为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > 专题数列(中档题)期末常考

专题数列(中档题)期末常考

2023-05-20 10页 pdf 1MB 3阅读

用户头像 个人认证

is_133803

暂无简介

举报
专题数列(中档题)期末常考专题08数列(中档题)期末常考题型精选一.选择题(共9小题)(1)n20211.若数列{a},{b}的通项公式分别为a(1)n2020a,b2,且ab对任意nN*恒成立,nnnnnnn则实数a的取值范围为()31A.[2,1)B.[2,)C.[1,)D.[1,1)22(1)n2021【解答】解:由题意得(1)n2020a2,n11①当n奇数时,a2,2单调递减,nn12(2,),a2,a2.n11②当n偶数时,a2,2单调递增,nn11333(2)2...
专题数列(中档题)期末常考
专题08数列(中档题)期末常考题型精选一.选择题(共9小题)(1)n20211.若数列{a},{b}的通项分别为a(1)n2020a,b2,且ab对任意nN*恒成立,nnnnnnn则实数a的取值范围为()31A.[2,1)B.[2,)C.[1,)D.[1,1)22(1)n2021【解答】解:由题意得(1)n2020a2,n11①当n奇数时,a2,2单调递减,nn12(2,),a2,a2.n11②当n偶数时,a2,2单调递增,nn11333(2)2,a,a.nmin22223综上所述,2a.2故选:B.a(4)x4,x62.已知函数f(x)2(a0,a1),数列{a}满足af(n)(nN*),且{a}是单调递增数nnnax5,x6列,则实数a的取值范围()A.[7,8)B.(1,8)C.(4,8)D.(4,7)【解答】解:{a}是单调递增数列,na402a1,af(6)6(4)4a22解得4a8.故选:C.3.已知等差数列{a}的项数为奇数,其中所有奇数项之和为319,所有偶数项之和为290,则该数列的中n间项为()A.28B.29C.30D.31【解答】解:设等差数列共有(2n1)项,由题意得Saaa,Saaa,奇132n1偶242n故SSaaaaa,奇偶1322n12naddanda31929029.11n1故中间项a为29.n1故选:B.S2SSa4.已知数列{a}满足a10,a12,n1nn12(n2),则n的最小值为()n12nn161121A.B.2101C.D.324S2SS【解答】解:因为a10,a12,n1nn12(n2),12naa所以n1n2,即aa2n,(n2),结合aa4,aa2,nn1n3221可知{aa}是以aa2为首项,公差为2的等差数列.n1n21故:aa21,21aa22,32aa23,43aa2(n1),nn1(n1)(1n1)上述n1个式子相加得:aa2,n12a10所以an2n10,所以nn1,nnn10因为函数yx,x0在(0,10)上递减,在(10,)递增,xa16a2216且n3时,3;n4时,4.33443a16故n最小值为.n3故选:A.n22tn,n5,nN*5.已知数列{a}满足a,且数列{a}是单调递增数列,则t的取值范围是()nn(t1)n,n5,nN*n9199A.(,)B.(,)C.(5,)D.(1,4]242n22tn,n5,nN*【解答】解:数列{a}满足a,且数列{a}是单调递增数列,nn(t1)n,n5,nN*nt4.5919,求得t,2510t(t1)624故选:A.6.已知数列{a}的通项公式为a4n1(nN*),将数列{a}中的整数从小到大排列得到新数列{b},nnnn则{b}的前100项和为()nA.9900B.10200C.10000D.11000【解答】解:因为数列{a}的通项公式为a4n1(nN*),nn所以ba4213,12ba4615,26ba41217,312ba42019,420观察可知数列{b}是首项为3,公差为2的等差数列,n10099所以S1003210200.1002故选:B.17.已知数列{b}满足b2()n1n2,若数列{b}是单调递减数列,则实数的取值范围是()nn2n101101A.(1,)B.(,)C.(1,1)D.(,1)3232【解答】解:数列{b}是单调递减数列,n111则bb2()n(n1)22()n1n26()n2n10,n1n2222n1当n为偶数时,6(2n1)(2)n,即6(2n1)2n,1()n2由于{2n1)2n}为递增数列,则数列{2n1)2n}的最小值20,620,10即,32n1当n为奇数时,6(2n1)(2)n,即6(2n1)2n,1()n2由于{(2n1)2n}为递减数列,则数列{(2n1)2n}的最大值6,66,1,10综上所述实数的取值范围是(1,).3故选:A.n18.数列{a}中,a2,且aa2(n2),则数列前2021项和为()n1nn1aa(a1)2nn1n2021202120194040A.B.C.D.1010101110102021n【解答】解:数列{a}中,a2,且aa2(n2),n1nn1aann1所以(aa)(aa)n2(aa),nn1nn1nn1即a2a22a2an,nn1nn1所以(a1)2(a1)2n(n2),nn1则(a1)2(a1)2n1,n1n2...,(a1)2(a1)22,21将以上各式累加,可得(a1)2(a1)2n(n1)...2,n11将a2代入,可得(a1)212...nn(n1),1n21211所以2(),(a1)2n(n1)nn1n111111所以数列{}的前2021项和为2(1...)(a1)222320212022n120212(1).20221011故选:B.9.某养猪场2021年年初猪的存栏数1200,预计以后每年存栏数的增长率为8%,且在每年年底卖出100头.设该养猪场从今年起每年年初的存栏数依次为a,a,a,.则2035年年底存栏头数为(123)(参考数据:1.08142.9,1.08153.2,1.08163.4)A.1005B.1080C.1090D.1105【解答】解:由题意得:a1200,1a12001.08100,2a12001.0821001.08100,3a12001.0831001.0821001.08100,4a12001.0841001.0831001.0821001.08100,52035年年底存栏头数为:a12001.0815100(1.08141.08131.08121.081)161(11.0815)12003.21001090.11.08故选:C.二.多选题(共12小题)10.在数列{a}中,若aap(n2,nN*,p为常数),则称数列{a}为“开方差数列”,则下列nnn1n判断正确的是()A.{32n}是开方差数列B.若{a}是开方差数列,则{a}是等差数列nnC.若{a}是开方差数列,则{a}也是开方差数列(kN*,k为常数)nknD.若{a}既是开方差数列,又是等差数列,则该数列为常数列n【解答】解:对于A,因为a32n,所以a32(n1),nn1所以a3n,a3n1,nn1所以aa3n3n123n1常数,所以A不正确;nn1对于B,因为{a}是开方差数列,n所以aap(n2,nN*,p为常数),nn1所以{a}是等差数列,n所以aa(n1)p,n1所以a[a(n1)p]2,n1所以当p0时,{a}不是等差数列,故B不正确;n对于C,因为{a}是开方差数列,n由B项分析可得:{a}是等差数列,且aa(n1)p,nn1所以a[a(n1)p]2,n1所以a[a(kn1)p]2,所以aa(kn1)p,kn1kn1所以aa[a(knk1)p][a(kn1)p]kp,k(n1)kn11所以{a}也是开方差数列(kN*,k为常数),故C正确;kn对于D,因为{a}是开方差数列,所以a[a(n1)p]2,nn1又因为{a}是等差数列,n所以aa(anp)2[a(n1)p]2(2n1)p22ap,n1n111所以当p0时,aa为常数,n1n即{a}是等差数列,此时a(a)2a,即该数列为常数列,故D正确.nn11故选:CD.11.已知数列{a},{b}满足a2,b1,a5a3b7,b3a5b,nN*,且数列{a},{b}nn11n1nnn1nnnn的前n项和分别是S,T,则下列说法错误的是()nnA.a23n22n14nB.b23n22n13nC.ST52n6n6nnab77D.数列{n1n1}的前n项和为SSTT23n472n13723n42n312nn1nn1【解答】解:a2,b1,a5a3b7,①11n1nnb3a5b,②n1nn①②两式相加可得,ab8(ab)7,n1n1nn即为ab18(ab1),n1n1nn所以ab1(ab1)8n148n123n1,nn11即有ab23n11,③nn①②两式相减可得,ab2(ab)7,n1n1nn即为ab72(ab7),n1n1nn所以ab7(ab7)2n182n12n2,nn11即有ab2n27,④nn由③④可得a23n22n14,b23n22n13,nn故A错误,B正确;S(216...23n2)(48...2n1)4nn2(18n)4(12n)23n121304n2n244n23n12n24n,18127772(18n)4(12n)126T3n23n12n23n,n181277所以ST2n37n8,故C错误;nnabSSTT1111由n1n1n1nn1n()(),SSTTSSTTSSTTnn1nn1n1nn1nnn1nn1ab111111111111可得数列{n1n1}的前n项和为(...)(...)SSTTSSSSSSTTTTTTnn1nn11223nn11223nn11111377()(),SSTT223n472n328n5823n472n321n471n11n1故D错误.故选:ACD.1112.已知数列{a}满足aa()n,a2,数列b(3)na的前2n项和为S,则下列说法正确的是nn3n131nn2n()A.数列{a}是等比数列B.数列{3na}是等差数列nnC.数列{b}是等差数列D.Snn2n11【解答】解:数列{a}满足aa()n,nn3n13aa整理得:nn11(常数),11()n()n133整理得3na3n1a1,nn1所以数列{3na}是等差数列,故B正确;n由数列{3na}是等差数列,n所以3na6(n1)5n,n5n整理得a,n3n5n数列b(3)na的前2n项和为S,则b(3)n,nn2nn3n52n152nSbb...b(67)(89)...[(3)2n1(3)2n]11...1n.2n122n32n132n故D正确.故选:BD.113.已知数列{a}的前n项和为S(S0),且满足a4SS0(n2),a,则下列说法正确的是(nnnnn1n14)1A.数列{a}的前n项和为Snn4n1B.数列{a}的通项公式为ann4n(n1)C.数列{a}为递增数列n1D.数列{}为递增数列Sn【解答】解:a4SS0(n2),nn1nSS4SS0(n2),nn1n1n11S0,4(n2),nSSnn111因此数列{}是以4为首项,4为公差的等差数列,也是递增数列,即D正确;SSn111所以44(n1)4n,S,即A正确;Sn4nn111当n2时,aSS,nnn14n4(n1)4n(n1)1,n14所以a,即B,C不正确;n1,n24n(n1)故选:AD.2n14.已知数列{a}的前n项和为S,a1,SS2a1,数列{}的前n项和为T,nN*,nn1n1nnaannn1则下列选项正确的为()A.数列{a1}是等差数列nB.数列{a1}是等比数列nC.数列{a}的通项公式为a2n1nnD.T1n【解答】解:由SS2a1即为aSS2a1,n1nnn1n1nn可化为a12(a1),由Sa1,可得数列{a1}是首项为2,公比为2的等比数列,n1n11n则a12n,即a2n1,nn2n2n11又,可得aa(2n1)(2n11)2n12n11nn1111111T111,n2212212312n12n112n11故A错误,B,C,D正确.故选:BCD.15.设{a}(nN*)是等差数列,S是其前n项的和,且SS,SSS,则下列结论正确的是(nn56678)A.d0B.a07C.SSD.S与S均为S的最大值9567n【解答】解:由SS得aaaaaaaa,即a0,56123512566又SS,67aaaaaaa,1261267a0,故B正确;7同理由SS,得a0,788da7a60,故A正确;而C选项SS,即aaaa0,可得2(aa)0,由结论a0,a0,显然C选项是错误的.9567897878SS,SSS,S与S均为S的最大值,故D正确;5667867n故选:ABD.16.设公差不为0的等差数列{a}的前n项和为S,若SS,则下列各式的值为0的是()nn1718A.aB.SC.aaD.SS173517191916【解答】解:设{a}的首项为a,公差为d,由SS,n1171817161817即17ad18ad,1212得a17d,1a(n18)d,nn(17dnd18d)n(n35)Sd,n22所以a0,S0.1835aadd2d,171919(16)16(19)SSdd0.191622故选:BD.17.已知数列{a},{b}均为递增数列,{a}的前n项和为S,{b}的前n项和为T.且满足aa2n,nnnnnnnn1bb2n(nN*),则下列说法正确的有()nn1A.0a1B.1b2C.STD.ST112n2n2n2n【解答】解:数列{a}为递增数列;naaa;123aa2n,nn1aa212;aa423aa2a121aa2a44a23210a1;故A正确.1S(aa)(aa)(aa)26102(2n1)2n2;2n12342n12n数列{b}为递增数列;nbbb;123bb2nnn1bb212;bb423bb21;bb321b2,故B正确.1Tbbb2n122n(bbbb)(bbb)1352n1242nb(12n)b(12n)12(bb)(2n1)22122bb(2n1)22(2n1);12对于任意的nN*,ST;故C正确,D错误.2n2n故选:ABC.18.已知数列{a}是等比数列,下列结论正确的为()nA.若aa0,则aa01223B.若aa0,则aa01312C.若aa0,则aa2a21132D.若aa0,则(aa)(aa)0122123【解答】解:数列{a}是等比数列,n对于A,aa0,即a2q0,可得q0,则aaa2q30,故A正确;121231对于B,aaa(1q2)0,可得a0,由于aaa(1q),当q1时,aa0,当q1时,131112112aa0,故B不正确;12对于C,aa0,可得q1,所以aa2aa(12qq2)a(1q)20,故aa2a,C正确;2113211132对于D,由aa0,可得a2q0,可得q0,所以(aa)(aa)a2(q1)(qq2)a2q(q1)20,121212311故D不正确.故选:AC.19.若数列{a}满足a1,a1,aaa(n3,nN),则称数列{a}为斐波那契数列,又称黄金n12nn1n2n分割数列.在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用则下列结论成立的是()A.a13B.aaaaa713520192020C.S54D.aaaaa724620202021【解答】解:因为a1,a1,aaa(n3,nN),12nn1n2所以aaa2,aaa3,aaa5,aaa8,aaa13,所以A正确;321432543654765S1123581333,所以C不正确;7aaaaaaaaaaaaS1S,13520191214320182017120182018又aaaaaaaaaaaaaS1,n2n1nnn1n1n2nn1n2n3n3n4n所以aS1aaaa,所以B正确;202020181352019aaaaaaaaaaaaaaaaaS,246202023254201920181234520192019但S1a,所以aaaaa,所以D不正确.2019202124620202021故选:AB.11212320.已知数列1,,1,,,1,,,,1,,则()233444n(n1)12A.数列的第项均为1B.是数列的第90项21357C.数列前50项和为28D.数列前50项和为21121231234【解答】解:由题意,可将题干中的数列转化为,,,,,,,,,,1223334444则可发现该数列分母为1,2,3,4,且分母是几对应的就有几项,n(n1)12n,2n(n1)n数列的第项为分母n的对应的最后一项1,故选项A正确,2n12是分母为13的倒数第二项,1313(113)而121391,212是数列的第91190项,故选项B正确,13n(n1)令50,即n(n1)100,2当n9时,91090100,当n10时,1011110100,5数列前50项为分母10的第5项,即为,1012123129125数列前50项和为1239103456789103122222222257,故选项D正确,选项C错误.2故选:ABD.21.设数列{a}的前n项和为S,若存在实数A,使得对任意nN*,都有|S|A,则称数列{a}为“Tnnnn数列”.则以下结论正确的是()A.若{a}是等差数列,且a0,公差d0,则数列{a}是“T数列”n1nB.若{a}是等比数列,且公比q满足|q|1,则数列{a}是“T数列”nnn2C.若a,则数列{a}是“T数列”nn(n1)2n1nn2D.若a,则数列{a}是“T数列”n4n21nn(n1)11【解答】解:对于A,Snaddn2(ad)n,n12212易知n时,S,不存在实数A,使得对任意nN*,都有|S|A,所以选项A错误;nna(1qn)a|a|(1|q|)对于B,S1,|q|1,n时,1qn1,即S1,且|S|1,n1qn1qn1q存在实数A,使得对任意nN*,都有|S|A,所以选项B正确;nn2111131对于C,若a,S(,),nn(n1)2n1n2n(n1)2n1n2(n1)2n182存在实数A,使得对任意nN*,都有|S|A,所以选项C正确;nn211对于D,若a,则a,则Sn,n4n21n4n4不存在实数A,使得对任意nN*,都有|S|A,所以选项D错误.n故选:BC.三.填空题(共6小题)852122.等比数列{a}的首项为2,项数为奇数,其奇数项之和为,偶数项之和为,则这个等比数列的公n32161比q,又令该数列的前n项的积为T,则T的最大值为.2nn【解答】解:设共有2m1项,由题意:85Saaa,奇132m13221Saaa,偶242m162185Saaqaq2qaaa2q,奇122m242m16321解得q.23nn21Taaaanq12n12n222,n12n1n(n1)22当n1或2时,T的最大值为2.n1故答案为:,2.223.已知数列{a}的通项公式为aan2n,若满足aaa,且当n8时,始终满足aa,则实数ann123nn111的取值范围是a.5171【解答】解:aan2n的对称轴为x,开口向下,n2a又当n8时,aa,aaa,nn1123511711,a,22a251711故答案为:a.5172n124.已知数列{a}与{b}前n项和分别为S,T,且a0,2Sa2a,nN*,b,nnnnnnnnn(2na)(2n1a)nn144则T.6135【解答】解:2Sa2a,nnn当n2时,2Sa2a,n1n1n1两式作差可得,2aa2aa2a,nnnn1n1整理得,(aa1)(aa)0,nn1nn1由a0知,aa0,从而aa10,nnn1nn1即当n2时,aa1,nn1当n1时,2aa2a,解得a1或a0(舍).11111则{a}是首项为1,公差为1的等差数列,n则a1(n1)1n,n2n111b.n(2nn)(2n1n1)2nn2n1n1111111则Tbb...b....n12n366112nn2n1n11144T.63276113544故答案为:.135n125.在数列{a}中,a2,且aa2(n2),则数列{}的前2021项和为n1nn1aa2a24a2nn1nn2021.2022n【解答】解:aa2(n2),nn1aann1(aa)(aa)n2(aa),nn1nn1nn1即a2a22a2an,nn1nn1(a1)2(a1)2n(n2),nn1(a1)2(a1)2n1,n1n2...(a1)2(a1)22,21将以上各式累加,可得(a1)2(a1)2n(n1)...2,n1n(n1)将a2代入,可得(a1)212...n,1n212112(),(a1)2n(n1)nn1n11111则,2a24a22(a1)2nn1nnn111111数列{}的前2021项和为1...2a24a222320212022nn120211.202220222021故答案为:.2022n26.已知数列{a}中,设a1,a3a1(nN*),若ba,T是{b}的前n项和,若不n1n1nn(3n1)2n2nnn等式2n2n1Tn对一切的nN恒成立,则实数的取值范围是(,1).n【解答】解:数列{a}中,设a1,a3a1(nN*),n1n1n可设at3(at),即为a3a2t,n1nn1n1即有2t1,即t.211则a3(a),n12n211则a(a)3n1,n2121可得a(3n1),n2nn11则ba(3n1)n()n1,n(3n1)2n2n(3n1)2n2221111T1()02()3()2n()n1,n222211111T1()12()23()3n()n,2n2222111111两式相减可得T1()1()2()3()n1n()n2n22222112n1n()n,12121化简可得T4(2n4)()n,n2不等式2n2n1Tn对一切的nN恒成立,n即有不等式2n2n12对一切的nN恒成立.1即为2()n1对一切的nN恒成立.21由2()n1在nN递增,可得n1时,取得最小值1,2则1.故答案为:(,1).27.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中诗篇《李白沽酒》里记载:“今携一壶酒,游春郊外走,逢朋加一倍,人店饮斗九”意思是说,李白去郊外春游时,带了一壶酒,遇见朋友,先到酒店里将壶中的酒增加一倍(假定每次加酒不会溢出),再饮去其中的3升酒.那么根据这个规则,若李白酒壶中原来有酒a(a3)升,将李白在第n(n1,nN)家店饮酒后所剩酒量记为a00n升,则a2na3(12n)升(用a和n表示).n00【解答】解:李白在第n(n1,nN)家店饮酒后所剩酒量记为a升,n则第一家店饮酒后所剩酒量为a2a3升,10第二家店饮酒后所剩酒量为a2a32(2a3)322a3(12)升,2100第三家店饮酒后所剩酒量为a2a323a3(1222)升,320第四家店饮酒后所剩酒量为a2a324a3(122223)升,43012n第n家店饮酒后所剩酒量为a2a32na3(12222n1)2na32na3(12n)升.nn100120故答案为:2na3(12n)升.0四.解答题(共11小题)28.设{a}是公比不为1的等比数列,a为a,a的等差中项.n123(1)求{a}的公比;n(2)若a1,求数列{na}的前n项和.1n【解答】解:(1)设{a}是公比q不为1的等比数列,na为a,a的等差中项,可得2aaa,123123即2aaqaq2,111即为q2q20,解得q2(1舍去),所以{a}的公比为2;n(2)若a1,则a(2)n1,1nnan(2)n1,n则数列{na}的前n项和为S112(2)3(2)2n(2)n1,nn2S1(2)2(2)23(2)3n(2)n,n两式相减可得3S1(2)(2)2(2)3(2)n1n(2)nn1(2)nn(2)n,1(2)1(13n)(2)n化简可得S,n91(13n)(2)n所以数列{na}的前n项和为.n92129.记S为数列{a}的前n项和,b为数列{S}的前n项积,已知2.nnnnSbnn(1)证明:数列{b}是等差数列;n(2)求{a}的通项公式.n【解答】解:(1)证明:当n1时,bS,11213由2,解得b,bb1211b21当n2时,nS,代入2,bnSbn1nn2b11消去S,可得n12,所以bb,nbbnn12nn31所以{b}是以为首项,为公差的等差数列.n223(2)由题意,得aSb,111231n2由(1),可得b(n1),n22221n2由2,可得S,Sbnn1nnn2n11当n2时,aSS,显然a不满足该式,nnn1n1nn(n1)13,n12所以a.n1,n2n(n1)330.设数列{a}的前n项和为S,满足SaAn2Bn1.且a1,a.nnnn122(1)求证:数列{an1}是等比数列并求数列{a}的通项公式;nn1b(2)令b,求数列{n}的前n项和T,若对任意n都有Tm,求实数m的取值范nan1(b1)(b1)nnnnn1围.【解答】解:(1)证明:分别令n1,2代入条件,2aAB1&得1,2aa4A2B1&213由于且a1,a,12211所以A,B.2211所以aSn2n1①,nn2211当n2时,aS(n1)2(n1)1②,n1n12211①②得:2aa(2n1)n,nn122所以a2an,n1n由于a110,1an11所以n(常数),a(n1)12n11所以数列{an1}为等比数列且首项为1,公比为.n21所以an()n11.n21(2)由b2n1,nan1nb11则:n,(b1)(b1)2n112n1nn111111111所以T()()().n2012112112212n112n122n1由于T单调递增,n111所以:n1,(T),nmin2361所以m.61n31.已知数列{a}是首项为正数的等差数列,数列{}的前n项和为.naa2n1nn1(1)求数列{a}的通项公式;na(2)设b(a1)2n,求数列{b}的前n项和T.nnnn【解答】解:方法一:(1)设等差数列{a}的首项为a、公差为d,则a0,n11aa(n1)d,aand,n1n111令c,naann11111则c[],n[a(n1)d](and)da(n1)dand11111111111cccc[]12n1ndaadada2da(n1)dand111111111nn[],daanda(and)a2adn1111111na21又数列{}的前n项和为,1,aa2n1ad2nn11a1或1(舍),d2,1a12(n1)2n1;n方法二:设等差数列{a}的首项为a、公差为d,则a0,n111n则由数列{}的前n项和为,aa2n1nn111aa3a(ad)3a1得12,11,1,112(ad)(a2d)15d211aaaa51223a12(n1)2n1;na2n1n(2)由(1)知b(a1)2n(2n11)2n4,nnTbbb141242n4n,n12n4T142243(n1)4nn4n1,n13n4两式相减,得3T41424nn4n14n1,n33(3n1)4n14T.n932.已知{a}为等差数列,前n项和为S(nN*),{b}是首项为2的等比数列,且公比大于0,bb12,nnn23ba2a,S11b.341114(Ⅰ)求{a}和{b}的通项公式;nn(Ⅱ)求数列{ab}的前n项和(nN*).2nn【解答】(Ⅰ)解:设等差数列{a}的公差为d,等比数列{b}的公比为q.由已知bb12,得b(qq2)12,nn231而b2,所以q2q60.又因为q0,解得q2.所以,b2n.1n由ba2a,可得3da8.3411由S11b,可得a5d16,联立①②,解得a1,d3,11411由此可得a3n2.n所以,{a}的通项公式为a3n2,{b}的通项公式为b2n.nnnn(Ⅱ)解:设数列{ab}的前n项和为T,由a6n2,有T4210221623(6n2)2n,2nnn2nn2T42210231624(6n8)2n(6n2)2n1,n上述两式相减,得12(12n)T4262262362n(6n2)2n14(6n2)2n1(3n4)2n216.n12得T(3n4)2n216.n所以,数列{ab}的前n项和为(3n4)2n216.2nnna33.设{a}是首项为1的等比数列,数列{b}满足bn,已知a,3a,9a成等差数列.nnn3123(1)求{a}和{b}的通项公式;nnS(2)记S和T分别为{a}和{b}的前n项和.证明:Tn.nnnnn2【解答】解:(1)a,3a,9a成等差数列,6aa9a,123213{a}是首项为1的等比数列,设其公比为q,n1则6q19q2,q,31aaqn1()n1,n13na1bnn()n.n3311(2)证明:由(1)知a()n1,bn()n,n3n311[1()n]3311S()n1,n122313111T1()12()2n()n,①n3331111T1()22()3n()n1,②3n3332111①②得,T[1()n]n()n1,3n233311n1T()n1()n,n44323S311n1311Tn()n1()n[()n1]0,n244323443STn.n21x123n134.设函数f(x)1ln,设a1,af()f()f()f()(nN*,n2).x1nnnnn(1)求数列{a}的通项公式.n11(2)若b,b(nN*,n2),数列{b}的前n项和为S,若S(a1)对一切nN*12n(a1)(a1)nnnn1nn1成立,求的取值范围.1x1xx【解答】解:(1)f(x)1ln,则f(x)f(1x)1ln1ln2ln12,xx1x12n1当n2时,af()f()...f(),①nnnnn1n21af()f()...f(),②nnnn1n12n2n11①②可得2a[f()f()][f()f()]...[f()f()]nnnnnnn22...22(n1),即an1,n1,n1所以a;nn1,n21111(2)b,当n2时,b,12nn(n1)nn111111111n当n2时,S...1,n22334nn1n1n1上式对n1时,也成立,n所以S(a1)即为(n1),nn1n1n1即为,(n1)21n2n1由n的最小值为2,当且仅当n1时取得等号.n1所以.435.已知正项数列{a}的前n项和为S,数列{b}为等比数列,且满足ab11,a24S4n1,nnn11n1nba1.48(1)求证:数列{a}为等差数列;n(2)若不等式ab(4m)(a1)2对于任意nN*恒成立,求实数m的取值范围.nnn【解答】解:(1)证明:正项数列{a}的前n项和为S,数列{b}为等比数列,nnn满足ab11,a24S4n1,ba1.11n1n48a24S4n3,(n2),nn1两式相减,得a2a24a4,(n2),n1nna2(a2)2,n1na0,aa2,(n2),nn1n当n1时,a24a59,a3a2,2121{a}是首项为1,公差为2的等差数列.n(2)a2n1,ba116,b2,n481bq348,q2,b2n,bn1(n1)2由(2n1)2n(4m)(2n2)2,得4m,(2n1)2n2(n1)2设C,n(2n1)2n2n2(n1)22n35n22则CC,n1n(2n1)2n1(2n1)2n2n1(4n21)n1,2时,CC0,n1n2当n3时,CC0,即CC,n1nn352184m,解得m.5518实数m的取值范围是(,).536.在等差数列{a}和等比数列{b}中,a1,b2,b0(nN*),且b,a,b成等差数列,a,b,nn11n12222a2成等比数列.3(1)求数列{a},{b}的通项公式;nn1(2)设3b2,数列{}的前n项和为S,若(S2n6)at22t对所有正整数n恒成立,求常nnnn3nn数t的取值范围.【解答】解:(1)设等差数列的公差为d,等比数列的公比为q,b,a,b成等差数列,a,b,a2成等比数列,122223可得2abb,b2a(2a),2122232(1d)22q得,解得dq3,(2q)2(1d)(32d)故a3n2,b23n1;nn(2)c3b223n2,nnSccc2(31323n)2n3n12n3,n12n1(S2n6)at22t,3nn即3n13n2t22t恒成立,即t22t(3n3n3).min令f(n)3n3n3,则f(n1)f(n)23n30,所以f(n)单调递增,故t22tf(1)3,即常数t的取值范围是(3,1).37.已知等差数列{a}的公差为2,前n项和为S,且S,S,S成等比数列.nn124(Ⅰ)求数列{a}的通项公式;n4n(Ⅱ)令b(1)n1,求数列{b}的前n项和T.naannnn1【解答】解:(Ⅰ)等差数列{a}的公差为2,前n项和为S,nnn(n1)Snadn2nna,n121S,S,S成等比数列,124S2SS,214(2222a)2a(4244a),化为(1a)2a(3a),解得a1.1111111aa(n1)d12(n1)2n1.n14n4n11(Ⅱ)由(Ⅰ)可得b(1)n1(1)n1(1)n1().naa(2n1)(2n1)2n12n1nn11111111T(1)()()(1)n1().n335572n12n111111111112n当n为偶数时,T(1)()()()()1.n335572n32n12n12n12n12n111111111112n2当n为奇数时,T(1)()()()()1.n335572n32n12n12n12n12n12n,n为偶数2n1Tn.2n2,n为奇数2n138.已知等比数列{a}的前n项和为S,aa6,S2S3S.数列{b}的前n项和为T,且b2,nn42534nn1nT(n1)Tn(n1).n1n(1)分别求数列{a}和{b}的通项公式;nn(S1)b(2)若cnn,M为数列{c}的前n项和,是否存在不同的正整数p,q,r(其中p,q,rn(n1)(n2)nn成等差数列),使得M2,M2,M2成等比数列?若存在,求出所有满足条件的p,q,r的值;pqr若不存在,说明理由.【解答】解:(1)因为数列{a}为等比数列,设首项为a,公比为q,n1aa6由题意可知q1,所以42,S2S3S534aq3aq6①11所以a1q52a1q33a1q4,111②1q1q1q由②可得q53q42q30,即q23q20,所以q1或2,6因为q1,所以q2,所以a1,1q3q所以aaqn12n1,n1TT由nT(n1)Tn(n1),可得n1n1,n1nn1nTT所以数列{n}为等差数列,首项为1b2,公差为1,n11T故n2(n1)1n1,则Tn(n1),nn当n2时,bTTn(n1)(n1)n2n,nnn1当n1时,bT2也适合上式,11故b2n.n12n(2)由a2n1,可得S122n12n1,nn12(S1)b(2n11)2n2n1n2n22n1所以cnn,n(n1)(n2)(n1)(n2)(n1)(n2)n2n1232224232n22n12n2222n2所以Mccc2,n12n3243n2n1n22n2假设存在不同的正整数p,q,r(其中p,q,r成等差数列),使得M2,M2,M2成等比数pqr列,则有(M2)2(M2)(M2),qpr2q22p22r2所以(22)2(22)(22),q2p2r22q22p22r222q42pr4则()2,即,q2p2r2(q2)2(p2)(r2)因为pr2q,所以2q4pr4,即22q42pr4,所以(q2)2(p2)(r2),所以q24q4pr2(pr)4,pr则q24q4pr4q4,所以q2pr,则()2pr,2所以(pr)24pr,即(pr)20,所以pr,这与已知的p,q,r互不相等矛盾,故不存在不同的正整数p,q,r(其中p,q,r成等差数列),使得M2,M2,M2成等比数pqr列.
/
本文档为【专题数列(中档题)期末常考】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索