为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

汽车双横臂独立悬架的运动学分析和计算

2012-12-12 5页 pdf 910KB 26阅读

用户头像

is_516741

暂无简介

举报
汽车双横臂独立悬架的运动学分析和计算 收稿日期: 2001 07 11 作者简介: 戴旭文 ( 1969- ) , 男, 吉林市人, 硕士研究生, 研究方向为汽车车身设计. 文章编号: 1009 4687 ( 2002) 02 0029 05 汽车双横臂独立悬架的运动学分析和计算 戴旭文, � 谷中丽, � 刘 � 剑 (北京理工大学车辆与交通工程学院, 北京 � 100081) 摘 � 要: 利用机构运动学中的坐标变换以及数值计算的方法对汽车双横臂独立悬架系统 进行运动学分析, 从而建立悬架系统结构的运动模型. 实例的优化结果表明, 将传统机 构学方法...
汽车双横臂独立悬架的运动学分析和计算
收稿日期: 2001 07 11 作者简介: 戴旭文 ( 1969- ) , 男, 吉林市人, 硕士研究生, 研究方向为汽车车身. 文章编号: 1009 4687 ( 2002) 02 0029 05 汽车双横臂独立悬架的运动学和计算 戴旭文, � 谷中丽, � 刘 � 剑 (北京理工大学车辆与交通学院, 北京 � 100081) 摘 � 要: 利用机构运动学中的坐标变换以及数值计算的对汽车双横臂独立悬架系统 进行运动学分析, 从而建立悬架系统结构的运动模型. 实例的优化结果表明, 将传统机 构学方法与现代数值计算方法相结合, 使悬架设计的更为精确和清晰, 提高了工作效率. 关键词: 双横臂独立悬架; 导向机构; 运动学分析 中图分类号: U463�33+ 1� � � 文献标识码: A 1 � 引 � 言 采用双横臂独立悬架的车辆具有良好的行驶平顺性和操纵稳定性, 所以在现代汽车上得 到广泛应用. 通常情况下, 在汽车设计过程中对前轮独立悬架导向机构的设计要求如下[ 1] : � 当车轮与车身产生相对运动时, 保证轮距变化在一定的范围之内( � 4�0mm) , 以免轮胎 过早磨损; � 当车轮上下跳动时, 前轮定位参数要有合理的变化特性, 不应产生纵向加速 度. � 转弯时, 应使车轮与车身倾斜方向相同, 增加汽车的不足转向效应. 双横臂独立悬架的布置是空间的, 机构的空间运动分析过程比较复杂, 计算量很大. 传 统设计一般采用经验设计、查表法以及作图等方法, 设计虽然可以基本满足要求, 但精度和 效率不高. 作者建立了悬架机构的运动模型, 简化了运动分析过程; 数值计算模型的建立和 计算机的使用, 减轻了手工计算量, 提高工作效率. 2 � 双横臂独立悬架的导向机构运动学分析 典型的双横臂独立悬架导向机构如图 1 所示. 为了简化分析, 图中略去了转向节臂. A , D 分别为上、下横臂的回转中心点, 主轴销通过 B , C 两个球面副与上下横臂相连接. 1、2、3、4杆组成的空间机构, 是由 A , D 两个转动副与车身相连组成的一个典型 RSSR 闭环空间机构. 2�1 � 系统的上横臂输入 �2 与下横臂输出 �1 按照 Denavit Hartenberg坐标系的规定[ 2] , 取坐标系如图 1. k 1, k4 轴分别与转动副 的轴线重合, k 2 与 k 1 平行( �2= 0)且通过球面副 B 的中心, k3 轴通过主销球头的中心. 另 外取两个回转轴的公垂线为 i 1, 通过球心 B 垂直于 k 1与直线 i 2. 2002 年第 2 期 车 � 辆 � 与 � 动 � 力 � 技 � 术 Vehicle & Pow er Technolog y 总第 86 期 图 1 � 双横臂独立悬架导向机构简图 DC 下横臂; BC 主轴销; A B 上横臂; JQ 车轮轴; A , D 转动副; B , C 球副; Q 车轮中心; G 接地点 机构的位姿方程: E k� 2E i� 2E 23E 34E k� 1E i� 1 = I, (1) 其中 � E12, E 23, E 34, E 41为欧拉变换, 分别为 �1, �2, �1, �2 的函数; I 为单位阵. 由于 �2= 0, 从而 E i�2= I , 式(1)简化为: E k� 2E 23E 34E k� 1E i� 1 = I , (2) � � 根据机构运动学[ 2]可知: P = �m j= 1 ( h jij + sjkj ) = h1 i1 + s 1k 1+ h2 i 2 + lk3+ h4 i 4- s4k4 = 0, (3) 参数代入、化简可得: A 1sin�1+ A 2cos�1+ A 3 = 0, (4) 其中 � A 1= s 1h4sin�1- h2h4sin�2cos�1, � A 2= h1h4+ h2h4cos�2, A 3= 1 2 ( s 2 4+ h 2 1+ s 2 1+ h 2 2+ h 2 4- l 2 )- s4 s1cos�1+ h1h2cos�2- s 4h2sin�1sin�2. 进一步求解得到: �1 = 2arctan A 1 � A 21 + A 22 - A 23 A 2- A 3 . (5) � � 式(5)描述了上横臂的角输入 �2 与相应的下横臂的角输出 �1 之间存在的确定的函数关 系, 通过式(5)可以对整个导向机构进行运动学分析、计算. 2�2 � 主销两球头坐标的求解 由机构运动学原理可知, 设有某一任意轴 �方向向量为: �= ( �1, �2, �3) , 那么绕 � 回转的变换矩阵为E��, 则主销两端 B , C 两点的坐标为: B = E �(� 1 - �01) B 0 C = E �( � 2 - �02) C 0 , (6) �30� � � � � � � � � 车辆与动力技术 � � � � � � � � � � � � � � � � 2002年 � 其中 � �01, �02, B0, C0 是初始值. B , C 的坐标求出后, 设 �= | BJ | / | BC | , 车轮回转中心点 J 的坐标J= (1- �) B+ �C . J 点是悬架导向机构和车轮的理论连接点, 它的确定是进一步分析车轮运动的基础. 3 � 汽车车轮部分的运动分析 3�1 � 车轮中心点 Q 的坐标求解 第一步先求解出转向节臂的回转中心 H 点的坐标. 将 B- C- J- Q - G 从图 1中分离出来, 见图 2. H 点的运动具有以下的约束条件: 图 2 � 车轮及转向节 IH 转向拉杆; JH 转向节臂; H , I 球副 | HJ | = const1 | HB | = const 2 | HI | = const3 , ( 7) 其中 � const1, const2, con st 3可以根据系统的初 始条件获得. B , I , J 点的坐标均已在上面求出, 所以式(7)是三元二次方程组. 利用数值解法[ 3]解 得 H 点的坐标: ( HX , H Y , H Z) . 同理, 由于 Q 点到 B , C, H 的距离不变, 所以存在下列方程组: | QH | = const4 | QB | = const5 | QC| = const6 , ( 8) 其中 � const4, const5, const6可以根据系统的初始条件获得. 解之得 Q 点的坐标: ( QX , Q Y , QZ) . 3�2 � 车轮接地点 G 的坐标求解 设车轮平面的方向向量 n = ( a , b, c) T , 根据汽车结构的特点, 车轮平面的法线方向向 量与 QJ 轴的方向向量相同, 且 Q 点位于车轮平面内, 由此可以设车轮平面的方程为: aX + bY+ cZ+ d= 0; 另外 G 点位于车轮的圆周上, 车轮圆周的方程为: aX + bY + cZ+ d = 0 ( X - QX ) 2 + ( Y- QY ) 2 + ( Z- QZ ) 2 = R 2 0 , (9) 其中 � R 0为车轮半径. G 点是这个圆周上Z 坐标值最小的一点, 可以利用计算机采用优化 解法求得 G 点的坐标. 4 � 车轮定位参数的确定 汽车车轮定位参数可按照下面的公式计算[ 4] : � 主销的后倾角 �ZH= arctan CX - BX BZ- CZ ; � 主销的内倾角 �ZN= arctan C Y- BX BZ- CZ ; �31�� 第 2 期 � � � � � � � � 戴旭文等: 汽车双横臂独立悬架的运动学分析和计算 � 车轮的外倾角 �L Y= arctan Q Y- G Y QZ- GZ ; �车轮的前束角 �QS= arctan QX - JX QY- J Y ; � 轮距的变化量 �= 2 ( GX - GX0) 2+ ( G Y- G Y0) 2+ ( GZ- GZ0) 2 ; �车轮的纵向加速度 a= GX - GX0 GZ- GZ0 aZ. 汽车转向行驶时外侧车轮处于压缩行程, 前束角减小; 内侧车轮处于复原行程, 前束角 增大; 车轮向汽车纵向中心转动, 增加了不足转向量. 从车轮的纵向位移变化幅度可以计算 出车轮在跳动时的附加纵向加速度. 汽车行驶过程中, 车轮上下跳运时, 只有主销及车轮的定位参数变化在所要求的范围 内, 且车轮运动与导向机构的运动彼此协调, 才能保证汽车行驶过程中具有良好的操纵稳定 性和平顺性. 5 � 计算实例 如图 1所示的双横臂系统, 建立固定在汽车车身上的直角坐标系, 原点位于 A 点. k 1 和 k 2轴在 XOZ 平面中与X 轴的夹角分别为- 1�5~ 1�5�, 6�. 初始时刻 A , B , C, D, J , Q, H , I 点的坐标( mm)为: A (0, 0, 0) , � � � � � B (3, 281 , - 21�44) , � � C (7, 317 , - 295) , D (10 , - 121, - 238) , H (154, 256 , - 327) , I (74 , - 151, - 264) , Q ( 8�5, 419 , - 241) , J (5�8, 306, 315�5) . 将上述坐标转化为 Denav it- Hartenberg 坐标, 计算车轮的定位参数. 当车轮上下跳动 的范围为 � 50 mm 时: 前轮外倾角的变化范围: - 0�4~ 2�7�; 车轮前束角的变化范围: 1~ 1�57�; 车轮横向滑移变化范围: - 7�4~ 6�2 mm; 主销内倾角的变化范围: 7�5~ 9�; 主销后倾角的变化范围: 0�65~ 1�; 车轮的纵向加速度为: 0�076 aZ. 从上面的数据来看, 此设计的指标不高, 尤其是车轮的滑移特性很差. 另外, 车轮前束 角和主销后倾角的变化范围有些大, 总之这个设计不十分理想. 利用上述所建的模型对所选坐标( mm)进行优化, 得到: A (0, 0, 0) , � � � � � B (5�6, 266 , - 74) , � � C (12�7, 301�8 , - 345) , D (59 , - 159, - 286) , H (201, 212 , - 277) , I ( 113�3 , - 199, - 214) , Q ( 13�8, 469 , - 271) , J (43, 291, 298) . 优化后的设计方案(车轮上下跳动 � 50mm)车轮定位参数如下: 前轮外倾角的变化范围: 0�34~ 1�73�; 车轮前束角的变化范围: 1�03~ 1�10�; 车轮横向滑移变化范围: - 2�96~ 2�02 mm ; �32� � � � � � � � � 车辆与动力技术 � � � � � � � � � � � � � � � � 2002年 � 主销内倾角的变化范围: 6�3~ 9�42�; 主销后倾角的变化范围: 1�34~ 1�84�; 车轮的纵向加速度为: 0�045 aZ. 从所得的数据来看, 虽然主销内倾角的变化范围有所增加, 但是其他指标都有了一定的 改善, 尤其是车轮滑移特性得到了明显的提高. 综合比较, 第二个方案比较理想. 6 � 结 � 论 � 本文所建立的运动模型适合于 RSSR 结构的各种车型双横臂独立悬架的结构参数设 计, 具有较高的设计精度, 同时可以对各个参数进行定量及定性的分析, 使设计者能够清楚 地了解悬架的各种运动特性. � 在具体的实用软件的使用中, 只需设计输入约束条件即可对机构进行运动分析和优 化设计. 设计者只需要了解参数的实际含义, 正确确定各个约束条件即可. 由于计算机的使 用, 可以摆脱依靠试验和查表以及经验的设计方式, 不但可以提高设计效率, 同时还可以提 高设计的准确性. 参考文献: [ 1] � 张洪欣. 汽车设计[ M ] . 北京: 机械工业出版社, 1989. [ 2] � 谢存禧, 郑时雄, 林怡青. 空间机构设计[ M] . 上海: 上海科学技术出版社, 1996. [ 3] � 丁丽娟. 数值计算方法[ M] . 北京: 北京理工大学出版社, 1997. [ 4] � 毛 � 明, 张相麟. 轮式车辆双横臂独立悬架的运动优化设计. 汽车工程[ J] . 1997 ( 3) : 38- 45. Kinematics Analysis and Calculation of the Double- Wishbone Independent Suspension of Wheeled- Vehicle DAI Xu-w en, � GU Zhong- li, � LIU Jian ( School of Vehicle and T ranspor tat ion Eng ineering, Beijing Institute of Technology, Beijing � 100081, China) Abstract: The article adopts the methods of coordinate conversion and numerical calculat ion for the kinematics analysis and calculat ion and then creates a model for the opt ionization of a double- w ishbone suspension system of w heeled- vehicle. The result of the example indicates that the combination of t radit ional mechanism kinemat ics w ith modern numerical calculat ion can simplify the calculat ions during design, and meanwhile make the process of design more concisely and clearly. Key words: double- w ishbone suspension; guide mechanism; kinematics analysis �33�� 第 2 期 � � � � � � � � 戴旭文等: 汽车双横臂独立悬架的运动学分析和计算
/
本文档为【汽车双横臂独立悬架的运动学分析和计算】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索