为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

什么是单片机最小系统

2017-10-12 3页 doc 14KB 24阅读

用户头像

is_888153

暂无简介

举报
什么是单片机最小系统什么是单片机最小系统 , 什么是单片机的最小系统啊, 初学者可能对单片机最小系统感觉很神秘,其实单片机最小系统很简单,就是能使单片机工作的最少的器件构成的系统。最小系统虽然简单,但是却是大多数控制系统所必不可少的关键部分。 对于MCS-51 单片机,其内部已经包含了一定数量的程序存储器和数据存储器,在外部只要增加时钟电路和复位电路即可构成单片机最小系统。下面对51单片机最小系统需要的时钟电路和复位电路做一下详细的说明。 时钟电路 单片机系统中的各个部分是在一个统一的时钟脉冲控制下有序地进行工作,时钟电路是单片机系统最基本...
什么是单片机最小系统
什么是单片机最小系统 , 什么是单片机的最小系统啊, 初学者可能对单片机最小系统感觉很神秘,其实单片机最小系统很简单,就是能使单片机工作的最少的器件构成的系统。最小系统虽然简单,但是却是大多数控制系统所必不可少的关键部分。 对于MCS-51 单片机,其内部已经包含了一定数量的程序存储器和数据存储器,在外部只要增加时钟电路和复位电路即可构成单片机最小系统。下面对51单片机最小系统需要的时钟电路和复位电路做一下详细的说明。 时钟电路 单片机系统中的各个部分是在一个统一的时钟脉冲控制下有序地进行工作,时钟电路是单片机系统最基本、最重要的电路。 MCS-51 单片机内部有一个高增益反相放大器,引脚XTAL1 和XTAL2 分别是该放大器的输入端和输出端,如果引脚XTAL1 和XTAL2 两端跨接上晶体振荡器(晶振)或陶瓷振荡器就构成了稳定的自激振荡电路,该振荡电路的输出可直接送入内部时序电路。MCS-51 单片机的时钟可由两种方式产生,即内部时钟方式和外部时钟方式。 (1)内部时钟方式。内部时钟方式即是由单片机内部的高增益反相放大器和外部跨接的晶振、微调电容构成时钟电路产生时钟的方法,其工作原理如图(a)所示。外接晶振(陶瓷振荡器)时,C1、C2 的值通常选择为30pF(40pF)左右;C1、C2 对频率有微调作用,晶振或陶瓷谐振器的频率范围可在1.2MHz ,12MHz之间选择。为了减小寄生电容,更好地保证振荡器稳定、可靠地工作,振荡器和电容应尽可能安装得与单片机引脚XTALl 和XTAL2 靠近。由于内部时钟方式外部电路接线简单,单片机应用系统中大多采用这种方式。内部时钟方式产生的时钟信号的频率就是晶振的固有频率,常用fsoc 来示。如选择12MHz 晶振,则fsoc=12×106Hz。 (2)外部时钟方式。外部时钟方式即完全用单片机外部电路产生时钟的方 法,外部电路产生的时钟信号被直接接到单片机的XTAL1 引,此时XTAL2 开路, 具体电路如图(b)所示。 在介绍完了MCS-51 单片机的时钟电路后,笔者不得不介绍一下CPU的以及 工作周期问,因为CPU 的工作周期是基于时钟信号的, 是与时钟信号密不可分 的。 CPU 在执行指令时,都是按照一定顺序进行的,由于指令的字节数不同,取 指所需时间也就不同,即使是字节数相同的指令,执行操作也会有很大差别,不同的指令的执行时间当然也不相同,即CPU 在执行各个指令时,所需要的节拍数 是不同的。为了便于对CPU 时序的理解,人们按指令的执行过程定义了几个名词, 即时钟周期、机器周期和指令周期。 时钟周期:时钟周期也称为振荡周期,定义为时钟脉冲频率(fOSC)的倒数, 是单片机中最基本的、最小的时间单位。由于时钟脉冲控制着计算机的工作节奏, 对同一型号的单片机,时钟频率越高,计算机的工作速度显然就会越快。然而, 受硬件电路的限制,时钟频率也不能无限提高,对某一种型号的单片机,时钟频 率都有一个范围,如对MCS-51 单片机,其时钟频率范围是0,33MHz。为方便描 述,振荡周期一般用P(pause)表示。 机器周期:完成一个最基本操作(读或写)所需要的时问称为机器周期。 MCS-51 单片机的机器周期是固定的,即一个机器周期由12 个时钟周期组成。采 用6MHz 的时钟频率时,一个机器周期就是2μs ,采用12MHz 的时钟频率时, 一个机器周期就是1μs 。 指令周期:指令周期是执行一条指令所需要的时间,一般由若干个机器周期 组成,指令不同,后需要的机器周期数也不同。对于一些简单的单字节指令,分 指令周期可能和机器周期时间相同;而对于一些比较复杂的指令,如乘除运算则 需要多个机器周期才能完成,这时指令周期大于机器周期。 通常,一个机器周期即可完成的指令称为单周期指令,两个机器周期才能 完成的指令称为双周期指令。 MCS-51 单片机中的大多数指令都是单周期或双周 期指令,只有乘、除运算为四周期指令。 复位电路 大规模集成电路在上电时一般都需要进行一次复位操作,以便使芯片内的一 些部件处于一个确定的初始状态,复位是一种很重要的操作。器件本身一般不具 有自动上电复位能力,需要借助外部复位电路提供的复位信号才能进行复位操 作。 MCS-51 单片机的第9 脚(RST)为复位引脚,系统上电后,时钟电路开始工 作,只要RST 引脚上出现大于两个机器周期时间的高电平即可引起单片机执行 复位操作。有两种方法可以使MCS-51 单片机复位,即在RST 引脚加上大于两个 机器周期时间的高电平或WDT 计数溢出。单片机复位后,PC=0000H,CPU 从程序 存储器的0000H 开始取指执行。复位后,单片机内部各SFR的值也复位。 单片 机的外部复位电路有上电自动复位和按键手动复位两种。 (1)上电复位电路。最简单的上电复位电路由电容和电阻串联构成,如图下(a) 所示。 上电瞬间,由于电容两端电压不能突变,RST 引脚电压端为VR 为VCC,随着 对电容的充电, RST 引脚的电压呈指数规律下降,如图(b)所示。经过时间t1 后,VR 降为高电平所需电压的下限3.6V,随着对电容充电的进行,VR 最后将接 近0V。为了确保单片机复位,t1 必须大于两个机器周期的时间,机器周期取决 于单片机系统采用的晶振频率,图(a)中,R 不能取得太小,典型值10kΩ;t1 与RC 电路的时间常数有关,由晶振频率和R 可以算出C 的取值。 (2)上电复位和按键复位组合电路 上图(c)为上电复位和按键复位组合电路,R2的阻值一般很小,只有几十 欧姆,当然也可以直接短接。当按下复位按键后,电容迅速通过R2 放电,放电 结束时的VR 为(R1*Vcc)/(R1+R2),由于R1 远大于R2,VR 非常接近VCC,使 RST 引脚为高电平,松开复位按键后,过程与上电复位相同。 以上两种是最基本的复位电路,在51 单片机,多采用上电复位和按键复位 组合电路,笔者也建议采用这种复位电路。 在时钟电路和复位电路设计完毕后,我们的单片机最小系统就做好了,现在单片机就可以正常工作了。
/
本文档为【什么是单片机最小系统】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索