Jt)suchthat PfsupL0<<1 P{E(n))P{sup 0<s<1 +l ogn)P)_口.r 3 (1ogn)p)+口(3.1) , L一 ? = .J,.J—— 314应用概率统计 P{INIex/—2lo—gn+3(1ogn)pg, P{IS,Ie咖(7))P{INIEx/—2lo—gn forallt:?(,二一._:1+c),n1,alld 3 (1ogn)p)+‰ 第二十二卷 (3.2) (3.3) Toshowthisproposition,weneedsomelemmas. Lemma3.1Forallysequenceofindependentrandomvariables{?,1;n1)withmean zel?oandfinite,,ariancethel'eexistsasequenceofindependentnormalvariables{叼,;几1}with Eq,l=0andET=Efsuchthat,fo,allQ>2andY>0, Pfmaxl\<tl (AQ)Qy wheneverEIfI'<.C.i=1,???,n.Here,J4isauniversalconstant ProofSeeSakhanel~o(1980,1984,1985).社 Lemma:j.2LetQ2,fI,,…,lbeindependentrandomvariableswithE=0a,nd El&IQ<O0,k=1,…,礼Thenforall>0 Pfmaxk<" )f2exp{)+c2QQ一Q耋E-已-Q where.4isaunix,el'sa1(:onstantasinLemma3.1 ProofItfollowsfl'omLemma3.1easily.SeealsoPetrov(1995,Page78).社 Lemma3.3Deftne?,=I--s!,^一SI.Letr condition(1.3)issatisfiedandEX=1.Thenforany suchthat >1.a>--1andP>1/2.Supposethatthe >0thereexistaconstantK=KO',a,) (3.4) where厶=P(A,x/~,/(1ogn),--n!(礼)). ProofLet.=nE[IXII{IXl>元/(1ogn)P}].ThenlEEl,,1Jn.SettingIJII一11 wehave C=,击v/~/(1.gl.gn)) t1 {?,v/n,/(1oglogn))CU{xj?J),n?c J=1 S.f01.几?c,P(Xj?j,--,!(n)).Observerthat』=0whel1evel?_?j J1 ? < ,J p p 0 7 ,【 <一 g ? 一 x? Q ? E ?? Q <一 ,l,/ >一 叩 ? 一 ? ? ? ? ? < <一 , ? 一 礼 ?? 第三期张立新林正炎: 在最少条件下的对数律精确渐近性 ?礼,sothatwe11aVefo1'7largeen.ughandall1 礼, P(xj?j,A(n)) =P?m …ax131JVmax一I) :P(_YJ?(龄阮IVJ--/一J?) P(?)P(?(礼)一ff) P(Ixl>v~T/(1.g礼))p, -- … I (n)一v~/(1.g礼)) P(/xl>v~/(1.P)).A.taightfol'Wal'dapplicati.n.ftheine qllalities.fOttavianiandBernstein . P(丽:))2P(IS'I))礼 f0I'sortie卵()>0Itfollowstt1at )0 ?tl=f耋P(<IXl< 砉Pf,(1ogj)P<Ixl< AP(IX[> (1og(j十1))p (1og(j+1))p 善P(<IXl_< ,— (1og—n)p1 {n )圭礼一^n=1 (1og(j十1)) yields 1圭礼一(1ogn).tl=1 言P(<)). cE[IXI'一(1ogIX1)p()+n]<.o. 佗CZ.,f,henwehayeP(~-71咖(礼))Tt--~?Itloll.wsthat ,岳礼】厶,8,nr--S/2--r/A(1.g礼) 8 , 一.A(1.gn)E[IXII{IXI>V~/(I))】 8 , 叫(1ogn).黑,{<IXl.EI,{,.<<儿=l一,I.I『Infr,口'?-— = 妻{(1ogj)P8Ej- _ 1lOg =?JJJ{L CEE[IXlI1{PI{=LL【log.7J <JJ <ff (1og(j+1))p (1og(j+1))p (1og(j+1))p)] )]nr-3/2-u,n(1ogn) )】nr-3/2-o( (byLemma2.3ofHuangandZhang(2006)) 一 ,善,{<,~-a/2-,7 E[Ixl2(t-,1)(1.glX1)2p(.,,-1/2一)卅]<.o. 315 ?? <, 2 一 札 ? 316应腑概率统计第二十二卷 (3.4)isproved Lemma3.4Let7?>1,a>一 1andP>1/2.Supposethecondition(1.3)issatisfied.Then oo fol?any>0thel?eexistaconstantK=(r,0,P,)suchthat?n~-2f,lII,1K<..,where 儿=1 厶=P(??v~,/(1oglogn).,^?(n)). ProofObviously. P(/(1oglogn),丽害))+P害))+P(害)) Observethatm., axlEslnEX./(凡)=o(~/元).Wehave ^'',札 妻^P(77"))I1z1u o.1o. C?n,f,?P(Xj"?0)?nr-1^P(IXl(凡)) 'l=J,:/n=1 C妻n,,(1ogn).P(IXI(凡))KE[IXI.(1.gIX1)"一]'=l byLerrlmas2and2.6.fHuangalldZhang(2006).Als.,n.ticethatVar(^)=.(n).By 矗=1 Lemma3.2wehaveforQ>27, i/r-2(丽z)) c 一?tr--2,JJexp{-),墨.厶?丽1凡E[Q{IXln))] +善E[IXlQ(卜1)<IXl(删善1^xo.r一 cz[IXl_1)<删而nTMi J (10.+(1O"),=l,,,一… (byLemmas2?3alld2?6ofHuangand — Zhang(2006)) ?+墨E[IXl_1)<IXl))](" Finally.bynoticingLe,nma3.3,wecompetetheproofofLemma3.4. Lemma3.5Let7?1allda>一1.Supposethattheconditions(1.3)and(1.2)issatisfied Thenforany1/2<P<pwehave I)fsut) \0<<1 +1/(1.gn)1一p I'(丽:)P(supIW(s)l.一1/(1ogn)p)+PVx>0,(3.5),0<s<1 P(INI+1/(1ogn)p)一P I)(1:I,/百)P(INI.一1/(1ogn)p)+P,Vx>0,(3.6) 第三期 whel'ePn0satisfies 张立新林正炎:在最少条件下的对数律精确渐近性317 (3.7) ProofByLennna3.1.thereexistauniversalconstantA>0andasequenceofstandard Wienelprocesses{I,T(?))suchthatfol.allQ>2, P(1naxS't计一()l>三/(1.g) (\(1ogn)p'. )Qk=l -- ,『Qcn()QE[IXIQI{IXlx/~/(1ogn))] Ontheotherhand,byLemma1.1.1ofCsbrg6andRdvdsz(1981), Let P]IIlaX.sB,d一 n)l>三V/-~n/(1ogn)) 一-PIll 删 aX ()l>三,_o1 xp {一)<Cnexp{一 一 … sup l一l n/(?.印) (1ogn)P T1leuPsatisties(3.5)and(3.6),sii1ce{(tB,)/,/;t?0)呈{T(t);t0)fol?each扎.And also, cn((1ogn)v')QE[I/(1.gn))]+Cnexp{一1n/(1.gn).) Itfollowsthat ?oc ?,t~r-2,JPKL+C?n ,l=L'l=l 一 Q/.,j(1ogn)pQE[IXIQI{IXIx/n/(1ogn)p}] KI-t"C言~,Q<)nr-l-Q/2,Q),, KI-I--C~<)] Qln+nJr-l-Q(1ogn)pQ}(1ogn)(1ogn)Q/.(1ogj)pQlQ/."+?.J.Q}'=1 usingLemmas2.3arid2.6ofHuangandZhang(2006)) c耶<,Q+n Kl+CE[IXI扑(1ogII)'p一p)Q+p+"]K<.., whenever(P一p)Q+27'P+a<一1.So,(3.7)issatisfied. ? < p p 0 <一 p 2 一 n ?? 一1一n 斗 x? ,?J? 318应用概率统计 第二十二卷 . -P??JJ)+P{?,?n>) n)_)+P{T47=-f)1?>) P2[一])+,,n Psupev~-gn一2一 )+p PIW(s)I?e2v/~gn一3)+p+ f0Iallf?(一,+),where,denedinLe蚴aLs3. 4with:/4and lisdefinedirILemnlas3.5.Also,ifnislargeenough , )P) 三啊,+) ?啊加)-P{:>) [E+)1?>) PsupIW(s)JEv/~logn+3)一一厶 … forall:?(一?+),whereedinLemma3.3with:/4.similarIy It凡1Slargeenough. P{I?Ie+3)--Pn--,n P{JsJe())P{f?Iev/~ogn—ii3)+pn+I hdsfo1'allF?(一,+). ggn=p厶+,mpIeteSthepro0fby Letllnla~S3.3,3.4all(I3. 5. ?4.ProofoftheTheorem r, Obvi … ously , , ('?''?6)all(i(1?5)爿(1.7).Itremainsforust.sh0w(1.3)(1.4)and1(. 5),an(1(1.6llO1'(1.7)(1.3).一… ?n :T R <八l ?<一 一一 mnP<一 O 曲 w 叫 , 第三期张立新林正炎:在最少条件下的对数律精确渐近性319 First,weshowthat(1.4)and(1.5)holdUlldei'(1.3).Withoutlosingofgenerality,weassume thatEX=0;-IliaEX!=1. Let>0smallenoughand{g,)besuchthat(3.1),(3.2)and(3.3) llok1.Then liI[F2一(7.一1)]n+l/2量nr一Ag:0,f\?,',l'l=1 by(3.3).Noti('ethatn(E)---+0.By(3.1).Wehavethatfol'nlargeenough, P{sl1pL0<<1 ~ /一2log—n(el(?))+卜gn P~--1-(tn?))PsupIW(s)lX/一2logn(e))-)+‰ Ontheothel'hand,1)yP1'oposition2.1 , 【-1) , {一sups)_X/一2logn(01e+.))?log)f\?''一l"=】L<s<l70J =唧r_)r(n+1/2)- (1.4)isIIO'~Vpll(】,,ed.Tilepl'oofof(1.5)issimilm.byusing(3.2)andProposition2.1 The1)I'OOfof(1.7)j(13)~llld(1.6)j(1.3)isstandardandSOomitted. References [1】Chow,Y.S.andLai,TL.,Someolle— sidedtheoremsOilthetaildistributionofsamplesumswith applicationstothelasttimeandlm'gestexcessofboundarycrossings,Trans.Amer.Math.Soc. , 208(1975),5172. Cs&.g6,M.andR,'dsz.P,Strongp7lrJ.7n0DnsinProbabilityandStatistics,Academic,NewYork, 1981. Einmahl,U.,TheDarling— ErdSstheo~'elnforSUllISofi.i.d.randomvariables,Probab.Theor'YRelat. Fields,82(1989),241—257. Feller,W.,Thelawoftheiteratedlogarithmforidenticallydistributedrandomvariables,Ann,Math., 47(1945).631—638. Gut,A.andS1)htm'11,A.,Precise~symptoticsintheBaum— KatzandDavislawoflargenumbers,J. Math.Ana1.App1.,248(2000),233—246. Huang.W.andZhaug.L.X..PreciseratesintheIaWSofthelogarithmintheHilbertspacc.,.Math. Ana1.App1.,304(2005),734—758. LaiT.L..LimittheoremsfordelayedStlnlS,Ann.Probab,,2(1975),432—440. Li;mg,H.Y.,Zhang,D.X.all(1Back,J.I.,Preciseasympototicsinthelawofthelogarithm,Manuscript, 2003. Petrov,V.V.LimitTheoremsofP~vbabilityTheory,OxfordUniversityPress,Oxford,1995. Sakhanenko,A.I..Onunimi)rovableestimatesoftherateofconvergenceintheinvarianceprinci一 1)le,InColloquiaMatl~.Soci.JdnosBolyai,32(1980),779— 783,NonparametricStatisticalInference, Buda1)est(Huugar3'). 4567890 320 [】1】 [12】 [1.3】 [14】 应用概率统计第二十二卷 Sakhanenko,A.I.,Onestimatesoftherateofconvergenceintheinvarianceprinciple,InAdvances inProbab.Theory:LimitTheoremsandRelatedProblems(A.A.Borovkov,Ed.),124—135,Springer, NewYork,1984. SakhanenkoA.I..Convergencel-ateintheinvarianceprinciplefornon—identicallydistributedvariables withexponentialliloments,InAdvancesinProbab.Theory:LimitTheoremsyorSumsoyRan dom Variables(A.A.Borovkov,Ed.),2—73,Springer,NewYork,1985. Sp~taru,A.,PreciseasymptoticsforaseriesofT.L.Lai,Proc.Amer.Math.Soc.,132(11)(200 4), 3387—3395. Zhang,L.X.,Precise1.atesillthelawoftheiteratedlogarithm,Manuscript. zju. edu.cn/zlx/mypa1)ers2/1.ateofLIL.pdf,2001 在最少条件下的对数律精确渐近性 张立新 (浙江大学系, 林正炎 杭州,310028) 设1,,…为独立同分布随机变量,记S=1+…+,=maxISkI,n1.本 \儿 文在充分必要:条件下给出了且和S的对数律之精确渐近性. 关键词:独立随机变量和的尾概率,对数律,强逼近 学科分类号:0211.4.
/
本文档为【在最少条件下的对数律精确渐近性】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索