为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

什么是功率因数

2017-09-20 10页 doc 36KB 26阅读

用户头像

is_079973

暂无简介

举报
什么是功率因数什么是功率因数 定义: 功率因数是有功功率与视在功率之比。 在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 说明 一种功率因数变送器 功率因数的大小与电路的负荷性质有关, 如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感性负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效率高低的一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大, 从而降低了设备的利用率,增加...
什么是功率因数
什么是功率因数 定义: 功率因数是有功功率与视在功率之比。 在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 说明 一种功率因数变送器 功率因数的大小与电路的负荷性质有关, 如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感性负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效率高低的一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大, 从而降低了设备的利用率,增加了线路供电损失。所以,供电部门对用电单位的功率因数有一定的要求。 编辑本段要求 (1) 最基本 拿设备作举例。例如:设备功率为100个单位,也就是说,有100个单位的功率输送到设备中。然而,因大部分电器系统存在固有的无功损耗,只能使用70个单位的功率。很不幸,虽然仅仅使用70个单位,却要付100个单位的费用。(使用了70个单位的有功功率,你付的就是70个单位的消耗)在这个例子中,功率因数是0.7 (如果大部分设备的功率因数小于0.9时,将被罚款),这种无功损耗主要存在于电机设备中(如鼓风机、抽水机、压缩机等),又叫感性负载。功率因数是马达效能的计量标准。 (2) 基本分析 每种电机系统均消耗两大功率,分别是真正的有用功(叫kw)及电抗性的无用功。功率因数是有用功与总功率间的比率。功率因数越高,有用功与总功率间的比率便越高,系统运行则更有效率。 (3) 高级分析 在感性负载电路中,电流波形峰值在电压波形峰值之后发生。两种波形峰值的分隔可用功率因数表示。功率因数越低,两个波形峰值则分隔越大。 编辑本段对于功率因数改善 电网中的电力负荷如电动机、变压器、日光灯及电弧炉等,大多属于电感性负荷,这些电感性的设备在运行过程中不仅需要向电力系统吸收有功功率,还同时吸收无功功率。因此在电网中安装并联电容器无功补偿设备后,将可以提供补偿感性负荷所消耗的无功功率,减少了电网电源侧向感性负荷提供及由线路输送的无功功率。由于减少了无功功率在电网中的流动,因此可以降低输配电线路中变压器及母线因输送无功功率造成的电能损耗,这就是无功补偿的效益。 无功补偿的主要目的就是提升补偿系统的功率因数。因为供电局发出来的电是以KVA或者MVA来计算的,但是收费却是以KW,也就是实际所做的有用功来收费,两者之间有一个无效功率的差值,一般而言就是以KVAR为单位的无功功率。大部分的无效功都是电感性,也就是一般所谓的电动机、变压器、日光灯……,几乎所有的无效功都是电感性,电容性的非常少见,例如:变频器就是容性的,在变频器电源端加入电抗器可提高功率因数。 编辑本段三者关系 也就是因为这个电感性的存在,造成了系统里的一个KVAR值,三者之间是一个三角的关系: 〖K_va〗^2=〖K_w〗^2+〖K_var〗^2 一种有源功率因数校正电路 简单来讲,在上面的公式中,如果今天的KVAR的值为零的话,KVA就会与KW相等,那么供电局发出来的1KVA的电就等于用户1KW的消耗,此时成本 效益最高,所以功率因数是供电局非常在意的一个系数。用户如果没有达到理想的功率因数,相对地就是在消耗供电局的资源,所以这也是为什么功率因数是一个法规的限制。目前就国内而言功率因数规定是必须介于电感性的0.9,1之间,低于0.9时需要接受处罚。 编辑本段好处 供电局为了提高他们的成本效益要求用户提高功率因数,那提高功率因数对我们用户端有什么好处呢, ? 通过改善功率因数,减少了线路中总电流和供电系统中的电气元件,如变压器、电器设备、导线等的容量,因此不但减少了投资费用,而且降低了本身电能的损耗。 ? 藉由良好功因值的确保,从而减少供电系统中的电压损失,可以使负载电压更稳定,改善电能的质量。 ? 可以增加系统的裕度,挖掘出了发供电设备的潜力。如果系统的功率因数低,那么在既有设备容量不变的情况下,装设电容器后,可以提高功率因数,增加负载的容量。 举例而言,将1000KVA变压器之功率因数从0.8提高到0.98时: 补偿前:1000×0.8=800KW 补偿后:1000×0.98=980KW 同样一台1000KVA的变压器,功率因数改变后,它就可以多承担180KW的负载。 ? 减少了用户的电费支出;透过上述各元件损失的减少及功率因数提高的电费优惠。 此外,有些电力电子设备如整流器、变频器、开关电源等;可饱和设备如变压器、电动机、发电机等;电弧设备及电光源设备如电弧炉、日光灯等,这些设备均是主要的谐波源,运行时将产生大量的谐波。谐波对发动机、变压器、电动机、电容器等所有连接于电网的电器设备都有大小不等的危害,主要表现为产生谐波附加损耗,使得设备过载过热以及谐波过电压加速设备的绝缘老化等。 并联到线路上进行无功补偿的电容器对谐波会有放大作用,使得系统电压及电流的畸变更加严重。另外,谐波电流叠加在电容器的基波电流上,会使电容器的电流有效值增加,造成温度升高,减少电容器的使用寿命。 谐波电流使变压器的铜损耗增加,引起局部过热、振动、噪音增大、绕组附加发热等。 谐波污染也会增加电缆等输电线路的损耗。而且谐波污染对通讯质量有影响。当电流谐波分量较高时,可能会引起继电保护的过电压保护、过电流保护的误动作。 因此,如果系统量测出谐波含量过高时,除了电容器端需要串联适宜的调谐(detuned)电抗外,并需针对负载特性专案研讨加装谐波改善装置。 编辑本段改善电能质量的理由 为什么说提高用户的功率因数可以改善电压质量, 电力系统向用户供电的电压,是随着线路所输送的有功功率和无功功率变化而变化的。当线路输送一定数量的有功功率时,如输送的无功功率越多,线路的电压损失越大。即送至用户端的电压就越低。如果110KV以下的线路,其电压损失可近似为:?U=(PR+QX)/Ue 其中:?U,线路的电压损失,KV Ue,,线路的额定电压,KV P,,线路输送的有功功率,KW Q,,线路输送的无功功率,KVAR R—线路电阻,欧姆 X,,线路电抗,欧姆 由上式可见,当用户功率因数提高以后,它向电力系统吸取的无功功率就要减少,因此电压损失也要减少,从而改善了用户的电压质量。 在直流电路里,电压乘电流就是有功功率。但在交流电路里,电压乘电流是视在功率,而能起到作功的一部分功率(即有功功率)将小于视在功率。有功功率与视在功率之比叫做功率因数,以COSΦ表示,其实最简单的测量方式就是测量电压与电流之间的相位差,得出的结果就是功率因数。 什么是功率因素 功率因数是交流电路的重要技术数据之一。功率因数的高低,对于电气设备的利用率和分析、研究电能消耗等问都有十分重要的意义。 所谓功率因数,是指任意二端网络(与外界有二个接点的电路)两端电压U与其中电流I之间的位相差的余弦。在二端网络中消耗的功率是指平均功率,也称为有功功率,它等于 由此可以看出,电路中消耗的功率 P,不仅取决于电压V与电流I的大小,还与功率因数有关。而功率因数的大小,取决于电路中负载的性质。对于电阻性负载,其电压与电流的位相差为0,因此,电路的功率因数最大();而纯电感电路,电压与电流的位相差为π,2,并且是电压超前电流;在纯电容电路中,电压与电流的位相差则为,(π,2),即电流超前电压。在后两种电路中,功率因数都为0。对于一般性负载的电路,功率因数就介于0与1之间。 一般来说,在二端网络中,提高用电器的功率因数有两方面的意义,一是可以减小输电线路上的功率损失;二是可以充分发挥电力设备(如发电机、变压器等)的潜力。因为用电器总是在一定电压U和一定有功功率P的条件下工作,由公式: 可知,功率因数过低,就要用较大的电流来保障用电器正常工作,与此同时输电线路上输电电流增大,从而导致线路上焦耳热损耗增大。另外,在输电线路的电阻上及电源的内组上的电压降,都与用电器中的电流成正比,增大电流必然增大在输电线路和电源内部的电压损失。因此,提高用电器的功率因数,可以减小输电电流,进而减小了输电线路上的功率损失。 提高功率因数,可以充分发挥电力设备的潜力,这也不难理解。因为任何电力设备,工作时总是在一定的额定电压和额定电流限度内。工作电压超过额定值,会威胁设备的绝缘性能;工作电流超过额定值,会使设备内部温度升得过高,从而降低了设备的使用寿命。对于电力设备,电压与电流额定值的乘积,称为这台设备的额定视在功率S额即 S额,U额I额 也称它为设备的容量,对于发电机来说,这个容量就是发电机可能输出的最大功率,它标志着发电机的发电潜力,至于发电机实际输出多大功率,就跟用电器的功率因数有关,用电器消耗的功率为 功率因数高,表示有功功率占额定视在功率的比例大,发电机输出的电能被充分地利用了。例如,发电机的容量若为15000千伏安,当电力系统的功率因数由0(6提高到0(8时,就可以使发电机实际发电能力提高3000千瓦,这不正是发挥了发电机的潜力吗,设备的利用也更合理。从这个角度来讲,功率因数可以表示为有功功率与机在功率的比值,即 如何提高功率因数,是电力工业中需要认真考虑的一个重要而又实际的问题。在平常遇到的电感性负载的电路中,例如日光灯电路,一般采用并联合适的电容器来提高整个电路的功率因数,如图7,9所示。 一、什么是功率因数 交流电流过负载时,加在该负载上的交流电压与通过该负载的交流电流产生相位差,人们便从中引出功率因数这一概念。 人们生产、生活用电来自电网,电网提供频率为50Hz或60Hz的交流电。作为交流电的负载有电阻、电感、电容三种类型。当交流电通过纯电阻负载时,加在该电阻上的交流电压与通过该电阻的交流电流是同相位的,即它们之间的相位夹角ф= 0?,同时在电阻负载上消耗有功功率,电网要供出能量。当交流电通过纯电感负载时,其上的交流电压的相位超前交流电流相位90?,它们之间的夹角ф= 90?,在电感负载上产生无功功率,电网供给的电能在电感中变为磁场能短暂储存后又回馈到电网变为电能,如此周期性循环不已,结果电网并不供出能量,故谓“无功功率”,但产生“无功功率”的“无功电流”还是实际存在的。当交流电通过纯电容负载时,亦类似于此,只不过其上的交流电压的相位滞后交流电流相位90?,它们之间的夹角ф= - 90?。这里,定义相位角度超前为正,相位角度滞后为负。 实际负载是电阻、电感的感抗、电容的容抗三种类型的复合物,复合后统称“阻抗”,写成数学式即是:阻抗Z=R+j(XL–XC)。其中R为电阻,XL为感抗,XC为容抗。如果(XL–XC) > 0, 称为“感性负载”;反之,如果(XL–XC) < 0称为“容性负载”。交流电通过感性负载时,交流电压的相位超前交流电流相位(0?<ф<90?);交流电通过容性负载时,交流电压的相位滞后交流电流相位(-90?<ф< 0?);电工学定义该角度ф为功率因数角,功率因数角ф的余弦值即Cosф叫做功率因数。 对于电阻性负载,其电压与电流的位相差为0?,因此,电路的功率因数为1最大(Cos 0?=1);而纯电感电路,电压与电流的位相差为90?,并且是电压超前电流;在纯电容电路中,电压与电流的位相差则为- 90?,即电流超前电压。在后两种电路中,功率因数都为零(Cos 90?= 0)。对于一般性负载的电路,功率因数就介于0与1之间。 由数学式阻抗Z=R+j( XL–XC),如果XL =XC,则Z= R即阻抗Z变成了一个纯电阻,功率因数便等于1。这就是说,感性负载和容性负载可以互相补偿,一个电路里的感性元件的感抗值正好等于容性元件的容抗值则可以完全补偿,功率因数补偿的办法就源于此。 交流电通过阻抗负载时,产生的总功率S称“视在功率”,视在功率S包括有功功率P和无功功率Q两个分量。其中有功功率P = S*Cosф,无功功率Q = S*Sinф。只有当功率因数Cosф值等于最大值1即ф= 0?时,无功分量Q才等于零,有功功率P等于视在功率 S的值。 但负载的实际工作能力只与有功功率相关,例如空调机的制冷量、灯具的照度等只与有功功率成正比。因此,人们当然希望功率因数高一些。 二、功率因数偏低的害处 1)供电设备的带负载能力被打了折扣,即降低了带负载能力。如某设备能供出100KVA的视在功率,若功率因数为0.7,则只能供出70KW的有功功率了;若功率因数为0.9,则能供出90KW的有功功率,可见提高功率因数很有意义。 2)输电线路由于无功电流存在,增加了输电线路损耗。例如功率因数为0.7,要供出70KW的有功功率,则需要供出100KVA的视在功率,输电线路的电流增大,线路损耗必然增大。 三、功率因数补偿方法 供电部门供的电能是以“视在功率”来计算的,但是收电费却是以“有功功率”来计算的,用户的“电度表”实为“有功功率表”,两者之间有一个“功率因数”折扣,所以功率因数是供电部门非常在意的一个数据。用户如果没有达到理想的功率因数,相对地就是在消耗供电部门的资源。目前就国内而言功率因数规定是必须介于电感性的0.9,1之间。可采取以下方式进行功率因数补偿: 1)半集中、集中补偿法,要求用电企业的各个配电房必须安装功率因数自控装置,实时检测功率因数大小,自动投入或切除补偿电力电容器的个数,用于电动机运行补偿(因企业主要用电负荷是电动机),做到局部用电网络功率因数达标。这个办法从上世纪七十年代末、八十年代初便已强制实施,至今少说已有二十多年。还有各个供电所也安装功率因数自控装置,对其下辖供电区域进一步补偿。 2)分散补偿法,要求每个用电器具设计时便采用先进技术,满足功率因数达标,这样不论何时何地用电均能保证功率因数达标。但这样做会增加成本、增加电器体积,而有的电器对体积大小限制很严格,加大了设计难度。 四、电光源照明灯具与功率因数补偿 电光源是由白炽灯泡开始的,白炽灯泡是纯电阻负载,没有功率因数补偿的问题。上世纪50年代后,日光灯迅速普及成了主要的照明灯具,镇流器用的是硅钢片电感,可靠性高,寿命长,至今仍有少量采用的,大多数没有什么功率因数补偿措施,可能是受到成本因素的影响,抑或人们对功率因数补偿不甚了解,节能意识不强。也有加接适当容量的电容器作功率因数补偿的,多用在30W、40W大瓦数日光灯上,20W以下很少用。 上世纪90年代后,人们的环保、节能意识增强,开发出三基色萤光粉节能灯,其光功效更高。电子镇流器也随后问世,配上三基色萤光粉灯管,节能效果更加显著。国内外一些集成电路厂商推出了带有源功率因数补偿的灯用芯片,用于电子镇流器,性能优秀,但增加了成本和电子镇流器体积,老百姓还不能接受它的价格,大约只用在高端灯具产品上。大量的普及型电子镇流器包括用于节能灯的都没有加什么功率因数补偿措施,这在市面流行的节能灯、日光灯上随处可见。也就是说以往的灯具基本上没有什么功率因数补偿措施,但大家都在用。 五、功率因数与LED照明 LED耗电更省,灯具功率比起节能灯还要小。LED照明当然更为进步,对环境保护、节能减排更为适宜。LED灯具是否加功率因数补偿,笔者的看法是: 1)据专家分析,LED为容性负载。电网的感性负载甚多,例如电动机、变压器等等。往 往需要接入容性负载进行补偿,功率因数自控装置就是作此用途的。LED为容性负载,恰恰补偿了电网因感性负载多导致功率因数低的问题,正是用得其所。源于这种认识,笔者认为LED照明灯具原则上无需加功率因数补偿措施。 2)室内照明用的单盏LED灯具均是小功率的,功率不会超过30W。灯具功率小对电网的影响也小,笔者认为这类灯具完全可以免去功率因数补偿措施,加了反而不好,反而会失去LED灯具是容性负载能够补偿电网因感性负载多导致功率因数低的功能。这些小功率灯具多是小体积紧凑型的,内部空间十分有限,例如MR16、PAR30、PAR38灯杯,电源PCB板增大后放不下,就是好心想加功率因数补偿措施也加不进。还有加了功率因数补偿后会带来效率下降的副作用,或云得不偿失。再则成本增加影响销售。何况供电部门已采取了应对措施对电网功率因数进行补偿,灯具厂家大可不必再去画蛇添足。 3)功率100W以上的可以考虑加功率因数补偿措施,功率大的负载对电网的影响也大,例如一百瓦到数百瓦的LED路灯。路灯属于公益事业,成本略增加一点无大碍,电源PCB板增大一点也有位置可放。加功率因数补偿措施可以帮助供电部门减轻一些调节负担,防止容性负载过大产生过度补偿。
/
本文档为【什么是功率因数】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索