为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > [计算机软件及应用]oracle分区

[计算机软件及应用]oracle分区

2018-03-10 50页 doc 354KB 2阅读

用户头像

is_731942

暂无简介

举报
[计算机软件及应用]oracle分区[计算机软件及应用]oracle分区 Skip Headers Oracle? Database Administrator's Guide 10g Release 2 (10.2) Home Book ContentsIndex Master Contact Part Number B14231-02 List Index Us View PDF Previous Next 17 Managing Partitioned Tables and Indexes This chapter describes...
[计算机软件及应用]oracle分区
[计算机软件及应用]oracle分区 Skip Headers Oracle? Database Administrator's Guide 10g Release 2 (10.2) Home Book ContentsIndex Master Contact Part Number B14231-02 List Index Us View PDF Previous Next 17 Managing Partitioned Tables and Indexes This chapter describes various aspects of managing partitioned tables and indexes, and contains the following topics: , About Partitioned Tables and Indexes , Partitioning Methods , Creating Partitioned Tables , Maintaining Partitioned Tables , Dropping Partitioned Tables , Partitioned Tables and Indexes Example , Viewing Information About Partitioned Tables and Indexes About Partitioned Tables and Indexes Modern enterprises frequently run mission-critical databases containing upwards of several hundred gigabytes and, in many cases, several terabytes of data. These enterprises are challenged by the support and maintenance requirements of very large databases (VLDB), and must devise methods to meet those challenges. One way to meet VLDB demands is to create and use partitioned tables and indexes. Partitioned tables allow your data to be broken down into smaller, more manageable pieces called partitions. Partitioning can also bring better performance, because many queries can prune (ignore) partitions that, according to the WHERE clause, won't have the requested rows, thereby reducing the amount of data to be scanned to produce a result set. Partitions can be further broken down into subpartitions for finer levels of manageability and improved performance. Indexes can be partitioned in similar fashion. Each partition is stored in its own segment and can be managed individually. It can function independently of the other partitions, thus providing a structure that can be better tuned for availability and performance. If you are using parallel execution, partitions provide another means of parallelization. Operations on partitioned tables and indexes are performed in parallel by assigning different parallel execution servers to different partitions of the table or index. Partitions and subpartitions of a table or index all share the same logical attributes. For example, all partitions (or subpartitions) in a table share the same column and constraint definitions, and all partitions (or subpartitions) of an index share the same index options. They can, however, have different physical attributes (such as TABLESPACE). Although you are not required to keep each table or index partition (or subpartition) in a separate tablespace, it is to your advantage to do so. Storing partitions in separate tablespaces enables you to: , Reduce the possibility of data corruption in multiple partitions , Back up and recover each partition independently , Control the mapping of partitions to disk drives (important for balancing I/O load) , Improve manageability, availability, and performance Partitioning is transparent to existing applications and standard DML statements run against partitioned tables. However, an application can be programmed to take advantage of partitioning by using partition-extended table or index names in DML. The maximum number of partitions or subpartitions that a table may have is 1024K-1. You can use SQL*Loader and the import and export utilities to load or unload data stored in partitioned tables. These utilities are all partition and subpartition aware. See Also: , Chapter 14, "Managing Space for Schema Objects" is recommended reading before attempting tasks described in this chapter. , Oracle Database Concepts contains more information about partitioning. Before the first time you attempt to create a partitioned table or index, or perform maintenance operations on any partitioned table, it is recommended that you review the information contained in that book. , Oracle Database Data Warehousing Guide and Oracle Database Concepts contain information about parallel execution , Oracle Database Utilities describes SQL*Loader and the import and export utilities. Partitioning Methods There are several partitioning methods offered by Oracle Database: , Range partitioning , Hash partitioning , List partitioning , Composite range-hash partitioning , Composite range-list partitioning Indexes, as well as tables, can be partitioned. A global index can be partitioned by the range or hash method, and it can be defined on any type of partitioned, or non-partitioned, table. It can require more maintenance than a local index. A local index is constructed so that it reflects the structure of the underlying table. It is equipartitioned with the underlying table, meaning that it is partitioned on the same columns as the underlying table, creates the same number of partitions or subpartitions, and gives them the same partition bounds as corresponding partitions of the underlying table. For local indexes, index partitioning is maintained automatically when partitions are affected by maintenance activity. This ensures that the index remains equipartitioned with the underlying table. The following sections can help you decide on a partitioning method appropriate for your needs: , When to Use Range Partitioning , When to Use Hash Partitioning , When to Use List Partitioning , When to Use Composite Range-Hash Partitioning , When to Use Composite Range-List Partitioning When to Use Range Partitioning Use range partitioning to map rows to partitions based on ranges of column values. This type of partitioning is useful when dealing with data that has logical ranges into which it can be distributed; for example, months of the year. Performance is best when the data evenly distributes across the range. If partitioning by range causes partitions to vary dramatically in size because of unequal distribution, you may want to consider one of the other methods of partitioning. When creating range partitions, you must specify: , Partitioning method: range , Partitioning column(s) , Partition descriptions identifying partition bounds The example below creates a table of four partitions, one for each quarter of sales. The columns sale_year, sale_month, and sale_day are the partitioning columns, while their values constitute the partitioning key of a specific row. The VALUES LESS THAN clause determines the partition bound: rows with partitioning key values that compare less than the ordered list of values specified by the clause are stored in the partition. Each partition is given a name (sales_q1, sales_q2, ...), and each partition is contained in a separate tablespace (tsa, tsb, ...). CREATE TABLE sales ( invoice_no NUMBER, sale_year INT NOT NULL, sale_month INT NOT NULL, sale_day INT NOT NULL ) PARTITION BY RANGE (sale_year, sale_month, sale_day) ( PARTITION sales_q1 VALUES LESS THAN (1999, 04, 01) TABLESPACE tsa, PARTITION sales_q2 VALUES LESS THAN (1999, 07, 01) TABLESPACE tsb, PARTITION sales_q3 VALUES LESS THAN (1999, 10, 01) TABLESPACE tsc, PARTITION sales_q4 VALUES LESS THAN (2000, 01, 01) TABLESPACE tsd ); A row with sale_year=1999, sale_month=8, and sale_day=1 has a partitioning key of (1999, 8, 1) and would be stored in partition sales_q3. See Also: "Using Multicolumn Partitioning Keys" When to Use Hash Partitioning Use hash partitioning if your data does not easily lend itself to range partitioning, but you would like to partition for performance and manageability reasons. Hash partitioning provides a method of evenly distributing data across a specified number of partitions. Rows are mapped into partitions based on a hash value of the partitioning key. Creating and using hash partitions gives you a highly tunable method of data placement, because you can influence availability and performance by spreading these evenly sized partitions across I/O devices (striping). To create hash partitions you specify the following: , Partitioning method: hash , Partitioning column(s) , Number of partitions or individual partition descriptions The following example creates a hash-partitioned table. The partitioning column is id, four partitions are created and assigned system generated names, and they are placed in four named tablespaces (gear1, gear2, ...). CREATE TABLE scubagear (id NUMBER, name VARCHAR2 (60)) PARTITION BY HASH (id) PARTITIONS 4 STORE IN (gear1, gear2, gear3, gear4); See Also: "Using Multicolumn Partitioning Keys" When to Use List Partitioning Use list partitioning when you require explicit control over how rows map to partitions. You can specify a list of discrete values for the partitioning column in the description for each partition. This is different from range partitioning, where a range of values is associated with a partition, and from hash partitioning, where the user has no control of the row to partition mapping. The list partitioning method is specifically designed for modeling data distributions that follow discrete values. This cannot be easily done by range or hash partitioning because: , Range partitioning assumes a natural range of values for the partitioning column. It is not possible to group together out-of-range values partitions. , Hash partitioning allows no control over the distribution of data because the data is distributed over the various partitions using the system hash function. Again, this makes it impossible to logically group together discrete values for the partitioning columns into partitions. Further, list partitioning allows unordered and unrelated sets of data to be grouped and organized together very naturally. Unlike the range and hash partitioning methods, multicolumn partitioning is not supported for list partitioning. If a table is partitioned by list, the partitioning key can consist only of a single column of the table. Otherwise all columns that can be partitioned by the range or hash methods can be partitioned by the list partitioning method. When creating list partitions, you must specify: , Partitioning method: list , Partitioning column , Partition descriptions, each specifying a list of literal values (a value list), which are the discrete values of the partitioning column that qualify a row to be included in the partition The following example creates a list-partitioned table. It creates table q1_sales_by_region which is partitioned by regions consisting of groups of states. CREATE TABLE q1_sales_by_region (deptno number, deptname varchar2(20), quarterly_sales number(10, 2), state varchar2(2)) PARTITION BY LIST (state) (PARTITION q1_northwest VALUES ('OR', 'WA'), PARTITION q1_southwest VALUES ('AZ', 'UT', 'NM'), PARTITION q1_northeast VALUES ('NY', 'VM', 'NJ'), PARTITION q1_southeast VALUES ('FL', 'GA'), PARTITION q1_northcentral VALUES ('SD', 'WI'), PARTITION q1_southcentral VALUES ('OK', 'TX')); A row is mapped to a partition by checking whether the value of the partitioning column for a row matches a value in the value list that describes the partition. For example, some sample rows are inserted as follows: , (10, 'accounting', 100, 'WA') maps to partition q1_northwest , (20, 'R&D', 150, 'OR') maps to partition q1_northwest , (30, 'sales', 100, 'FL') maps to partition q1_southeast , (40, 'HR', 10, 'TX') maps to partition q1_southwest , (50, 'systems engineering', 10, 'CA') does not map to any partition in the table and raises an error Unlike range partitioning, with list partitioning, there is no apparent sense of order between partitions. You can also specify a default partition into which rows that do not map to any other partition are mapped. If a default partition were specified in the preceding example, the state CA would map to that partition. When to Use Composite Range-Hash Partitioning Range-hash partitioning partitions data using the range method, and within each partition, subpartitions it using the hash method. These composite partitions are ideal for both historical data and striping, and provide improved manageability of range partitioning and data placement, as well as the parallelism advantages of hash partitioning. When creating range-hash partitions, you specify the following: , Partitioning method: range , Partitioning column(s) , Partition descriptions identifying partition bounds , Subpartitioning method: hash , Subpartitioning column(s) , Number of subpartitions for each partition or descriptions of subpartitions The following statement creates a range-hash partitioned table. In this example, three range partitions are created, each containing eight subpartitions. Because the subpartitions are not named, system generated names are assigned, but the STORE IN clause distributes them across the 4 specified tablespaces (ts1, ...,ts4). CREATE TABLE scubagear (equipno NUMBER, equipname VARCHAR(32), price NUMBER) PARTITION BY RANGE (equipno) SUBPARTITION BY HASH(equipname) SUBPARTITIONS 8 STORE IN (ts1, ts2, ts3, ts4) (PARTITION p1 VALUES LESS THAN (1000), PARTITION p2 VALUES LESS THAN (2000), PARTITION p3 VALUES LESS THAN (MAXVALUE)); partitions of a range-hash partitioned table are logical structures The as their data is stored in the segments of their subpartitions. As only, with partitions, these subpartitions share the same logical attributes. Unlike range partitions in a range-partitioned table, the subpartitions cannot have different physical attributes from the owning partition, although they are not required to reside in the same tablespace. When to Use Composite Range-List Partitioning Like the composite range-hash partitioning method, the composite range-list partitioning method provides for partitioning based on a two level hierarchy. The first level of partitioning is based on a range of values, as for range partitioning; the second level is based on discrete values, as for list partitioning. This form of composite partitioning is well suited for historical data, but lets you further group the rows of data based on unordered or unrelated column values. When creating range-list partitions, you specify the following: , Partitioning method: range , Partitioning column(s) , Partition descriptions identifying partition bounds , Subpartitioning method: list , Subpartitioning column , Subpartition descriptions, each specifying a list of literal values (a value list), which are the discrete values of the subpartitioning column that qualify a row to be included in the subpartition The following example illustrates how range-list partitioning might be used. The example tracks sales data of products by quarters and within each quarter, groups it by specified states. CREATE TABLE quarterly_regional_sales (deptno number, item_no varchar2(20), txn_date date, txn_amount number, state varchar2(2)) TABLESPACE ts4 PARTITION BY RANGE (txn_date) SUBPARTITION BY LIST (state) (PARTITION q1_1999 VALUES LESS THAN 1999','DD-MON-YYYY')) (TO_DATE('1-APR- (SUBPARTITION q1_1999_northwest VALUES ('OR', 'WA'), SUBPARTITION q1_1999_southwest VALUES ('AZ', 'UT', 'NM'), SUBPARTITION q1_1999_northeast VALUES ('NY', 'VM', 'NJ'), SUBPARTITION q1_1999_southeast VALUES ('FL', 'GA'), SUBPARTITION q1_1999_northcentral VALUES ('SD', 'WI'), SUBPARTITION q1_1999_southcentral VALUES ('OK', 'TX') ), PARTITION q2_1999 VALUES LESS THAN ( TO_DATE('1-JUL-1999','DD-MON-YYYY')) (SUBPARTITION q2_1999_northwest VALUES ('OR', 'WA'), SUBPARTITION q2_1999_southwest VALUES ('AZ', 'UT', 'NM'), SUBPARTITION q2_1999_northeast VALUES ('NY', 'VM', 'NJ'), SUBPARTITION q2_1999_southeast VALUES ('FL', 'GA'), SUBPARTITION q2_1999_northcentral VALUES ('SD', 'WI'), SUBPARTITION q2_1999_southcentral VALUES ('OK', 'TX') ), PARTITION q3_1999 VALUES LESS THAN (TO_DATE('1-OCT-1999','DD-MON-YYYY')) (SUBPARTITION q3_1999_northwest VALUES ('OR', 'WA'), SUBPARTITION q3_1999_southwest VALUES ('AZ', 'UT', 'NM'), SUBPARTITION q3_1999_northeast VALUES ('NY', 'VM', 'NJ'), SUBPARTITION q3_1999_southeast VALUES ('FL', 'GA'), SUBPARTITION q3_1999_northcentral VALUES ('SD', 'WI'), SUBPARTITION q3_1999_southcentral VALUES ('OK', 'TX') ), PARTITION q4_1999 VALUES LESS THAN ( TO_DATE('1-JAN-2000','DD-MON-YYYY')) (SUBPARTITION q4_1999_northwest VALUES ('OR', 'WA'), SUBPARTITION q4_1999_southwest VALUES ('AZ', 'UT', 'NM'), SUBPARTITION q4_1999_northeast VALUES ('NY', 'VM', 'NJ'), SUBPARTITION q4_1999_southeast VALUES ('FL', 'GA'), SUBPARTITION q4_1999_northcentral VALUES ('SD', 'WI'), SUBPARTITION q4_1999_southcentral VALUES ('OK', 'TX') ) ); A row is mapped to a partition by checking whether the value of the partitioning column for a row falls within a specific partition range. The row is then mapped to a subpartition within that partition by identifying the subpartition whose descriptor value list contains a value matching the subpartition column value. For example, some sample rows are inserted as follows: , (10, 4532130, '23-Jan-1999', 8934.10, 'WA') maps to subpartition q1_1999_northwest , (20, 5671621, '15-May-1999', 49021.21, 'OR') maps to subpartition q2_1999_northwest , (30, 9977612, '07-Sep-1999', 30987.90, 'FL') maps to subpartition q3_1999_southeast , (40, 9977612, '29-Nov-1999', 67891.45, 'TX') maps to subpartition q4_1999_southcentral , (40, 4532130, '5-Jan-2000', 897231.55, 'TX') does not map to any partition in the table and raises an error , (50, 5671621, '17-Dec-1999', 76123.35, 'CA') does not map to any subpartition in the table and raises an error The partitions of a range-list partitioned table are logical structures only, as their data is stored in the segments of their subpartitions. The list subpartitions have the same characteristics as list partitions. You can specify a default subpartition, just as you specify a default partition for list partitioning. Creating Partitioned Tables Creating a partitioned table or index is very similar to creating a non-partitioned table or index (as described in Chapter 15, "Managing Tables"), but you include a partitioning clause. The partitioning clause, and subclauses, that you include depend upon the type of partitioning you want to achieve. You can partition both regular (heap organized) tables and index-organized tables, except for those containing LONG or LONG RAW columns. You can create non-partitioned global indexes, range or hash-partitioned global indexes, and local indexes on partitioned tables. When you create (or alter) a partitioned table, a row movement clause, either ENABLE ROW MOVEMENT or DISABLE ROW MOVEMENT can be specified. This clause either enables or disables the migration of a row to a new partition if its key is updated. The default is DISABLE ROW MOVEMENT. The following sections present details and examples of creating partitions for the various types of partitioned tables and indexes: , Creating Range-Partitioned Tables and Global Indexes , Creating Hash-Partitioned Tables and Global Indexes , Creating List-Partitioned Tables , Creating Composite Range-Hash Partitioned Tables , Creating Composite Range-List Partitioned Tables , Using Subpartition Templates to Describe Composite Partitioned Tables , Using Multicolumn Partitioning Keys , Creating Partitioned Index-Organized Tables , Partitioning Restrictions for Multiple Block Sizes See Also: o Oracle Database SQL Reference for the exact syntax of the partitioning clauses for creating and altering partitioned tables and indexes, any restrictions on their use, and specific privileges required for creating and altering tables o Oracle Database Application Developer's Guide - Large Objects for information specific to creating partitioned tables containing columns with LOBs or other objects stored as LOBs o Oracle Database Application Developer's Guide - Object-Relational Features for information specific to creating tables with object types, nested tables, or VARRAYs. Creating Range-Partitioned Tables and Global Indexes The PARTITION BY RANGE clause of the CREATE TABLE statement specifies that the table or index is to be range-partitioned. The PARTITION clauses identify the individual partition ranges, and optional subclauses of a PARTITION clause can specify physical and other attributes specific to a partition segment. If not overridden at the partition level, partitions inherit the attributes of their underlying table. Creating a Range Partitioned Table In this example, more complexity is added to the example presented earlier for a range-partitioned table. Storage parameters and a LOGGING attribute are specified at the table level. These replace the corresponding defaults inherited from the tablespace level for the table itself, and are inherited by the range partitions. However, because there was little business in the first quarter, the storage attributes for partition sales_q1 are made smaller. The ENABLE ROW MOVEMENT clause is specified to allow the migration of a row to a new partition if an update to a key value is made that would place the row in a different partition. CREATE TABLE sales ( invoice_no NUMBER, sale_year INT NOT NULL, sale_month INT NOT NULL, sale_day INT NOT NULL ) STORAGE (INITIAL 100K NEXT 50K) LOGGING PARTITION BY RANGE ( sale_year, sale_month, sale_day) ( PARTITION sales_q1 VALUES LESS THAN ( 1999, 04, 01 ) TABLESPACE tsa STORAGE (INITIAL 20K, NEXT 10K), PARTITION sales_q2 VALUES LESS THAN ( 1999, 07, 01 ) TABLESPACE tsb, PARTITION sales_q3 VALUES LESS THAN ( 1999, 10, 01 ) TABLESPACE tsc, PARTITION sales q4 VALUES LESS THAN ( 2000, 01, 01 ) TABLESPACE tsd) ENABLE ROW MOVEMENT; Creating a Range-Partitioned Global Index The rules for creating range-partitioned global indexes are similar to those for creating range-partitioned tables. The following is an example of creating a range-partitioned global index on sales_month for the table created in the preceding example. Each index partition is named but is stored in the default tablespace for the index. CREATE INDEX month_ix ON sales(sales_month) GLOBAL PARTITION BY RANGE(sales_month) (PARTITION pm1_ix VALUES LESS THAN (2) PARTITION pm2_ix VALUES LESS THAN (3) PARTITION pm3_ix VALUES LESS THAN (4) PARTITION pm4_ix VALUES LESS THAN (5) PARTITION pm5_ix VALUES LESS THAN (6) PARTITION pm6_ix VALUES LESS THAN (7) PARTITION pm7_ix VALUES LESS THAN (8) PARTITION pm8_ix VALUES LESS THAN (9) PARTITION pm9_ix VALUES LESS THAN (10) PARTITION pm10_ix VALUES LESS THAN (11) PARTITION pm11_ix VALUES LESS THAN (12) PARTITION pm12_ix VALUES LESS THAN (MAXVALUE)); Note: If your enterprise has or will have databases using different character sets, use caution when partitioning on character columns, because the sort sequence of characters is not identical in all character sets. For more information, see Oracle Database Globalization Support Guide. Creating Hash-Partitioned Tables and Global Indexes The PARTITION BY HASH clause of the CREATE TABLE statement identifies that the table is to be hash-partitioned. The PARTITIONS clause can then be used to specify the number of partitions to create, and optionally, the tablespaces to store them in. Alternatively, you can use PARTITION clauses to name the individual partitions and their tablespaces. The only attribute you can specify for hash partitions is TABLESPACE. All of the hash partitions of a table must share the same segment attributes (except TABLESPACE), which are inherited from the table level. Creating a Hash Partitioned Table The following examples illustrate two methods of creating a hash-partitioned table named dept. In the first example the number of partitions is specified, but system generated names are assigned to them and they are stored in the default tablespace of the table. CREATE TABLE dept (deptno NUMBER, deptname VARCHAR(32)) PARTITION BY HASH(deptno) PARTITIONS 16; In this second example, names of individual partitions, and tablespaces in which they are to reside, are specified. The initial extent size for each hash partition (segment) is also explicitly stated at the table level, and all partitions inherit this attribute. CREATE TABLE dept (deptno NUMBER, deptname VARCHAR(32)) STORAGE (INITIAL 10K) PARTITION BY HASH(deptno) (PARTITION p1 TABLESPACE ts1, PARTITION p2 TABLESPACE ts2, PARTITION p3 TABLESPACE ts1, PARTITION p4 TABLESPACE ts3); If you create a local index for this table, the database constructs the index so that it is equipartitioned with the underlying table. The database also ensures that the index is maintained automatically when maintenance operations are performed on the underlying table. The following is an example of creating a local index on the table dept: CREATE INDEX loc_dept_ix ON dept(deptno) LOCAL; You can optionally name the hash partitions and tablespaces into which the local index partitions are to be stored, but if you do not do so, the database uses the name of the corresponding base partition as the index partition name, and stores the index partition in the same tablespace as the table partition. Creating a Hash-Partitioned Global Index Hash partitioned global indexes can improve the performance of indexes where a small number of leaf blocks in the index have high contention in multiuser OLTP environments. Queries involving the equality and IN predicates on the index partitioning key can efficiently use hash-partitioned global indexes. The syntax for creating a hash partitioned global index is similar to that used for a hash partitioned table. For example, the following statement creates a hash-partitioned global index: CREATE INDEX hgidx ON tab (c1,c2,c3) GLOBAL PARTITION BY HASH (c1,c2) (PARTITION p1 TABLESPACE tbs_1, PARTITION p2 TABLESPACE tbs_2, PARTITION p3 TABLESPACE tbs_3, PARTITION p4 TABLESPACE tbs_4); Creating List-Partitioned Tables The semantics for creating list partitions are very similar to those for creating range partitions. However, to create list partitions, you specify a PARTITION BY LIST clause in the CREATE TABLE statement, and the PARTITION clauses specify lists of literal values, which are the discrete values of the partitioning columns that qualify rows to be included in the partition. For list partitioning, the partitioning key can only be a single column name from the table. Available only with list partitioning, you can use the keyword DEFAULT to describe the value list for a partition. This identifies a partition that will accommodate rows that do not map into any of the other partitions. As for range partitions, optional subclauses of a PARTITION clause can specify physical and other attributes specific to a partition segment. If not overridden at the partition level, partitions inherit the attributes of their parent table. The following example creates table sales_by_region and partitions it using the list method. The first two PARTITION clauses specify physical level defaults. The remaining attributes, which override the table- PARTITION clauses do not specify attributes and those partitions inherit their physical attributes from table-level defaults. A default partition is specified. CREATE TABLE sales_by_region (item# INTEGER, qty INTEGER, store_name VARCHAR(30), state_code VARCHAR(2), sale_date DATE) STORAGE(INITIAL 10K NEXT 20K) TABLESPACE tbs5 PARTITION BY LIST (state_code) ( PARTITION region_east VALUES ('MA','NY','CT','NH','ME','MD','VA','PA','NJ') STORAGE (INITIAL 20K NEXT 40K PCTINCREASE 50) TABLESPACE tbs8, PARTITION region_west VALUES ('CA','AZ','NM','OR','WA','UT','NV','CO') NOLOGGING, PARTITION region_south VALUES ('TX','KY','TN','LA','MS','AR','AL','GA'), PARTITION region_central VALUES ('OH','ND','SD','MO','IL','MI','IA'), PARTITION region_null VALUES (NULL), PARTITION region_unknown VALUES (DEFAULT) ); Creating Composite Range-Hash Partitioned Tables To create a range-hash partitioned table, you start by using the PARTITION BY RANGE clause of a CREATE TABLE statement. Next, you specify a SUBPARTITION BY HASH clause that follows similar syntax and rules as the PARTITION BY HASH clause. The individual PARTITION and SUBPARTITION or SUBPARTITIONS clauses, and optionally a SUBPARTITION TEMPLATE clause, follow. Attributes specified for a range partition apply to all subpartitions of that partition. You can specify different attributes for each range partition, and you can specify a STORE IN clause at the partition level if the list of tablespaces across which the subpartitions of that partition should be spread is different from those of other partitions. All of this is illustrated in the following example. CREATE TABLE emp (deptno NUMBER, empname VARCHAR(32), grade NUMBER) PARTITION BY RANGE(deptno) SUBPARTITION BY HASH(empname) SUBPARTITIONS 8 STORE IN (ts1, ts3, ts5, ts7) (PARTITION p1 VALUES LESS THAN (1000), PARTITION p2 VALUES LESS THAN (2000) STORE IN (ts2, ts4, ts6, ts8), PARTITION p3 VALUES LESS THAN (MAXVALUE) (SUBPARTITION p3_s1 TABLESPACE ts4, SUBPARTITION p3_s2 TABLESPACE ts5)); To learn how using a subpartition template can simplify the specification of a composite partitioned table, see "Using Subpartition Templates to Describe Composite Partitioned Tables". The following statement is an example of creating a local index on the emp table where the index segments are spread across tablespaces ts7, ts8, and ts9. CREATE INDEX emp_ix ON emp(deptno) LOCAL STORE IN (ts7, ts8, ts9); This local index is equipartitioned with the base table as follows: , It consists of as many partitions as the base table. , Each index partition consists of as many subpartitions as the corresponding base table partition. , Index entries for rows in a given subpartition of the base table are stored in the corresponding subpartition of the index. Creating Composite Range-List Partitioned Tables The concept of range-list partitioning is similar to that of the other composite partitioning method, range-hash, but this time you specify that the subpartitions are to be list rather than hash. Specifically, after the CREATE TABLE...PARTITION BY RANGE clause, you include a SUBPARTITION BY LIST clause that follows similar syntax and rules as the PARTITION BY LIST clause. The individual PARTITION and SUBPARTITION clauses, and optionally a SUBPARTITION TEMPLATE clause, follow. The range partitions of the composite partitioned table are described as for non-composite range partitioned tables. This allows that optional subclauses of a PARTITION clause can specify physical and other attributes, including tablespace, specific to a partition segment. If not overridden at the partition level, partitions inherit the attributes of their underlying table. The list subpartition descriptions, in the SUBPARTITION clauses, are described as for non-composite list partitions, except the only physical attribute that can be specified is a tablespace (optional). Subpartitions inherit all other physical attributes from the partition description. The following example of creates a table that specifies a tablespace at the partition and subpartition levels. The number of subpartitions within each partition varies, and default subpartitions are specified. CREATE TABLE sample_regional_sales (deptno number, item_no varchar2(20), txn_date date, txn_amount number, state varchar2(2)) PARTITION BY RANGE (txn_date) SUBPARTITION BY LIST (state) (PARTITION q1_1999 VALUES LESS THAN (TO_DATE('1-APR-1999','DD-MON-YYYY')) TABLESPACE tbs_1 (SUBPARTITION q1_1999_northwest VALUES ('OR', 'WA'), SUBPARTITION q1_1999_southwest VALUES ('AZ', 'UT', 'NM'), SUBPARTITION q1_1999_northeast VALUES ('NY', 'VM', 'NJ'), SUBPARTITION q1_1999_southeast VALUES ('FL', 'GA'), SUBPARTITION q1_others VALUES (DEFAULT) TABLESPACE tbs_4 ), PARTITION q2_1999 VALUES LESS THAN ( TO_DATE('1-JUL-1999','DD-MON-YYYY')) TABLESPACE tbs_2 (SUBPARTITION q2_1999_northwest VALUES ('OR', 'WA'), SUBPARTITION q2_1999_southwest VALUES ('AZ', 'UT', 'NM'), SUBPARTITION q2_1999_northeast VALUES ('NY', 'VM', 'NJ'), SUBPARTITION q2_1999_southeast VALUES ('FL', 'GA'), SUBPARTITION q2_1999_northcentral VALUES ('SD', 'WI'), SUBPARTITION q2_1999_southcentral VALUES ('OK', 'TX') ), PARTITION q3_1999 VALUES LESS THAN (TO_DATE('1-OCT-1999','DD-MON-YYYY')) TABLESPACE tbs_3 (SUBPARTITION q3_1999_northwest VALUES ('OR', 'WA'), SUBPARTITION q3_1999_southwest VALUES ('AZ', 'UT', 'NM'), SUBPARTITION q3_others VALUES (DEFAULT) TABLESPACE tbs_4 ), PARTITION q4_1999 VALUES LESS THAN ( TO_DATE('1-JAN-2000','DD-MON-YYYY')) TABLESPACE tbs_4 ); This example results in the following subpartition descriptions: , All subpartitions inherit their physical attributes, other than tablespace, from tablespace level defaults. This is because the only physical attribute that has been specified for partitions or subpartitions is tablespace. There are no table level physical attributes specified, thus tablespace level defaults are inherited at all levels. , The first 4 subpartitions of partition q1_1999 are all contained in tbs_1, except for the subpartition q1_others, which is stored in tbs_4 and contains all rows that do not map to any of the other partitions. , The 6 subpartitions of partition q2_1999 are all stored in tbs_2. , The first 2 subpartitions of partition q3_1999 are all contained in tbs_3, except for the subpartition q3_others, which is stored in tbs_4 and contains all rows that do not map to any of the other partitions. , There is no subpartition description for partition q4_1999. This results in one default subpartition being created and stored in tbs_4. The subpartition name is system generated in the form SYS_SUBPn. To learn how using a subpartition template can simplify the specification of a composite partitioned table, see "Using Subpartition Templates to Describe Composite Partitioned Tables". Using Subpartition Templates to Describe Composite Partitioned Tables You can create subpartitions in a composite partitioned table using a subpartition template. A subpartition template simplifies the specification of subpartitions by not requiring that a subpartition descriptor be specified for every partition in the table. Instead, you describe subpartitions only once in a template, then apply that subpartition template to every partition in the table. The subpartition template is used whenever a subpartition descriptor is not specified for a partition. If a subpartition descriptor is specified, then it is used instead of the subpartition template for that partition. If no subpartition template is specified, and no subpartition descriptor is supplied for a partition, then a single default subpartition is created. Specifying a Subpartition Template for a Range-Hash Partitioned Table In the case of range-hash partitioned tables, the subpartition template can describe the subpartitions in detail, or it can specify just the number of hash subpartitions. The following example creates a range-hash partitioned table using a subpartition template: CREATE TABLE emp_sub_template (deptno NUMBER, empname VARCHAR(32), grade NUMBER) PARTITION BY RANGE(deptno) SUBPARTITION BY HASH(empname) SUBPARTITION TEMPLATE (SUBPARTITION a TABLESPACE ts1, SUBPARTITION b TABLESPACE ts2, SUBPARTITION c TABLESPACE ts3, SUBPARTITION d TABLESPACE ts4 ) (PARTITION p1 VALUES LESS THAN (1000), PARTITION p2 VALUES LESS THAN (2000), PARTITION p3 VALUES LESS THAN (MAXVALUE) ); This example produces the following table description: , Every partition has four subpartitions as described in the subpartition template. , Each subpartition has a tablespace specified. It is required that if a tablespace is specified for one subpartition in a subpartition template, then one must be specified for all. , The names of the subpartitions are generated by concatenating the partition name with the subpartition name in the form: partition name_subpartition name The following query displays the subpartition names and tablespaces: SQL> SELECT TABLESPACE_NAME, PARTITION_NAME, SUBPARTITION_NAME 2 FROM DBA_TAB_SUBPARTITIONS WHERE TABLE_NAME='EMP_SUB_TEMPLATE' 3 ORDER BY TABLESPACE_NAME; TABLESPACE_NAME PARTITION_NAME SUBPARTITION_NAME --------------- --------------- ------------------ TS1 P1 P1_A TS1 P2 P2_A TS1 P3 P3_A TS2 P1 P1_B TS2 P2 P2_B TS2 P3 P3_B TS3 P1 P1_C TS3 P2 P2_C TS3 P3 P3_C TS4 P1 P1_D TS4 P2 P2_D TS4 P3 P3_D 12 rows selected. Specifying a Subpartition Template for a Range-List Partitioned Table The following example, for a range-list partitioned table, illustrates how using a subpartition template can help you stripe data across tablespaces. In this example a table is created where the table subpartitions are vertically striped, meaning that subpartition n from every partition is in the same tablespace. CREATE TABLE stripe_regional_sales ( deptno number, item_no varchar2(20), txn_date date, txn_amount number, state varchar2(2)) PARTITION BY RANGE (txn_date) SUBPARTITION BY LIST (state) SUBPARTITION TEMPLATE (SUBPARTITION northwest VALUES ('OR', 'WA') TABLESPACE tbs_1, SUBPARTITION southwest VALUES ('AZ', 'UT', 'NM') TABLESPACE tbs_2, SUBPARTITION northeast VALUES ('NY', 'VM', 'NJ') TABLESPACE tbs_3, SUBPARTITION southeast VALUES ('FL', 'GA') TABLESPACE tbs_4, SUBPARTITION midwest VALUES ('SD', 'WI') TABLESPACE tbs_5, SUBPARTITION south VALUES ('AL', 'AK') TABLESPACE tbs_6, SUBPARTITION others VALUES (DEFAULT ) TABLESPACE tbs_7 ) (PARTITION q1_1999 VALUES LESS THAN ( TO_DATE('01-APR-1999','DD-MON-YYYY')), PARTITION q2_1999 VALUES LESS THAN ( TO_DATE('01-JUL-1999','DD-MON-YYYY')), PARTITION q3_1999 VALUES LESS THAN -1999','DD-MON-YYYY')), ( TO_DATE('01-OCT PARTITION q4_1999 VALUES LESS THAN ( TO_DATE('1-JAN-2000','DD-MON-YYYY')) ); If you specified the tablespaces at the partition level (for example, tbs_1 for partition q1_1999, tbs_2 for partition q1_1999, tbs_3 for partition q3_1999, and tbs_4 for partition q4_1999) and not in the subpartition template, then the table would be horizontally striped. All subpartitions would be in the tablespace of the owning partition. Using Multicolumn Partitioning Keys For range- and hash-partitioned tables, you can specify up to 16 partitioning key columns. Multicolumn partitioning should be used when the partitioning key is composed of several columns and subsequent columns define a higher granularity than the preceding ones. The most common scenario is a decomposed DATE or TIMESTAMP key, consisting of separated columns, for year, month, and day. In evaluating multicolumn partitioning keys, the database uses the second value only if the first value cannot uniquely identify a single target partition, and uses the third value only if the first and second do not determine the correct partition, and so forth. A value cannot determine the correct partition only when a partition bound exactly matches that thvalue and the same bound is defined for the next partition. The n column will therefore be investigated only when all previous (n-1) values of the multicolumn key exactly match the (n-1) bounds of a partition. A second column, for example, will be evaluated only if the first column exactly matches the partition boundary value. If all column values exactly match all of the bound values for a partition, the database will determine that the row does not fit in this partition and will consider the next partition for a match. In the case of nondeterministic boundary definitions (successive partitions with identical values for at least one column), the partition boundary value becomes an inclusive value, representing a "less than or equal to" boundary. This is in contrast to deterministic boundaries, where the values are always regarded as "less than" boundaries. The following example illustrates the column evaluation for a multicolumn range-partitioned table, storing the actual DATE information in three separate columns: year, month, and date. The partitioning granularity is a calendar quarter. The partitioned table being evaluated is created as follows: CREATE TABLE sales_demo ( year NUMBER, month NUMBER, day NUMBER, amount_sold NUMBER) PARTITION BY RANGE (year,month) (PARTITION before2001 VALUES LESS THAN (2001,1), PARTITION q1_2001 VALUES LESS THAN (2001,4), PARTITION q2_2001 VALUES LESS THAN (2001,7), PARTITION q3_2001 VALUES LESS THAN (2001,10), PARTITION q4_2001 VALUES LESS THAN (2002,1), PARTITION future VALUES LESS THAN (MAXVALUE,0)); REM 12-DEC-2000 INSERT INTO sales_demo VALUES(2000,12,12, 1000); REM 17-MAR-2001 INSERT INTO sales_demo VALUES(2001,3,17, 2000); REM 1-NOV-2001 INSERT INTO sales_demo VALUES(2001,11,1, 5000); REM 1-JAN-2002 INSERT INTO sales_demo VALUES(2002,1,1, 4000); The year value for 12-DEC-2000 satisfied the first partition, before2001, so no further evaluation is needed: SELECT * FROM sales_demo PARTITION(before2001); YEAR MONTH DAY AMOUNT_SOLD ---------- ---------- ---------- ----------- 2000 12 12 1000 The information for 17-MAR-2001 is stored in partition q1_2001. The first partitioning key column, year, does not by itself determine the correct partition, so the second partition key column, month, must be evaluated. SELECT * FROM sales_demo PARTITION(q1_2001); YEAR MONTH DAY AMOUNT_SOLD ---------- ---------- ---------- ----------- 2001 3 17 2000 Following the same determination rule as for the previous record, the second column, month, determines partition q4_2001 as correct partition for 1-NOV-2001: SELECT * FROM sales_demo PARTITION(q4_2001); YEAR MONTH DAY AMOUNT_SOLD ---------- ---------- ---------- ----------- 2001 11 1 5000 The partition for 01-JAN-2002 is determined by evaluating only the year column, which indicates the future partition: SELECT * FROM sales_demo PARTITION(future); YEAR MONTH DAY AMOUNT_SOLD ---------- ---------- ---------- ----------- 2002 1 1 4000 If the database encounters MAXVALUE in one of the partition key columns, all other values of subsequent columns become irrelevant. That is, a definition of partition future in the preceding example, having a bound of (MAXVALUE,0) is equivalent to a bound of (MAXVALUE,100) or a bound of (MAXVALUE,MAXVALUE). The following example illustrates the use of a multicolumn partitioned approach for table supplier_parts, storing the information about which suppliers deliver which parts. To distribute the data in equal-sized partitions, it is not sufficient to partition the table based on the supplier_id, because some suppliers might provide hundreds of thousands of parts, while others provide only a few specialty parts. Instead, you partition the table on (supplier_id, partnum) to manually enforce equal-sized partitions. CREATE TABLE supplier_parts ( supplier_id NUMBER, partnum NUMBER, price NUMBER) PARTITION BY RANGE (supplier_id, partnum) (PARTITION p1 VALUES LESS THAN (10,100), PARTITION p2 VALUES LESS THAN (10,200), PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE)); The following three records are inserted into the table: INSERT INTO supplier_parts VALUES (5,5, 1000); INSERT INTO supplier_parts VALUES (5,150, 1000); INSERT INTO supplier_parts VALUES (10,100, 1000); The first two records are inserted into partition p1, uniquely identified by supplier_id. However, the third record is inserted into partition p2; it matches all range boundary values of partition p1 exactly and the database therefore considers the following partition for a match. The value of partnum satisfies the criteria < 200, so it is inserted into partition p2. SELECT * FROM supplier_parts PARTITION (p1); SUPPLIER_ID PARTNUM PRICE ----------- ---------- ---------- 5 5 1000 5 150 1000 SELECT * FROM supplier_parts PARTITION (p2); SUPPLIER_ID PARTNUM PRICE ----------- ---------- ---------- 10 100 1000 Every row with supplier_id < 10 will be stored in partition p1, regardless of the partnum value. The column partnum will be evaluated only if supplier_id =10, and the corresponding rows will be inserted into partition p1, p2, or even into p3 when partnum >=200. To achieve equal-sized partitions for ranges of supplier_parts, you could choose a composite range-hash partitioned table, range partitioned by supplier_id, hash subpartitioned by partnum. Defining the partition boundaries for multicolumn partitioned tables must obey some rules. For example, consider a table that is range partitioned on three columns a, b, and c. The individual partitions have range values represented as follows: P0(a0, b0, c0) P1(a1, b1, c1) P2(a2, b2, c2) … Pn(an, bn, cn) The range values you provide for each partition must follow these rules: , a0 must be less than or equal to a1, and a1 must be less than or equal to a2, and so on. , If a0=a1, then b0 must be less than or equal to b1. If a0 < a1, then b0 and b1 can have any values. If b0=b1, then c0 must be less than or equal to c1. If b0
/
本文档为【[计算机软件及应用]oracle分区】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索