为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

人教版高中数学必修五典型例题

2018-10-16 19页 doc 458KB 127阅读

用户头像 个人认证

北溟愚鱼

暂无简介

举报
人教版高中数学必修五典型例题高中数学必修五第一章解三角形一、基础知识【理解去记】在本章中约定用A,B,C分别表示△ABC的三个内角,a,b,c分别表示它们所对的各边长,为半周长。1.正弦定理:=2R(R为△ABC外接圆半径)。推论1:△ABC的面积为S△ABC=推论2:在△ABC中,有bcosC+ccosB=a.推论3:在△ABC中,A+B=,解a满足,则a=A.正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义,BC边上的高为bsinC,所以S△ABC=;再证推论2,因为B+C=-A,所以sin(B+C)=sinA...
人教版高中数学必修五典型例题
高中数学必修五第一章解三角形一、基础知识【理解去记】在本章中约定用A,B,C分别表示△ABC的三个内角,a,b,c分别表示它们所对的各边长,为半周长。1.正弦定理:=2R(R为△ABC外接圆半径)。推论1:△ABC的面积为S△ABC=推论2:在△ABC中,有bcosC+ccosB=a.推论3:在△ABC中,A+B=,解a满足,则a=A.正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义,BC边上的高为bsinC,所以S△ABC=;再证推论2,因为B+C=-A,所以sin(B+C)=sinA,即sinBcosC+cosBsinC=sinA,两边同乘以2R得bcosC+ccosB=a;再证推论4,由正弦定理,所以,即sinasin(-A)=sin(-a)sinA,等价于[cos(-A+a)-cos(-A-a)]=[cos(-a+A)-cos(-a-A)],等价于cos(-A+a)=cos(-a+A),因为0<-A+a,-a+A<.所以只有-A+a=-a+A,所以a=A,得证。2.余弦定理:a2=b2+c2-2bccosA,下面用余弦定理证明几个常用的结论。(1)斯特瓦特定理【了解】:在△ABC中,D是BC边上任意一点,BD=p,DC=q,则AD2=(1)【证明】因为c2=AB2=AD2+BD2-2AD·BDcos,所以c2=AD2+p2-2AD·pcos①同理b2=AD2+q2-2AD·qcos,②因为ADB+ADC=,所以cosADB+cosADC=0,所以q×①+p×②得qc2+pb2=(p+q)AD2+pq(p+q),即AD2=注:在(1)式中,若p=q,则为中线长公式(2)海伦公式:因为b2c2sin2A=b2c2(1-cos2A)=b2c2[(b+c)-a2][a2-(b-c)2]=p(p-a)(p-b)(p-c).这里所以S△ABC=二、基础例【必会】1.面积法例1(共线关系的张角公式)如图所示,从O点发出的三条射线满足,另外OP,OQ,OR的长分别为u,w,v,这里α,β,α+β∈(0,),则P,Q,R的共线的充要条件是【证明】P,Q,R共线(α+β)=uwsinα+vwsinβ,得证。2.正弦定理的应用例2如图所示,△ABC内有一点P,使得BPC-BAC=CPA-CBA=APB-ACB。求证:AP·BC=BP·CA=CP·AB。【证明】过点P作PDBC,PEAC,PFAB,垂足分别为D,E,F,则P,D,C,E;P,E,A,F;P,D,B,F三组四点共圆,所以EDF=PDE+PDF=PCA+PBA=BPC-BAC。由题设及BPC+CPA+APB=3600可得BAC+CBA+ACB=1800。所以BPC-BAC=CPA-CBA=APB-ACB=600。所以EDF=600,同理DEF=600,所以△DEF是正三角形。所以DE=EF=DF,由正弦定理,CDsinACB=APsinBAC=BPsinABC,两边同时乘以△ABC的外接圆直径2R,得CP·BA=AP·BC=BP·AC,得证:例3如图所示,△ABC的各边分别与两圆⊙O1,⊙O2相切,直线GF与DE交于P,求证:PABC。【证明】延长PA交GD于M,因为O1GBC,O2DBC,所以只需证由正弦定理,所以另一方面,,所以,所以,所以PA//O1G,即PABC,得证。3.一个常用的代换:在△ABC中,记点A,B,C到内切圆的切线长分别为x,y,z,则a=y+z,b=z+x,c=x+y.例4在△ABC中,求证:a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.【证明】令a=y+z,b=z+x,c=x+y,则abc=(x+y)(y+z)(z+x)=8xyz=(b+c-a)(a+c-b)(a+b-c)=a2(b+c-a)+b2(c+a-b)+c2(a+b-c)-2abc.所以a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.4.三角换元。例5设a,b,c∈R+,且abc+a+c=b,试求的最大值。【解】由题设,令a=tanα,c=tanγ,b=tanβ,则tanβ=tan(α+γ),P=2sinγsin(2α+γ)+3cos2γ≤,当且仅当α+β=,sinγ=,即a=时,Pmax=例6在△ABC中,若a+b+c=1,求证:a2+b2+c2+4abc<【证明】设a=sin2αcos2β,b=cos2αcos2β,c=sin2β,β.因为a,b,c为三边长,所以c<,c>|a-b|,从而,所以sin2β>|cos2α·cos2β|.因为1=(a+b+c)2=a2+b2+c2+2(ab+bc+ca),所以a2+b2+c2+4abc=1-2(ab+bc+ca-2abc).又ab+bc+ca-2abc=c(a+b)+ab(1-2c)=sin2βcos2β+sin2αcos2α·cos4β·cos2β=[1-cos22β+(1-cos22α)cos4βcos2β]=+cos2β(cos4β-cos22αcos4β-cos2β)>+cos2β(cos4β-sin4β-cos2β)=.所以a2+b2+c2+4abc<三、趋近【必懂】1.(全国10高考)在△ABC中,cos2,c=5,求△ABC的内切圆半径.【解析】:∵ c=5,,∴ b=4  又cos2  ∴ cosA=  又cosA=  ∴   ∴ b2+c2-a2=2b2  ∴ a2+b2=c2  ∴ △ABC是以角C为直角的三角形.  a==3  ∴ △ABC的内切圆半径r=(b+a-c)=1.2.(全国10高考)R是△ABC的外接圆半径,若ab<4R2cosAcosB,则外心位于△ABC的外部. 【解析】:∵ ab<4R2cosAcosB  由正弦定理得a=2RsinA,b=2RsinB  ∴ 4R2sinAsinB<4R2cosAcosB  ∴ cosAcosB>sinAsinB  ∴ cosAcosB-sinAsinB>0  ∴ cos(A+B)>0  ∵ cos(A+B)=-cosC  ∴ -cosC>0  ∴ cosC<0  ∴ 90°<C<180°  ∴ △ABC是钝角三角形  ∴ 三角形的外心位于三角形的外部.   3.(全国10高考)半径为R的圆外接于△ABC,且2R(sin2A-sin2C)=(a-b)sinB.  (1)求角C;    (2)求△ABC面积的最大值. 【解析】:(1)∵     ∵ 2R(sin2A-sin2C)=(a-b)sinB  ∴ 2R[()2-()2]=(a-b)·  ∴ a2-c2=ab-b2  ∴   ∴ cosC=,∴ C=30°  (2)∵ S=absinC  =·2RsinA·2RsinB·sinC  =R2sinAsinB  =-[cos(A+B)-cos(A-B)]  =[cos(A-B)+cosC]  =[cos(A-B)+]  当cos(A-B)=1时,S有最大值第二章数列*******毋庸置疑,数列是历年各省市解答题中必出的。因此同学要熟练百倍!一、基础知识【理解去记】定义1数列,按顺序给出的一列数,例如1,2,3,…,n,….数列分有穷数列和无穷数列两种,数列{an}的一般形式通常记作a1,a2,a3,…,an或a1,a2,a3,…,an…。其中a1叫做数列的首项,an是关于n的具体表达式,称为数列的通项。定理1若Sn表示{an}的前n项和,则S1=a1,当n>1时,an=Sn-Sn-1.定义2等差数列,如果对任意的正整数n,都有an+1-an=d(常数),则{an}称为等差数列,d叫做公差。若三个数a,b,c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d,则a=b-d,c=b+d.定理2*****【必考】等差数列的性质:1)通项公式an=a1+(n-1)d;2)前n项和公式:Sn=;3)an-am=(n-m)d,其中n,m为正整数;4)若n+m=p+q,则an+am=ap+aq;5)对任意正整数p,q,恒有ap-aq=(p-q)(a2-a1);6)若A,B至少有一个不为零,则{an}是等差数列的充要条件是Sn=An2+Bn.定义3等比数列,若对任意的正整数n,都有,则{an}称为等比数列,q叫做公比。定理3*****【必考】等比数列的性质:1)an=a1qn-1;2)前n项和Sn,当q1时,Sn=;当q=1时,Sn=na1;3)如果a,b,c成等比数列,即b2=ac(b0),则b叫做a,c的等比中项;4)若m+n=p+q,则aman=apaq。定义4极限,给定数列{an}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|an-A|<,则称A为n→+∞时数列{an}的极限,记作定义5无穷递缩等比数列,若等比数列{an}的公比q满足|q|<1,则称之为无穷递增等比数列,其前n项和Sn的极限(即其所有项的和)为(由极限的定义可得)。定理4数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)时n=k成立时能推出p(n)对n=k+1成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。【补充】定理5第二数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)对一切n≤k的自然数n都成立时(k≥n0)可推出p(k+1)成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。定理6对于齐次二阶线性递归数列xn=axn-1+bxn-2,设它的特征方程x2=ax+b的两个根为α,β:(1)若αβ,则xn=c1an-1+c2βn-1,其中c1,c2由初始条件x1,x2的值确定;(2)若α=β,则xn=(c1n+c2)αn-1,其中c1,c2的值由x1,x2的值确定。二、基础例题【必会】1.不完全归纳法。这种方法是从特殊情况出发去更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。例1试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。【解】1)an=n2-1;2)an=3n-2n;3)an=n2-2n.例2已知数列{an}满足a1=,a1+a2+…+an=n2an,n≥1,求通项an.【解】因为a1=,又a1+a2=22·a2,所以a2=,a3=,猜想(n≥1).证明;1)当n=1时,a1=,猜想正确。2)假设当n≤k时猜想成立。当n=k+1时,由归纳假设及题设,a1+a1+…+a1=[(k+1)2-1]ak+1,,所以=k(k+2)ak+1,即=k(k+2)ak+1,所以=k(k+2)ak+1,所以ak+1=由数学归纳法可得猜想成立,所以例3设0<a<1,数列{an}满足an=1+a,an-1=a+,求证:对任意n∈N+,有an>1.【证明】证明更强的结论:1<an≤1+a.1)当n=1时,1<a1=1+a,①式成立;2)假设n=k时,①式成立,即1<an≤1+a,则当n=k+1时,有由数学归纳法可得①式成立,所以原命题得证。2.迭代法数列的通项an或前n项和Sn中的n通常是对任意n∈N成立,因此可将其中的n换成n+1或n-1等,这种办法通常称迭代或递推。例4数列{an}满足an+pan-1+qan-2=0,n≥3,q0,求证:存在常数c,使得·an+【证明】·an+1+(pan+1+an+2)+=an+2·(-qan)+=+an(pqn+1+qan)]=q().若=0,则对任意n,+=0,取c=0即可.若0,则{+}是首项为,公式为q的等比数列。所以+=·qn.取·即可.综上,结论成立。例5已知a1=0,an+1=5an+,求证:an都是整数,n∈N+.【证明】因为a1=0,a2=1,所以由题设知当n≥1时an+1>an.又由an+1=5an+移项、平方得①当n≥2时,把①式中的n换成n-1得,即②因为an-1<an+1,所以①式和②式说明an-1,an+1是方程x2-10anx+-1=0的两个不等根。由韦达定理得an+1+an-1=10an(n≥2).再由a1=0,a2=1及③式可知,当n∈N+时,an都是整数。****3.数列求和法。数列求和法主要有倒写相加、裂项求和法、错项相消法等。例6已知an=(n=1,2,…),求S99=a1+a2+…+a99.【解】因为an+a100-n=+=,所以S99=例7求和:+…+【解】一般地,,所以Sn=例8已知数列{an}满足a1=a2=1,an+2=an+1+an,Sn为数列的前n项和,求证:Sn<2。【证明】由递推公式可知,数列{an}前几项为1,1,2,3,5,8,13。因为,①所以。②由①-②得,所以。又因为Sn-2<Sn且>0,所以Sn,所以,所以Sn<2,得证。4.特征方程法例9已知数列{an}满足a1=3,a2=6,an+2=4n+1-4an,求an.【解】由特征方程x2=4x-4得x1=x2=2.故设an=(α+βn)·2n-1,其中,所以α=3,β=0,所以an=3·2n-1.例10已知数列{an}满足a1=3,a2=6,an+2=2an+1+3an,求通项an.【解】由特征方程x2=2x+3得x1=3,x2=-1,所以an=α·3n+β·(-1)n,其中,解得α=,β,所以·3]。5.构造等差或等比数列例11正数列a0,a1,…,an,…满足=2an-1(n≥2)且a0=a1=1,求通项。【解】由得=1,即令bn=+1,则{bn}是首项为+1=2,公比为2的等比数列,所以bn=+1=2n,所以=(2n-1)2,所以an=·…··a0=注:C1·C2·…·Cn.例12已知数列{xn}满足x1=2,xn+1=,n∈N+,求通项。【解】考虑函数f(x)=的不动点,由=x得x=因为x1=2,xn+1=,可知{xn}的每项均为正数。又+2≥,所以xn+1≥(n≥1)。又Xn+1-==,①Xn+1+==,②由①÷②得。③又>0,由③可知对任意n∈N+,>0且,所以是首项为,公比为2的等比数列。所以·,所以,解得·。注意:本例解法是借助于不动点,具有普遍意义。三、趋近高考【必懂】1.(2010.北京)设,则(  ).(A)   (B)(C) (D)解析:数列,…,是以2为首项,8为公比的等比数列,给出的这个数列共有项,根据等比数列的求和公式有.选(D).2.(2010.广东)在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4,…堆最底层(第一层)分别按下图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n堆第n层就放一个乒乓球,以表示第n堆的乒乓球总数,则_____;=_____(答案用n表示).【解析】:观察归纳,;观察图示,不难发现第堆最底层(第一层)的乒乓球数,第n堆的乒乓球总数相当于n堆乒乓球的底层数之和,即.  品:数列求和,无论等差还是等比数列,分清项数及规律都尤为重要.3.(2010.北京)设等差数列的首项及公差d都为整数,前n项和为.  (1)若,求数列的通项公式;  (2)若,求所有可能的数列的通项公式.  【解析】:(1)由,即,  解得 .  因此,的通项公式是;(2)由,得 ,  即由①+②,得 ,即.  由①+③,得 ,即.  所以.  又,故.将代入①、②,得 .  又,故或.  所以,数列的通项公式是或.品:利用等差(比)数列的定义构造方程(组)或不等式(组)是常用的解题方法.4.(2010.江苏)设数列满足,证明为等差数列的充要条件是为等差数列且.【解析】:必要性:设是公差为的等差数列,  则 .  易知成立.  由递推关系(常数)(n=1,2,3,…).  所以数列为等差数列.充分性:设数列是公差为的等差数列,且,∵, ①∴, ②由①②,得 .∵,∴, ③从而有, ④④③,得, ⑤∵,∴由⑤得,由此不妨设,  则(常数).  由此.从而,两式相减得.  因此(常数)(n=1,2,3,…),即数列为等差数列.  品:利用递推关系式是解决数列问题的重要方法,要熟练掌握等差数列的定义、通项公式. 5.(2010.福建)已知数列满足.  (1)求数列的通项公式;  (2)若,证明是等差数列.  【解析】:(1)∵,∴.∴是以为首项,2为公比的等比数列.∴,即;(2)∵,利用的通项公式,有.∴.①构建递推关系, ②②-①,得,③从而有,④③④,得 ,即.故是等差数列.[方法:]由递推式求数列的通项,常常构造新的辅助数列为等差或等比数列,用迭代法、累加法或累乘法求其通项.第三章不等式***本章节总结的知识点已经涵盖了选修4-5的不等式专讲一书。因此后期不会总结《选修4-5不等式选讲》一书。希望同学周知!一、基础知识【理解去记】***【必会】不等式的基本性质:(1)a>ba-b>0;(2)a>b,b>ca>c;(3)a>ba+c>b+c;(4)a>b,c>0ac>bc;(5)a>b,c<0ac<bc;(6)a>b>0,c>d>0ac>bd;(7)a>b>0,n∈N+an>bn;(8)a>b>0,n∈N+;(9)a>0,|x|<a-a<x<a,|x|>ax>a或x<-a;(10)a,b∈R,则|a|-|b|≤|a+b|≤|a|+|b|;(11)a,b∈R,则(a-b)2≥0a2+b2≥2ab;(12)x,y,z∈R+,则x+y≥2,x+y+z因为前五条是显然的,以下从第六条开始给出证明。(6)因为a>b>0,c>d>0,所以ac>bc,bc>bd,所以ac>bd;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若,由性质(7)得,即a≤b,与a>b矛盾,所以假设不成立,所以;由绝对值的意义知(9)成立;-|a|≤a≤|a|,-|b|≤b≤|b|,所以-(|a|+|b|)≤a+b≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-2≥0,所以x+y≥,当且仅当x=y时,等号成立,再证另一不等式,令,因为x3+b3+c3-3abc=(a+b)3+c3-3a2b-3ab2-3abc=(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca)=(a+b+c)[(a-b)2+(b-c)2+(c-a)2]≥0,所以a3+b3+c3≥3abc,即x+y+z≥,等号当且仅当x=y=z时成立。二、基础例题【必会】1.不等式证明的基本方法。(1)比较法,在证明A>B或A<B时利用A-B与0比较大小,或把(A,B>0)与1比较大小,最后得出结论。例1设a,b,c∈R+,试证:对任意实数x,y,z,有x2+y2+z2【证明】左边-右边=x2+y2+z2所以左边≥右边,不等式成立。例2若a<x<1,比较大小:|loga(1-x)|与|loga(1+x)|.【解】因为1-x1,所以loga(1-x)0,=|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)>log(1-x)(1-x)=1(因为0<1-x2<1,所以>1-x>0,0<1-x<1).所以|loga(1+x)|>|loga(1-x)|.(2)分析法,即从欲证不等式出发,层层推出使之成立的充分条件,直到已知为止,叙述方式为:要证……,只需证……。例3已知a,b,c∈R+,求证:a+b+c-3≥a+b【证明】要证a+b+c≥a+b只需证,因为,所以原不等式成立。例4已知实数a,b,c满足0<a≤b≤c≤,求证:【证明】因为0<a≤b≤c≤,由二次函数性质可证a(1-a)≤b(1-b)≤c(1-c),所以,所以,所以只需证明,也就是证,只需证b(a-b)≤a(a-b),即(a-b)2≥0,显然成立。所以命题成立。(3)数学归纳法。例5对任意正整数n(≥3),求证:nn+1>(n+1)n.【证明】1)当n=3时,因为34=81>64=43,所以命题成立。2)设n=k时有kk+1>(k+1)k,当n=k+1时,只需证(k+1)k+2>(k+2)k+1,即>1.因为,所以只需证,即证(k+1)2k+2>[k(k+2)]k+1,只需证(k+1)2>k(k+2),即证k2+2k+1>k2+2k.显然成立。所以由数学归纳法,命题成立。(4)反证法。例6设实数a0,a1,…,an满足a0=an=0,且a0-2a1+a2≥0,a1-2a2+a3≥0,…,an-2-2an-1+an≥0,求证ak≤0(k=1,2,…,n-1).【证明】假设ak(k=1,2,…,n-1)中至少有一个正数,不妨设ar是a1,a2,…,an-1中第一个出现的正数,则a1≤0,a2≤0,…,ar-1≤0,ar>0.于是ar-ar-1>0,依题设ak+1-ak≥ak-ak-1(k=1,2,…,n-1)。所以从k=r起有an-ak-1≥an-1-an-2≥…≥ar-ar-1>0.因为an≥ak-1≥…≥ar+1≥ar>0与an=0矛盾。故命题获证。(5)分类讨论法。例7已知x,y,z∈R+,求证:【证明】不妨设x≥y,x≥z.ⅰ)x≥y≥z,则,x2≥y2≥z2,由排序原理可得,原不等式成立。ⅱ)x≥z≥y,则,x2≥z2≥y2,由排序原理可得,原不等式成立。(6)放缩法,即要证A>B,可证A>C1,C1≥C2,…,Cn-1≥Cn,Cn>B(n∈N+).例8求证:【证明】,得证。例9已知a,b,c是△ABC的三条边长,m>0,求证:【证明】(因为a+b>c),得证。(7)引入参变量法。例10已知x,y∈R+,l,a,b为待定正数,求f(x,y)=的最小值。【解】设,则,f(x,y)=(a3+b3+3a2b+3ab2)=,等号当且仅当时成立。所以f(x,y)min=例11设x1≥x2≥x3≥x4≥2,x2+x3+x4≥x1,求证:(x1+x2+x3+x4)2≤4x1x2x3x4.【证明】设x1=k(x2+x3+x4),依题设有≤k≤1,x3x4≥4,原不等式等价于(1+k)2(x2+x3+x4)2≤4kx2x3x4(x2+x3+x4),即(x2+x3+x4)≤x2x3x4,因为f(k)=k+在上递减,所以(x2+x3+x4)=(x2+x3+x4)≤·3x2=4x2≤x2x3x4.所以原不等式成立。(8)局部不等式。例12已知x,y,z∈R+,且x2+y2+z2=1,求证:【证明】先证因为x(1-x2)=,所以同理,,所以例13已知0≤a,b,c≤1,求证:≤2。【证明】先证①即a+b+c≤2bc+2.即证(b-1)(c-1)+1+bc≥a.因为0≤a,b,c≤1,所以①式成立。同理三个不等式相加即得原不等式成立。(9)利用函数的思想。例14已知非负实数a,b,c满足ab+bc+ca=1,求f(a,b,c)=的最小值。【解】当a,b,c中有一个为0,另两个为1时,f(a,b,c)=,以下证明f(a,b,c)≥.不妨设a≥b≥c,则0≤c≤,f(a,b,c)=因为1=(a+b)c+ab≤+(a+b)c,解关于a+b的不等式得a+b≥2(-c).考虑函数g(t)=,g(t)在[)上单调递增。又因为0≤c≤,所以3c2≤1.所以c2+a≥4c2.所以2≥所以f(a,b,c)=≥==≥下证0①c2+6c+9≥9c2+9≥0因为,所以①式成立。所以f(a,b,c)≥,所以f(a,b,c)min=2.几个常用的不等式——《选修4-5不等式选讲》(1)【只需了解】柯西不等式:若ai∈R,bi∈R,i=1,2,…,n,则等号当且仅当存在λ∈R,使得对任意i=1,2,,n,ai=λbi,变式1:若ai∈R,bi∈R,i=1,2,…,n,则等号成立条件为ai=λbi,(i=1,2,…,n)。变式2:设ai,bi同号且不为0(i=1,2,…,n),则等号成立当且仅当b1=b2=…=bn.(2)【必会】平均值不等式:设a1,a2,…,an∈R+,记Hn=,Gn=,An=,则Hn≤Gn≤An≤Qn.即调和平均≤几何平均≤算术平均≤平方平均。其中等号成立的条件均为a1=a2=…=an.【证明】由柯西不等式得An≤Qn,再由Gn≤An可得Hn≤Gn,以下仅证Gn≤An.1)当n=2时,显然成立;2)设n=k时有Gk≤Ak,当n=k+1时,记=Gk+1.因为a1+a2+…+ak+ak+1+(k-1)Gk+1≥≥2kGk+1,所以a1+a2+…+ak+1≥(k+1)Gk+1,即Ak+1≥Gk+1.所以由数学归纳法,结论成立。(3)排序不等式:例15已知a1,a2,…,an∈R+,求证;a1+a2+…+an.【证明】证法一:因为,…,≥2an.上述不等式相加即得≥a1+a2+…+an.证法二:由柯西不等式(a1+a2+…+an)≥(a1+a2+…+an)2,因为a1+a2+…+an>0,所以≥a1+a2+…+an.证法三:设a1,a2,…,an从小到大排列为,则,,由排序原理可得=a1+a2+…+an≥,得证。注:本讲的每种方法、定理都有极广泛的应用,希望读者在解题中再加以总结。三、趋近高考【必懂】1.(成都市2010届高三第三次诊断理科)不等式的解集为()(A){x|-1≤x≤2} (B){x|-1<x≤2} (C){x|-1≤x<2} (D){x|-1<x<2}【答案】B[4y063x+4y=28xAz=0.9x+y]【解析】原不等式等价于,解得-1<x≤22.(成都市2010理)某物流公司有6辆甲型卡车和4辆乙型卡车,此公司承接了每天至少运送280t货物的业务,已知每辆甲型卡车每天的运输量为30t,运输成本费用为0.9千元;每辆乙型卡车每天的运输量为40t,运输成本为1千元,则当每天运输成本费用最低时,所需甲型卡车的数量是()(A)6 (B)5 (C)4 (D)3【答案】C【解析】设需要甲型卡车x辆,乙型卡车y辆由题意且x、y∈Z运输成本目标函数z=0.9x+y画出可行域(如图)可知,当目标函数经过A(4,4)时,z最小7.6千元及需要甲型卡车和乙型卡车各4辆。3.(绵阳2010年)把圆C:按向量a=(h,-1)平移后得圆C1,若圆C1在不等式x+y+1≥0所确定的平面区域内,则h的最小值为(A)(A)1 (B)-1 (C) (D)4.(雅安市2010届高三第三次诊断性考试理科)已知函数的定义域为,部分函数值如表所示,其导函数的图象如图所示,若正数,满足,则的取值范围是(B) A. B. C. D.5.(2010四川省攀枝花市文)已知函数.(Ⅰ)若且对任意实数均有成立,求实数的值;(Ⅱ)在(Ⅰ)的条件下,当时,是单调函数,求实数的取值范围.【解析】)又对任意实数均有0成立恒成立,即恒成立(Ⅱ)由(Ⅰ)可知在[-2,2]时是单调函数,即实数的取值范围为1
/
本文档为【人教版高中数学必修五典型例题】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索