为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > OTN原理及关键技术

OTN原理及关键技术

2023-05-01 10页 doc 18KB 7阅读

用户头像 个人认证

is_401170

暂无简介

举报
OTN原理及关键技术OTN技术OTN产生的背景OTN(光传送网,OpticalTransportNetwork),是以WDM为基础、在光层组织网络的传送网,是下一代的骨干传送网。众所周知,传统的传送网是基于语音业务而设计和优化的,它提仪2M、155M业务的汇聚,具备分插复用、交叉连接、管理监视以及自动保护倒换等功能。随着宽带业务的发展,特别是VOIP、VOD、IPTV对带宽的巨大需求,原有传送网越来越难以负担对大颗粒业务高效率低成本传送的需求,低的传送效率和复杂的维护管理限制了WDM(波分复用)设备在城域光网络的发展。数字传送网的演化从最初的基于...
OTN原理及关键技术
OTN技术OTN产生的背景OTN(光传送网,OpticalTransportNetwork),是以WDM为基础、在光层组织网络的传送网,是下一代的骨干传送网。众所周知,传统的传送网是基于语音业务而和优化的,它提仪2M、155M业务的汇聚,具备分插复用、交叉连接、管理监视以及自动保护倒换等功能。随着宽带业务的发展,特别是VOIP、VOD、IPTV对带宽的巨大需求,原有传送网越来越难以负担对大颗粒业务高效率低成本传送的需求,低的传送效率和复杂的维护管理限制了WDM(波分复用)设备在城域光网络的发展。数字传送网的演化从最初的基于T1/E1的第一代数字传送网,经历了基于SONET/SDH的第二代数字传送网,发展到了目前以OTN为基础的第三代数字传送网。第一、二代传送网最初是为支持话音业务而专门设计的,虽然也可用来传送数据和图像业务,但是传送效率并不高。相比之下,第三代传送网技术,从设计上就支持话音、数据和图像业务,配合其他时可支持带宽按需分配(BOD)、可裁剪的服务质量(QoS)及光虚拟专网(OVPN)等功能。1998年,国际电信联盟电信化部门(ITU-T)正式提出了OTN的概念。从其功能上看,OTN在子网内可以以全光形式传输,而在子网的边界处采用光-电-光转换。这样,各个子网可以通过3R再生器联接,从而构成一个大的光网络,如图1所示。因此,OTN可以看作是传送网络向全光网演化过程中的一个过渡应用。ITU-T在2002年发布(Interfacesfortheopticaltransportnetwork)协议。定义了OpticalTransportModuleofordern(OTMn)的以下需求:(1)光传送体系OpticalTransportHierarchy(OTH)(2)支撑多波长传输网络的开销定义(3)帧结构(4)比特速率(5)各种映射方式OTN与SDH相比,OTN是面向传送层的技术,特点是结构简单,内嵌标准FEC,丰富的维护管理开销,只有很少的时隙,只适用于大颗粒业务接入;SDH主要面向接入和汇聚层,结构较为复杂,有丰富的时隙,对于大小颗粒业务都适用,无FEC,维护管理开销较为丰富。OTN设计的初衷就是希望将SDH作为净荷完全封装到OTN中,以弥补SDH在面向传送层时的功能缺乏和维护管理开销的不足。波分和OTN的关系是,WDM是面向传送层的技术,而OTN实际也是更多关注传送层功能的技术,所以OTN基本可以理解为是为WDM量身定制的技术。在标准中已经提到,OMS层就是依靠WDM技术来实现的最初的WDM设备在信号结构上并没有统一的标准,仅仅是将各种业务直接通过O-E-O实现非特定波长到特定波长的转换。OTN标准发布后,由于其非常适合WDM的特点,而且有利于推进不同厂家波分设备的互连互通,所以迅速成为WDM设备的事实标准。OTN对于以太网的支持是,OTN在设计时是面向TDM业务的,对于数据业务的支持并没有过多地考虑。数据业务的发展速度远远超过了TDM业务,OTN必须要考虑对数据业务的支持。在现有技术条件下,OTN有两种方式来支持数据业务:一种为通过GFP适配数据业务,例如多个GE通过GFP封装后再封装到OTN净荷中,此方式适用于低速的GE业务;一种为采用更高速率的OTN帧(OverClock)将以太网直接作为净荷封装到OTN中,适用于高速以太网业务。例如10GELAN速率为,可以将其映射到的OTU2帧中实现完全透传。OTN的基本概念和特点OTN,通常也称为OTH(OpticalTransportHierarchy),是通过G.872、G.709、G.798等一系列ITu—T的建议所规范的新一代“数字传送体系”和“光传送体系”。从居于核心地位的G.709协议中可以看出,OTN跨越了传统的电域(数字传送)和光域(模拟传送),成为管理电域和光域的统一标准。从电域看,OTN保留了许多传统数字传送体系(SDH)行之有效的方面。同时,OTN扩展了新的能力和领域,如提供对更大颗粒的2.5G、10G、4oG业务的透明传送的支持,通过异步映射同时支持业务和定时的透明传送,对带外FEc的支持,对多层、多域网络连接监视的支持等。从光域看,OTN第一次为波分复用系统提供了标准的物理接口,同时将光域划分成0ch(光信道层)、OMS(光复用段层)、OTS(光传送段层)三个子层,另外,为了解决客户信号的数字监视问题,光通道层又分为光通道传送单元(OTUk)和光通道数据单元(ODUk)两个子层,类似于SDH技术的段层和通道层。因此,从技术本质上而言,OTN技术是对已有的SDH和WDM的传统优势进行了更为有效的继承和组合,同时扩展了与业务传送需求相适应的组网功能,而从设备类型上来看,OTN设备相当于SDH和WDM设备融合为一种设备,同时拓展了原有设备类型的优势功能。OTN的特点有:多种客户信号封装和透明传输基于的OTN帧结构可以支持多种客户信号的映射和透明传输,如SDH、ATM、以太网等。目前对SDH和ATM可实现标准封装和透明传送,但对不同速率的以太网的支持有所差异。为10GE业务实现不同程度的透明传输提供了补充建议,而对于GE、40GE、100GE以太网和专网业务光纤通道(FC)以及接入网业务吉比特无源光网络(GPON)等,其到OTN帧中标准化的映射方式目前正在讨论之中。大颗粒调度和保护恢复OTN技术提供3种交叉颗粒,即ODU1(s)、ODU2(10Gbit/s)和ODU3(40Gbit/s)。高速率的交叉颗粒具有更高的交叉效率,使得设备更容易实现大的交叉连接能力,降低设备成本。经过测算,基于OTN交叉设备的网络投资将低于基于SDH交叉设备的网络投资。在OTN大容量交叉的基础上,通过引入ASON智能控制平面,可以提高光传送网的保护恢复能力,改善网络调度能力。大颗粒的带宽复用、交叉和配置OTN目前定义的电层带宽颗粒为光通路数据单元(ODUk,k=1,2,,3^ODU1s)ODU2(10Gbit/s)和ODU3(40Gbit/s),光层的带宽颗粒为波长,相对于SDH的VC-12/VC-4的调度颗粒,OTN复用、交叉和配置的颗粒明显要大很多,对高带宽数据客户业务的适配和传送效率显著提升。OTN的交叉分为电交叉和光交叉。光交叉,例如ROADM,OXC。ROADM是波分设备采用的一种较为成熟的光交叉技术。利用现有技术,ROADM可以较为方便的实现4个光方向每个光方向40或80波的交叉,交叉容量或,预计将来可以很快支持8个光方向。它适用于大颗粒业务在现有技术条件下,大容量时成本明显低于电交叉技术,在小容量时成本高于电交叉。传输距离可能受到色散,OSNR和非线性等光特性的限制,增加OTU中继可以解决这个问题,但成本过高;电交叉,包括多种实现方式,例如基于SDHTSI时隙交换的交叉,基于ODU1的交叉容量低于光交叉,目前技术最大也就T比特量级支持子波长一级的交叉,适用于大颗粒和小颗粒业务,容量低时有成本优势,容量高时成本很高,O-E-O技术使得传输距离不受色散等光特性限制。(4)完善的性能和故障监测能力目前基于SDH的WDM系统只能依赖SDH的B1和J0进行分段的性能和故障监测。当一条业务通道跨越多个WDM系统时,无法实现端到端的性能和故障监测,以及快速的故障定位。而OTN引入了丰富的开销,具备完善的性能和故障监测机制。OTUk层的段监测字节(SM)可以对电再生段进性能和故障监测;ODUk层的通道监测字节(PM)可以对端到端的波长通道进行性能和故障监测。从而使WDM系统具备类似SDH的性能和故障监测能力。OTN还可以提供6级连接监视功能(TCM),对于多运营商/多设备商/多子网环境,可以实现分级和分段管理。适当配置各级TCM,可以为端到端通道的性能和故障监测提供有效的监视手段,实现故障的快速定位。因此在WDM系统中引入OTN接口,可以实现对波长通道端到端的性能和故障监测,而不需要依赖于所承载的业务信号(SDH/10GE等)的OAM机制。从而使基于OTN的WDM网络成为一个具备OAM功能的独立传送网。⑸增强了组网和保护能力通过OTN帧结构、ODUk交叉和多维度可重构光分插复用器(ROADM)的引入,大大增强了光传送网的组网能力,改变了目前基于SDHVC-12/VC-4调度带宽和WDM点到点提供大容量传送带宽的现状。而采用前向纠错(FEC)技术,显著增加了光层传输的距离。为OTN帧结构定义了标准的带外FEC纠错算法,FEC校验字节长达4X256字节,使用RS(255,239)算法,可以带来最大(BER=10-15)编码增益,降低OSNR容限,延长电中继距离,减少系统站点个数,降低建网成本。定义了非标准FEC,进一步提高了编码增益,实现更长距离的传送,但是因为多种编码方式不能兼容,不利于不同厂家设备的对接,通常只能应用于IaDI接口互联。另外,OTN将提供更为灵活的基于电层和光层的业务保护功能,如基于ODUk层的光子网连接保护(SNCP)和共享环网保护、基于光层的光通道或复用段保护等,但目前共享环网技术尚未标准化。作为新型的传送网络技术,OTN并非尽善尽美。最典型的不足之处就是不支持s以下颗粒业务的映射与调度。另外,OTN标准最初制定时并没有过多考虑以太网完全透明传送的问题,导致目前通过超频方式实现10GELAN业务比特透传后,出现了与ODU2速率并不一致的ODU2e颗粒,40GE也面临着同样的问题。这使得OTN组网时可能出现一些业务透明度不够或者传送颗粒速率不匹配等互通问题。目前ITU-TSG15的相关研究组正在积极组织讨论以解决OTN目前面临的一些缺陷,例如提出新的ODU0/ODU4颗粒,定义高阶ODU和低阶ODU,定义基于多种带宽颗粒的通用映射规程(GMP)等,以便逐渐建立兼容现有框架体系的新一代OTN(NG-OTN)网络架构。同SDH传送网一样,光传送网也有线形、星形、树形、环形和网孔形五种网络形式,使用波分复用终端设备、光分插复用设备(OADM)和光交叉连接设备(OXC),适用于接入网,城域网和干线网。光传送网,同SDH传送网一样,采用I-TU-TG805建议所规范的术语、功能体系和图表形式来定义光传送网的功能。据此,可将光传送网分为电路(客户)层网络、光通道层网络、光复用段层网络、光传输段层和媒介层网络。电路(客户)层网络,将来自用户的电信业务信号,转换成为适合于在光传送网中传送的形式,反之亦然。光通道层具有光通道端到端联网功能,透明转换不同格式(如STM—N、PDH565Mbit/s、ATM信号、lP信号等)的来自电路层信号,不修改来自电路层的信号,但在光传送网输入/输出处对电路层信号进行监测和维护。在光传送网发生故障时,电路(客户)层网络应能够进行监测,如同SDH网络要有AIS监测。光复用段层具有多波长f包括一个波长的情况)光信号联网功能。光传输段层的主要功能是实现光信号在各种不同类型光传输媒介(如G652、G653和G655光纤)上传送。物理媒介层网络,由光纤类型决定,是光传输段层的服务者。OTN的关键技术3.1各种业务信号的映射方式目前,在光传送网中,常用的映射方式有:SDHoverOTN、ATMoverOTN和ATMoverSDHoverOTN。对于SDHoverOTN方式来讲,它具有SDH本身所具备的0A&M功能,具有比较强的保护和恢复能力,可以在SDH的基础上实现各种业务的综合,可以按照波长根据发展需要进行扩容,缺点是各种业务信号在进入SDH后,缺乏像ATM那样的QoS保证。对于ATMoverOTN方式来讲,虽然它具有ATM和OTN方式的优点,可以提供端到端QoS保证;但由于没有SDH,加之OTN本身的限制,使得这种传送方式缺乏足够的保护和恢复能力及网管功能,进而使得这种方式和应用在现在受到了很大的限制。对于ATMoverSDHoverOTN方式来讲,这种方式在目前技术发展情况下,是技术性能最完善的,但也是最复杂,最昂贵的。此外,还可以将以太网(GE)信号直接映射到OTN,这种方式可以使广域网、城域网和局域网作到无缝连接,可大大简化设备、降低成本,在小范围内抖动与定时性能较好,但这种方式只有有限的故障检测和性能管理功能,没有保护倒换能力。将来光传送网会采用ITU—TG.709建议所规范的数字包封(DigitalWrap—per)技术,解决各种信号的映射问题。这种技术不仅彻底解决了客户层信号透明传送及网络边缘处故障检测和性能管理问题,而且还解决了光路性能监视和光层保护和恢复指令传送问题。另外,结合使用带外FEC,可以明显地改善系统的光信噪比。3.2传输技术对于光传送网,WDM传输技术是比较合适的选择。目前,扩展WDM传输系统容量的主要侧重于以下三个方面,一个是提高每个通道的基础速率,由2.5Gbit/s、10Gbit/s提高到40Gbit/s;另一方面,扩展使用波段,由c波段(1530〜1565(nm))扩展至L波段(1565〜1620nm)):最后,减少通道间隔,增加复用通道数,通道间隔由200GHz、100GHz减少到50GHz乃至25GHz;复用通道数由16、32扩展至80、100甚至200个通道。与10Gbit/s速率相比,40Gbids基础速率具有频谱效率高,降低设备成本,减少网管系统复杂性等优点,但在帧同步,特别是PMD补偿方面的技术问题有待于解决。光传送网使用两种再生中继方式,一种是全光再生中继,这种形式在光通道层、光复用段和光传输段层均可使用。另一种再生中继方式为光电变换再生中继,这种形式仅允许在光通道层中使用。OTN网络的生存性为光传送网OTN的分层结构作了定义,细分为光通路层(OCh),光复用段层(OMS)和光传输段层(OTS)。OCh层为各种数字化的用户信号提供接口,它为透明的传送SDH、PDH、ATM、IP等业务信号提供点到点的以光通路为基础的组网功能;OMS层为经DWDM复用的多波长信号提供组网功能;OTS层经光接口与传输媒质相连,它提供在光介质上传输光信号的功能。OTN核心设备和业务的保护恢复的主要载体是光交叉连接设备OXC和光分插复用设备OADM,与SDH的最大区别在于SDH是基于时分复用的对时隙进行操作的“数字网络”,而OTN处理的对象是光载波,也就是模拟的“频率时隙”或“光通道波长”,是一个“模拟传送网络”。但是OTN和SDH网络结构一样也是面向连接的网络,所使用的网络技术和网络单元极为相似,因此它们的保护恢复技术基本相似,主要有以下几种;①点到点的线路(光复用段OMS)保护倒换,其原理是当工作链路传输中断或性能劣化到一定程度后,系统倒换设备将主信号自动转至备用光纤系统来传输,从而使接收端仍能接收到正常的信号而感觉不到网络已出现了故障。该保护方法只能保护传输链路,无法提供网络节点的失效保护,因此主要适用于点到点应用的保护。(1:1)光层保护方式,是由一个备用保护系统和一个工作系统组成的保护网络,系统的冗余度显然为100%。这种设置方式通常用于低阶Path和路由容量较低的系统之中;其收发端的发送机和接收机为成对设置,因而在无故障的情况下,可以用备用保护信道进行优先级较低的通信,借以提高光缆系统的利用率,适用于端到端的保护和业务的保护。业务流量并不是被永久的桥接到工作和保护光纤上,相反,只有出现故障时,才在工作光纤和保护光纤之间进行一次切换。(1+1)光链路保护方式,是由一个备用保护系统与一个工作系统组成的保护网络,与1:1方式不同的是采用了单方向工作的方式,即收发信机本身不设备份,但发射机同时要与主备两个传输系统相连,而接收机则要根据主备通道的质量情况,选择其中之一作为工作信道,并在没有任何故障返回信令的情况下,独立完成保护切换的功能,只能对链路故障中的业务进行保护。这种方法是利用光滤波器来桥接光信号,并把同样的两路信号分别送入方向相反的工作光纤和保护光纤的通道中。保护倒换完全是在光域实现。当遇到单一的链路故障时,在接收端的光开关便把线路切换到保护光纤。由于在这里没有电层的复制和操作,所以除了当发射机和接收机发生故障时会丢失业务外,一切链路故障都可以恢复。(1:N)光层保护结构与(1:1)的保护结构相类似。然而在这里,N个工作实体共享同一个保护光纤。如果有多条工作光纤断裂,那么只有其中的一条所承载的流量可以恢复。最先恢复的是具有最高优先级的故障。M:N方式,资源共享的保护方式,通常采用通道保护方式。是由m个备用保护系统和门个工作系统组成的复用段保护网络;当接收机检出故障以后,需将故障报警信息返回到发射机端,才能实现主备段的保护切换。②核心传输网DWDM的自愈环网保护恢复技术一自愈环网SHR(SelfHealingRing)就是无需人为干预,利用网络具有发现替代传输路由并重新建立通信的能力,在极短的时间内从失效的故障中自动恢复所携带的业务的环网。环网APS保护方式,包括两纤单向环、两纤双向环和四纤双向环。在环网中又分复用段保护和通道共享保护,是利用环网的特殊结构来实施的一种保护方式,属于对资源的保护。基于通道倒换的环是一种单向的通道保护环(UPPR)结构,而基于线路倒换的环被称为SPRING结构。OTN技术发展现状及发展趋势随着宽带数据业务的大力驱动和OTN技术的日益成熟,采用OTN技术构建更为高效和可靠的传送网是OTN技术必然的发展结果。现有城域核心层及干线的SDH网络适合传送的主要为TDM业务,而目前迅猛增加的主要为具备统计特性的数据业务,因此在这些网络层面后续的网络建设不可能大规模新建SDH网络,但WDM网络的规模建设和扩容不可避免,可IP业务通过POS或者以太网接口直接上载到现有WDM网络将面临组网、保护和维护管理等方面的缺陷。鉴于此,基于现有WDM系统的已有网络,条件具备时可根据需求逐步升级为支持开销的维护管理功能,而对于现有WDM系统新建或扩容的传送网络,在省去SDH网络层面以后,至少应支持基于开销的维护管理功能和基于光层的保护倒换功能,也就是说,OTN网络替代了SDH网络相应的功能。WDM网络则应逐渐升级过渡到OTN网络,而基于OTN技术的组网则应逐渐占据传送网主导地位。国外运营商对传送网络的OTN接口的支持能力已提出明显需求,而实际的网络应用当中则以ROADM设备类型为主,这主要与网络管理维护成本和组网规模等因素密切相关。国内运营商对OTN技术的发展和应用也颇为关注,从2007年开始,中国电信集团、中国网通集团和中国移动集团等已经或者正在开展OTN技术的应用研究与测试验证,而且部分省内或城域网络也局部部署了基于OTN技术的(试验)商用网络,组网节点有基于电层交叉的OTN设备,也有基于ROADM的OTN设备。为了适应业务IP化和网络IP化的发展趋势,分组传送网(PTN)技术已成为城域传送网的主要发展方向。PTN技术具有丰富的OAM机制、完善多样的保护恢复能力,可有效满足基站、大客户等各类业务接入需求。而光传送网(OTN)技术为客户信号提供在波长/子波长上进行传送、复用、交换、监控和保护恢复的技术。在提供丰富带宽的基础上,增强了节点汇聚和交叉能力、组网保护和OAM管理能力,可以为大量GE、s、10Gbit/s甚至40Gbit/s等大颗粒业务提供传输通道。结合PTN和OTN技术优势,OTN和PTN联合组网模式凭借其IP业务接入、汇聚及灵活调度能力,将有利于推动城域传输网向着统一、融合的扁平化网络演进,推进传送网向更加“睿智”的方向发展。OTN还引入ASON控制平面的关键技术。运营商重组和3G将会给通信行业带来新一轮的发展,光传输网络作为基础网络,建设需求必然大量增加,从技术发展来看,在核心网络选择的设备仍然是WDM、OTN以及大容量的MSTP设备,并且网络结构复杂程度增加,网络规模扩大化,对于网络的安全性要求进一步提高,从基于SDH的ASON设备应用来看,充分证实了ASON技术能够很好的解决以上问题,随着传输网络向大容量方向发展,OTN将逐渐应用到网络来,ASON技术也将逐步移植到基于ODUk和光波长的传输网络中。OTN技术包括了光层和电层的完整体系结构,光层和电层都具有网络生存性机制,在OTN基础上引入ASON技术,主要需要考虑控制平面在网络资源自动发现技术、路由技术、信令技术的实现以及网络的保护与恢复技术。另外,为了更好地适应客户数据业务的传送,业界目前也正在热烈讨论一些基于功能改进和升级的NG-OTN技术。NG-OTN的这些特征讨论主要是基于已有OTN技术的基础上进行的。因此,未来的NG-OTN技术必须兼容现有OTN已有特征,NG-OTN技术的进一步讨论与规范并不阻碍现有OTN的实际组网应用。
/
本文档为【OTN原理及关键技术】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索