为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

【2017年整理】FDTD超宽带天线的同轴线馈电结构建模

2017-10-27 14页 doc 85KB 19阅读

用户头像

is_654168

暂无简介

举报
【2017年整理】FDTD超宽带天线的同轴线馈电结构建模【2017年整理】FDTD超宽带天线的同轴线馈电结构建模 超宽带天线的同轴线馈电结构建模 课程名称: 计算电磁学 任课老师: 姓 名: 专 业: 学 号: 摘要 同轴线馈电是超宽带天线常用的馈电方式。本文运用时域有限差分法(FDTD),对 同轴馈电的单极子天线的电磁特性进行时域模拟,基本思路是把同轴馈电的天线计算分为 激励网格和天线网格,并通过反射场/总场的分离边界把入射场加入到天线网格中。首先对 算法的原理及其在仿真计算中的具体实现方法作介绍,同时给出了同轴线馈电和单极振子 天线建模的具体算法,然后实例分析了同轴馈电...
【2017年整理】FDTD超宽带天线的同轴线馈电结构建模
【2017年整理】FDTD超宽带天线的同轴线馈电结构建模 超宽带天线的同轴线馈电结构建模 课程名称: 计算电磁学 任课老师: 姓 名: 专 业: 学 号: 摘要 同轴线馈电是超宽带天线常用的馈电方式。本文运用时域有限差分法(FDTD),对 同轴馈电的单极子天线的电磁特性进行时域模拟,基本思路是把同轴馈电的天线计算分为 激励网格和天线网格,并通过反射场/总场的分离边界把入射场加入到天线网格中。首先对 算法的原理及其在仿真计算中的具体实现作介绍,同时给出了同轴线馈电和单极振子 天线建模的具体算法,然后实例分析了同轴馈电单极子天线的若干性能,对比了粗网格模 拟和细网格模拟单极振子天线所产生的不同。用FDTD法对天线的仿真分析,可用作天线 的一种快速、经济的辅助手段。 关键词:时域有限差分法;阶梯近似网格剖分;二阶MUR吸收边界条件;单极子天线 Abstract Coaxial feed structures are widely used in ultra-wide band antennas . This paper modeled the characteristic of the monopole antenna feeded by coaxial line by FDTD in the time-domiain,which showes that . Firstly, it introduced the theory of the arithmetic and the particularly realization in the calculation; then it described the use in the time-domain; finally it analysed several characteristics of the monopole antenna. The arithmetic used in the microstrip antenna is also a quick and economical way to design the antenna. Key words:FDTD;2ndorder MUR absorbing-boundary;staircasing technique;monopole antenna 1.绪论 超宽带天线是针对天线收发信号的相对带宽而言的,当信号的带宽与中心频率之比小于1%时称为窄带,带宽与中心频率之比在1%与25%之间称为宽带,带宽与中心频率之比大于25%时称为超宽带。超宽带天线就是用来发射和接收超宽带信号的天线装置。而天线的辐射场要靠源来激发,如何设置符合实际的激励源,是计算天线辐射特性的关键之一。源的设置方式要与天线的馈电方式相一致,以保证天线的辐射。不同天线有不同的馈电方式,相应的激励源的设置也有所不同。同轴线是以TEM模为主模的传输线,可以传输超宽频带信号,由于其本身的一些优点,同轴线馈电是超宽带天线和高功率微波常用的馈电方式。 1966年K(S(Yee创立了计算电磁场的时域有限差分法(FDTD)[1],它是一种计算时变电磁场很有效的数值方法,已在计算电磁场的各个领域得到了广泛应用,尤其是在天线分析。作为一种电磁场的数值计算方法,时域有限差分法在计算天线的特性上具有一些很突出的优点:?作为一种瞬态方法,在脉冲波的激励下,FDTD方法的一次计算结果经Fourier变换后可获得丰富的频域信息;?适合模拟各种复杂电磁结构,用FDTD的离散空间网格可以比较精确地模拟天线(阵)的实际结构;?易于得到计算空间场的暂态分布情况,这既便于定性理解其工作的物理过程,又便于得到供定量分析的有关电参量;?它所需要的计算机内存和CUP时间与网格单元成正比,并且不需要矩阵求逆,明显优于传统的矩量法。本文首先从FDTD几个关键步骤入手,从理论上加以分析说明,并用这些对单极子天线进行分析计算。 2.天线模型 图1 金属平板上圆柱天线模型 图1是金属平板上圆柱天线模型。本文的基本思路是把同轴馈电的天线计算分为激励网格和天线网格,并通过反射场/总场的分离边界把入射场加入到天线网格中。这种思想将激励设置划分出来成为一个单独的网格空间(激励空间),在此网格空间只存在与天线馈线相同的传输线,无任何其它结构,而所研究的天线结构处于另一个网格空间之内(天线结构空间),见图2。激励空间的作用是迭代产生天线馈线入射波场,为使激励空间仅有入射波,传输线两端用吸收边界端接,在本文中吸收边界采二阶MUR吸收边界。 图2 天线网格与入射场网格的连接示意图 下面首先介绍时域有限差分基本原理,然后讨论激励网格和天线网格的建模,同时给出同轴线的激励源设置方法,最后实例分析了同轴馈电单极子天线的若干性能,对比粗网格模 拟和细网格模拟单极振子天线所产生的不同点。 3.基本原理 3.1 麦克斯韦方程及其差分格式 麦克斯韦方程的积分方程 ,D,, (1) ,,,,ddHlJS,, ,,ls,t,, ,B,, (2) ,,,,ddElS,, ,,ls,t,, BS,,d0 (3) ,l DS,,dq (4) ,l 它们相应的微分方程为 ,D,,,, (5) HJ,t ,B,,,, (6) E-Jm,t ,,,B0 (7) (8) ,,,D, 22Vm/库仑/米Cm/其中E为电场强度,单位为伏特,米();D为电通量密度,单位为 (); 22Am/韦伯/米Wbm/H为磁场强度,单位为安培,米();B为磁通量密度,单位为 ();J 2222 安培/米伏特/米Am/Vm/J为电流密度,单位为();为磁流密度,单位为 ()。各向m JH,,同性线性介质中的本构关系为D=,E , B=μH ,J=σE ,。其中,示介质mm 介电系数,单位为法拉,米(F,m);μ表示磁导系数,单位为亨利,米(H,m);σ表示电 ,,导率,单位为西门子,米(S,m);表示导磁率,单位为欧姆,米(Ω,m)。σ和分别mm ,12,10,,,为介质的电损耗和磁损耗。真空中σ,0,,0,==8.85(F/m),μmm ,7,,410,,=(H/m)。 m 在直角坐标系中,麦克斯韦旋度方程为: ,H,E,Hyxz (9) ,,,,,Ex,,,yzt ,E,H,Hyxz (10) ,,,,,Ey,,,zxt ,H,H,Eyxz (11) ,,,,,Ez,,,xyt ,E,H,Eyxz (12) ,,,,,,Hmx,,,yzt ,H,E,Eyxz (13) ,,,,,,Hmy,,,zxt ,E,E,Eyxz (14) ,,,,,,Emz,,,xyt 以上六个方程是FDTD离散差分的基础。 首先,将问题空间沿三个坐标轴向分成很多网格单元,用公、却和酝分别表示在x、y和Z坐标方向的网格空间步长,用?t表示时间步长,任意一个空间和时间的#函数#可表示 n:为 (15) fxyztfixjykzntfijk(,,,)(,,,)(,,),,,,,, 然后用中心差分式来表示函数对空间和时间的偏导数,这种差分式实质上是一种蛙跳法,具有二阶精度。 为了实现空间坐标的差分计算,并考虑到电磁场在空间互相正交和铰链的关系,在FDTD离散中电场和磁场各节点空间排布如图3,这就是著名的Yee元胞。 图 3 FDTD离散中的Yee元胞 Yee元胞中E、H个分量空间节点与时间步取值的整数和半整数约定如下表: 空间分量取样 电磁场分量 时间轴t取样 X坐标 Y坐标 Z坐标 1 i,Ej k x2 1 E j,i E节点 k n y2 1 k, Ei j z2 11 k, j,Hi x22 111 Hi,k, n, H节点 j y222 11i, j, Hk z22 下面直接给出直角坐标中三维情形下的FDTD形式: 设观察点(x,y,z)为的节点,即,以及时刻tnt,,,1/2,于是 E(1/2,,)ijk,,,x 111nn,1EijkCAijkEijk,,,,,(,,)(,,)(,,)xx 222 11nn,,,1111 22HijkHijk,,,,,(,,)(,,),zz12222,,CBijk(,,), 2,y, , , 11nn,,,1111 22HijkHijk,,,,,(,,)(,,)yy,2222,, ,z, ,,式中 1,(,,)ijkt,,1121,(,,)(,,)ijkijk,,,,122,2(,,)ijk,,1,t22CAijk(,,),,, 1112(,,)(,,)(,,)ijkijkijkt,,,,,,,222,,11,t22(,,)ijk,,2 t, 1,(,,)ijk,112 CBijk(,,),,,1112(,,)(,,)(,,)ijkijkijkt,,,,,,,2221,,1t2,2(,,)ijk,,2同理, 111nn,1EijkCAijkEijk,,,,,(,,)(,,)(,,)yy222 11nn,,,111122 HijkHijk(,,)(,,),,,,,xx,12222,,CBijk(,,), 2,x, ,, 11nn,,,111122HijkHijk,,,,,(,,)(,,) zz,2222,,,x,, ,, 111nn,1EijkCAijkEijk(,,)(,,)(,,),,,,,zz222 11nn,,,111122 HijkHijk,,,,,(,,)(,,),yy12222,,CBijk(,,),,x2 , ,, 11nn,,,111122HijkHijk,,,,,(,,)(,,), xx2222,,,y, ,, 运用同样的方法,我们还可得: 11nn,,11111122HijkCPijkHijk(,,)(,,)(,,),,,,,,,,xx 222222 11,nn (,1,)(,1,)EijkEijk,,,,,zz,1122,,,,CQijk(,,), 22,y,, 11,nn(,,1)(,,)EijkEijk,,,,yy ,22,,,z, , 式中 11,(,,)ijkt,,,m1111221,(,,)(,,)ijkijk,,,,,,m112222,2(,,)ijk,,,11,t222CPijk(,,),,,, 11111122(,,)(,,)(,,)ijkijkijkt,,,,,,,,,,mm222222,,111,t22(,,)ijk,,,22 ,t 11,(,,)ijk,,11122 (,,)CQijk,,,,11111122(,,)(,,)(,,)ijkijkijkt,,,,,,,,,,mm2222221,,112,t2(,,)ijk,,,22 同理可得: 1 n,1111111n,22HijkCPijkHijk(,,)(,,)(,,),,,,,,,,yy222222 11,nn(,,1)(,,) EijkEijk,,,,xx,1122,,,CQijk(,,), 22,z, , 11,nn(1,,)(,,)EijkEijk,,,, zz,22,, ,x, , 1n,1111111 n,22HijkCPijkHijk(,,)(,,)(,,),,,,,,,,zz222222 11,nnEijkEijk(1,,)(,,),,,,yy ,1122,,,CQijk(,,),22,z , , 11,nnEijkEijk(,1,)(,,),,,,zz, 22,,,x , , 由于FDTD方程只是原Maxwell旋度方程的一种近似,在计算中存在误差。 同时,由于FDTD方法是一个迭代过程,因此它的数值稳定性至关重要。 1(1)数值色散问题与空间步长, ; ct,, 111,,222()()(),,,xyz ,(2)数值稳定性与时间步长,x。 ,,12 界面上的介质参数采用介质边界算术平均值条件: 11111111,,,,(,,)((,,)(,,)ijkijkijk,,,,,,,,,,24222222, 111111,,,,,,,,((,,)(,,)ijkijk,,,222222, 11111111,,,,(,,)((,,)(,,)ijkijkijk,,,,,,,,,,24222222, 111111,,,,,,,,((,,)(,,)ijkijk,,,222222, 111111111,, ,,,,,,,,,,,,,(,,)((,,)(,,)ijkijkijk,,222222222,, 111111111,, ,,,ijkijkijk,,,,,,,,,,(,,)((,,)(,,)mmm,,222222222,, 3.2 良导体中的差分格式 在Yee的差分格式中,已经给出电导率为σ的导体中的FDTD差分格式。其中,对电 ,,t,,E,,,t2??1流项采用的是一般的中心差分格式。对于良导体,通常,因此,那2, 1,这将导致时间步进趋于不稳定。 么方程右边第一项系数为负数,接近于- ,,E一般来说,为使解稳定,电流项的差分格式应介于中心平均近似和前向近似之间。 1,En,,Hyn,1z2,,,,,E,,EE()()ii,Luebbers就曾对用代替中心平均近似使其差分方yyy,,xt ,H,E,HyxzE程对良导体稳定。以,,为例,设观察点(x,y,z)为的节点,即,,,Exx,,,yzt tnt,,,1/2(1/2,,)ijk,,以及时刻,则有: ,, 11nn,,,111122HijkHijk(,,)(,,),,,,,,zz,Hz2222,,,,yy, 11,nn,,111122,HijkHijk(,,)(,,),,,,,yz,H,y2222 ,,,,zz, 11,nn,1(,,)(,,),,,EijkEijkxx,,E22x,,,,,,tt, ,, 1n,11n,12令,有 EEijkijk,,,(,,)(,,)xx22 1n,11n,12 ,,EEijkijk,,,(,,)(,,)xx22 于是, 11nn,1EijkCAmEijk(,,)()(,,),,,,xx22 11nn,,,111122HijkHijk,,,,,(,,)(,,) ,zz2222,CBm),,y , ,, 11nn,,,111122HijkHijk,,,,,(,,)(,,),yy 2222,,,z, ,, 式中 t,()mt,,()()mm,,1,,1,()m2()m,,t2CAm(),,CBm() , ,,()()()mmmt,()()()mmmt,,,,,,,,,11,,,tm22()tm22(),,, 同理可得: 11nn,1(,,)()(,,)EijkCAmEijk,,,,yy22 11nn,,,111122HijkHijk(,,)(,,),,,,,,xx2222 ,,CBm(),,x, ,, 11nn,,,111122(,,)(,,)HijkHijk,,,,,zz,2222,,,x, ,, 11nn,1EijkCAmEijk(,,)()(,,),,,,zz22 11nn,,,111122HijkHijk,,,,,(,,)(,,),yy2222 ,CBm(),,x, ,, 11nn,,,111122HijkHijk,,,,,(,,)(,,),xx2222,,,y, ,, 4.同轴线馈电单极子天线建模实例 对于具有复杂几何外形的目标,首先将其按几何外形的特点分解成几个部件,然后对各个部件分别建立几何外形及的描述文件并进行FDTD剖分。虽然同轴线的几何外形并不复杂,但这种思想仍然可取。实际上同轴线就是有几个圆柱体叠合拼接而成,因此在对其建模时可以将其拆分为对多个圆柱体的建模,然后对重叠部分别处理。 同轴线的矩形网格阶梯模拟如图4所示,模拟的原则是以网格的中心点为准,如果网格中心点位于位于同轴线的内外导体之间,此网格即为空气网格,否则此网格为导体网格。 图4 同轴线阶梯模拟 2.2.2同轴线的激励源设置 同轴线激励源的最简单设置是在内外导体之间的某个位置加入激励电场,但 由于同轴线中的主模是TEM模,如果加入的电场与TEM模不完全匹配,则在激励源附近就有相应的高次模存在,经过一段距离的传输之后,高次模逐渐衰减至可以忽略不计的程度,传输线上只剩余主模,此时的场分量才能够作为同轴线的入射波加入到所要计算的同轴馈电的天线计算区域中。如果同轴线上强迫激励平面所加入的电场与TEM模基本匹配,则激励源附近产生的高次模就很小,经过很短一段距离的传输,高次模就可衰减至忽略不计的程度,同轴线上的场就是我们需要的主模场。 激励源的时间函数选用Gauss脉冲。如图2.5轴线上TEM模电场只有ρ方向分量,而FDTD网格所用的坐标系是直角坐标系,因此强迫场只能通过激励源平面电场Ex、Ey加入,为使强迫场与同轴线主模电场一致,Ex与Ey合成场的方向应是同轴线半径方向,并且幅度与所在位置的半径成反比,具体的计算公式如下: 22a,,ttT/,,0 (2-2-1) (,),,Exyte,1,122()(),,,xxyy1010 ,,,yy,110,,tan (2-2-2) ,,xx,10,, ExytExyt(,,)(,,)cos,, (2-2-3) x1111, ExytExyt(,,)(,,)sin,, (2-2-4) y1111, 图2.5同轴线场矢量分解示意图 由此知道,激励源设置算法,见附录2。 2.2.3连接面上的迭代公式 天线结构空间的计算网格划分为总场区和反射场区。如图2.1在总场区中,所有网格点用Maxwell方程的差分格式计算总场;而在反射场区中,差分格式只用于计算反射场, 入射场在总场区和反射场区的连接边界加入。 假设连接面k=ks为总场区,连接面上和迭代时需要用到反射场区的磁场,这些EEyx 磁场就需要再加上入射磁场而成为总场。迭代公式如下: 111nn,1EijksCAijksEijks,,,,,(,,)(,,)(,,)xx222 11nn,,,111122HijksHijks(,,)(,,),,,,, ,zz12222,,CBijks(,,),2,y , ,, 111nnn,,,,111111222HijksHijksHijkout,,,,,,,,(,,)(,,)(,,),yyyi, 222222,,,z, ,, (2-2-5) 111nn,1EijksCAijksEijks(,,)(,,)(,,),,,,,yy222 111nnn,,,,111111222HijksHijksHijkout,,,,,,,,(,,)(,,)(,,) ,xxxi,1222222,,CBijks(,,),,x2 , ,, 11nn,,,111122HijksHijks,,,,,(,,)(,,),zz 2222,,,x, ,, (2-2-6) 1kks,,H在计算连接面外二分之一空间步长(即)网格点上反射场区的磁场分量和x2H时,要用到连接面上(总场区)的电场,这些电场就需要再减去入射电场而成为反射场。y 迭代公式如下: 11 nn,,11111122HijksCPijksHijks(,,)(,,)(,,),,,,,,,,xx222222 11,nn(,,)(,,)EijksEijks,,,zz,1122,,,,CQijks(,,),22,y,, 11,nnn(,,)(,,)(,,1)EijksEijkoutEijks,,,,,yyiy,,22,,,z,, (2-2-7) 1n,111111n,22(,,)(,,)(,,)HijksCPijksHijks,,,,,,, yy22222 111 ,nnn(,,)(,,)(,,1)EijksEijkoutEijks,,,,,,xxix,,11222,,,CQijks(,,), 22,z,, 11,nn(1,,)(,,)EijksEijks,,,, zz,22,,,x ,,
/
本文档为【【2017年整理】FDTD超宽带天线的同轴线馈电结构建模】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索