为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > 天然气净化(处理)工艺原理及流程

天然气净化(处理)工艺原理及流程

2022-09-09 20页 doc 68KB 22阅读

用户头像

is_954223

暂无简介

举报
天然气净化(处理)工艺原理及流程天然气净化(处理)工艺原理及流程 一、天然气净化工艺原理及流程xxx气田的天然气净化厂主要生产单元包括脱硫单元、脱水单元和硫磺回收单元。(一)、脱硫单元1、天然气脱硫的原因和意义天然气中含有的H2S、CO2和有机硫等酸性组分,在水存在的情况下会腐蚀金属;   含硫组分有难闻的臭味、剧毒、使催化剂中毒等缺点。CO2为不可燃气体,影响天然气热值的同时,也影响管输效率。特别是,H2S是一种具有令人讨厌的臭鸡蛋味,有很大毒性的气体。空气中H2S含量达到几十mg/m3就会使人流泪、头痛,高浓度的硫化氢对人有生命危险;H2S在有水及高温(...
天然气净化(处理)工艺原理及流程
天然气净化(处理)工艺原理及流程 一、天然气净化工艺原理及流程xxx气田的天然气净化厂主要生产单元包括脱硫单元、脱水单元和硫磺回收单元。(一)、脱硫单元1、天然气脱硫的原因和意义天然气中含有的H2S、CO2和有机硫等酸性组分,在水存在的情况下会腐蚀金属;   含硫组分有难闻的臭味、剧毒、使催化剂中毒等缺点。CO2为不可燃气体,影响天然气热值的同时,也影响管输效率。特别是,H2S是一种具有令人讨厌的臭鸡蛋味,有很大毒性的气体。空气中H2S含量达到几十mg/m3就会使人流泪、头痛,高浓度的硫化氢对人有生命危险;H2S在有水及高温(400℃以上)下对设备、管线腐蚀严重;还对某些钢材产生氢脆,在天然气净化厂曾发生阀杆断裂、阀板脱落现象。有机硫中毒会产生恶心、呕吐等症状,严重时造成心脏衰竭、呼吸麻痹而死亡。因此天然气脱硫有保护环境、保护设备、管线、仪免受腐蚀及有利于下游用户的使用等益处。同时还可以化害为利,回收资源。将天然气中的硫化氢分离后经克劳斯反应制成硫(亮黄色,纯度可达99.9),可生产硫和含硫产品,在工业、农业等各个领域都有着广泛的用途。从高含量CO2的天然气中分离出来的高纯度的CO2可用于制备干冰,也可用于采油上回注地层以提高原油的采收率。2、天然气脱硫、脱碳的方法关于天然气中酸性气体的脱除,开发了许多处理方法,这些方法可分成湿法和干法两大类。干法脱硫目前工业上已很少应用,工业大型装置以湿法为主。湿法脱硫按照溶液的吸收和再生方法,可分为化学吸收法、物理吸收法和氧化还原法三类。2.1化学吸收法化学吸收法是以可逆的化学反应为基础,以弱碱性溶剂为吸收剂,溶剂与原料气中的酸性组分(主要是H2S和CO2)反应而生成某种化合物;吸收了酸气的富液在升高温度、降低压力的条件下,该化合物又能分解而放出酸气。主要有代表醇胺法、改良热钾碱法、氨基酸盐法。改良热钾碱法已成功地用于从气体中脱除大量CO2,也可用来脱除天然气中的CO2和H2S酸性气体。基本原理为:K2CO3CO2H2O→2KHCO3K2CO3H2S→2KHCO3KHS改良热钾碱法适用于含酸气量8%以上,CO2/H2S比高的气体净化。压力对操作影响较大,吸收压力不宜低于2MPa。美国和日本合成氨厂很多采用这种方法脱CO2。美国装置数超过100套,日本装置数超过500套。2.2物理吸收法物理吸收法是基于有机溶剂对原料气中酸性组分的物理吸收而将它们脱除,溶剂的酸气负荷正比于气相中酸性组分的分压。富液压力降低时,随即放出所吸收的酸性组分。物理吸收一般在高压和较低的温度下进行。物理吸收法的主要代表有冷甲醇法、碳酸丙烯酯法、N-甲基吡咯烷酮法、聚乙二醇二甲醚法和磷酸三丁酯法。物理吸收法具有如下特点:1)一般在高压和较低的温度下进行;2)溶剂酸气负荷高,适宜于处理酸气分压高的原料气;3)溶剂不易变质,腐蚀性小,能脱除有机硫化物;但物理吸收法不宜用于重烃含量高的原料气,且受溶剂再生程度的限制,净化率较化学吸收法低。① 冷甲醇法冷甲醇法是以甲醇为吸收剂,在低温(低于-50℃)下吸收酸性气体的物理吸收法。甲醇在高压低温下CO2和H2S有很高的溶解度,适宜于酸气分压大于1.0MPa的原料气,可选择性地脱除H2S并可同时脱除有机硫化物。②聚乙二醇二甲醚法聚乙二醇二甲醚法(Selexol法)用聚乙二醇二甲醚作溶剂,旨在脱除气体中的CO2和H2S。由于聚乙二醇二甲醚具有吸水性能,因而该法还能同时产生一定的脱水效果。2.3化学—物理吸收法化学—物理吸收法是一种将化学吸收剂与物理吸收剂联合应用的酸气脱除法,目前以环丁砜法为常用。物理吸收溶剂是环丁砜,化学吸收溶剂可以用任何一种醇胺化合物,但常用的是二异丙醇胺(DIPA)和甲基二乙醇胺(MDEA)。2.4湿式氧化法这类方法的研究始于本世纪二十年代,至今已发展到百余种,其中有工业应用价值的就有二十多种。主要湿式氧化法有改良的ADA法(蒽醌法)、螯合铁法、PDS法。湿式氧化法具有以下特点:1)脱硫效率高,可使净化后的气体含硫量低于5.0mg/m3;2)可将H2S转化为单质疏,无二次污染;3)可在常温和加压状态下操作;4)大多数脱硫剂可以再生,运行成本低。2.5干法脱除酸性气体所谓干法,是应用固体材料吸附、化学反应、气体分离等技术脱除天然气中H2S和CO2组分。干法主要包括氧化铁法、活性炭法、分子筛、膜分离法等。干法脱除酸气技术通常用于低含硫气体处理,特别是用于气体精细脱硫。大部分干法脱硫工艺由于需要更换脱硫剂而不能连续操作,还有一些干法如锰矿法、氧化锌法等,脱硫剂均不能再生,脱硫饱和后要废弃,一方面会造成环境问题,另一方面会增加脱硫成本。①氧化铁法氧化铁法是用氧化铁(即人们熟知的海绵铁)脱H2S,是一种古老而知名的气体脱硫方法,迄今仍在许多特殊用途的领域中广泛应用。②分子筛法分子筛对极性分子的吸附选择性,对硫化物产生了高的容量。由于它对有机硫化物,同对硫化氢一样具有很大的化学亲合力,因此,分子筛不仅可以除去H2S,而且对CS2、硫醇等其它含硫化合物也有较好的去除效率,处理后气体硫含量降至0.4ppm(0.53mg/m3)以下。现在,美国已经有多个工业分子筛装置在运转。3、甲基二乙醇胺、二乙醇胺的脱硫、脱碳原理醇胺类化合物(MEA、DEA、MDEA等)中至少含有一个羟基(OH)和一个胺基(NH2)。羟基的作用是降低化合物的蒸汽压,并增加在水中的溶解度;而胺基则为水溶液提供必要的碱度,促进酸性组分的吸收。天然气脱酸性气体常用的醇胺有一乙醇胺(MEA)、二乙醇胺(DEA)、二甘醇胺(DGA)、二异丙醇胺(DIPA)、甲基二乙醇胺(MDEA)等。3.1一乙醇胺(MEA)MEA是工业用醇胺中的碱性最强的,它与酸性组分迅速反应,能容易地使原料气中H2S含量降到5mg/m3以下。它既可脱H2S,也可脱CO2,一般情况下对两者无选择性。MEA在醇胺中相对摩尔质量最小,因而以单位重量或体积计具有最大的酸气负荷。3.2二乙醇胺(DEA)DEA和MEA的主要区别是它与COS及CO2的反应速度较慢,因而DEA与有机化合物反应而造成的溶剂损失量少。对有机硫化物含量较高的原料气,用DEA脱硫较有利。DEA对CO2对H2S也没有选择性。3.3甲基二乙醇胺(MDEA)MDEA是用于天然气脱硫的烷醇胺类化合物中受到普遍关注的一种溶剂。该法在五十年代初就已通过工业放大试验,被证实具有对H2S优良的选择脱除能力和抗降解性强、反应热较低、腐蚀倾向小、蒸气压较低等优点。xxx气田目前使用的脱硫溶剂主要有甲基二乙醇胺(MDEA)和二乙醇胺(DEA)。这两种溶液在工业上广泛使用。主要的物理化学性质见下表:表2.1  几种常用醇胺的物理和化学性质MEADEAMDEA备注相对摩尔质量61.9105.14119.17相对密度(20℃)1.017(20%)1.0919(30%)1.0418(20%)沸点,℃101.3kpa170.4268.4230.66.67kpa100.0187.2164.01.33kpa68.9150.0128.0蒸汽压(20),pa28.0〈1.33〈1.33凝固点,℃10.228-14.6水中溶解度(20℃)100%96.40%100%黏度(mpa..s)24.1(20℃)380(30℃)101(20℃)3.4甲基二乙醇胺和二乙醇胺脱硫、脱碳原理甲基二乙醇胺的化学分子式:CH2CH2OHCH3N-CH2CH2OH主反应:H2SR3N===R3NHHS-(瞬间反应)CO2R3N       (不反应)副反应:CO2H2O === HHCO3- (极慢反应)R3NH ===R3NH(瞬间反应)R3NH2O ===R3NHOH-(慢反应)二乙醇胺的化学分子式:CH2CH2OHNHCH2CH2OH主反应:2R2NHH2S===(R2NH)2S(瞬间反应)2R2NHH2OCO2 ===(R2NH2)2CO3副反应:(R2NH2)2CO3H2OCO2 ===2R2NH2HCO32R2NHCO2=== R2NCOONH2R2(R2NH)2SH2S ===2R2NHHSMDEA和CO2的反应速率较慢,对H2S有较好的选择吸收性,单一的MDEA溶液较难深度脱除天然气中的CO2,加入DEA可加快溶液与CO2的反应速率,达到深度脱除CO2的目的,使净化气中满足CO2含量<3%的要求。二乙醇胺(DEA)为仲胺,碱性较强,经过试验筛选,靖边气田净化厂的复合溶液中甲基二乙醇胺溶液一般浓度为40%,二乙醇胺溶液的浓度控制在5%左右4、工艺流程和设备典型的醇胺法工艺流程如图2.1所示,对不同的醇溶剂流程是基本相同的。从图中可见,所涉及的主要设备是吸收塔、汽提塔、换热和分离设备。靖边气田的天然气净化厂采用复配甲基二乙醇胺溶液(40%MDEA、5�A)脱硫、脱碳,能在高压低温条件下通过气液逆流接触将天然气中的酸性组份吸收,然后在低压高条件下,将吸收的酸气组份解析出来。复配溶液有较好的经济技术性,与纯甲基二乙醇胺水溶液(45%)相比,可节约能耗25%左右。但在运行中复配溶液表现出湿净化气温度升高、系统污染加重等趋势,需加强脱水运行监测和溶液过滤系统的清洗。图2.1 典型的醇胺法工艺原理示意图我们将以第一净化厂为例,讲述天然气净化厂的主要工艺流程。4.1天然气的总流程各集气站来的原料天然气经过清管区、集气区、脱硫、脱水单元后回到集配气总站的配气区,经过计量后输往各下游用户。各集气干线来气清管区集气区脱硫单元脱水单元配气区各下游用户图2.2 各净化厂内天然气流程示意图1)清管区设有清管接收筒,除汇集各集气干线的含硫天然气外,还定期对各集气干线进行清管收球作业。2)集气区设有导叶式多管干式除尘器、计量装置,对清管区来气分别进行分离,计量后输往净化装置。正常输气时,除尘器并联运行。清管作业时,2台除尘器串联,对高含杂质气流进行二次分离。3)脱硫单元利用重力沉降、过滤分离的方法除去含硫天然气中的游离水及固体杂质,然后采用化学吸收方法,脱除原料气中的硫化氢及部分二氧化碳。4)脱水单元进料气为脱硫单元来的湿净化天然气。采用99.6%(W)三甘醇(TEG)作脱水剂,脱除湿净化天然气中的饱和水,脱水后天然气外输至集配气单元。5)配气区汇集来自净化装置的净化天然气,通过不同的计量管段经计量后分别输往下游用户及自用配气站。在计量管段设置了流量计和调节阀,可以自动控制外输流量。4.2脱硫单元的主要工艺流程1)天然气流程从集气区来的原料天然气经过重力分离器和过滤分离器分离出液体和固体杂质后进入脱硫塔底,天然气从下向上与从上而下的MDEA贫液逆流接触,其中的H2S和部分CO2被脱除,从塔底出来的湿净化气在湿净化气分离器中分离出携带的MDEA液滴后进入脱水单元。详细的流程示意图见图2.3。图2.3 脱硫单元内天然气流程示意图2)甲基二乙醇胺溶液流程贫甲基二乙醇胺溶液从吸收塔顶自上而下与原料天然气进行逆向接触,吸收H2S和CO2后变成富液从塔底流出,进入闪蒸塔内降压闪蒸,闪蒸出溶液中的烃类气体和少量的H2S和CO2后,经过滤布过滤器和活性炭过滤器二级过滤后,经过贫富液换热器换热至85℃左右后进入再生塔顶,经加热、降压再生,解析出其中的酸性气体后变成贫液。经贫富液换热器、水冷器换热后,经循环泵加压后循环使用。再生用热源由蒸汽或热媒提供,重沸器的温度一般控制在110℃~115℃。解析出的酸性气体经空冷器和水冷器冷却后进入酸气分离器,酸气进入硫磺回收装置或酸气焚烧系统,酸液打回流,以控制再生塔顶温度。图2.4 脱硫单元胺液循环流程(二)、脱水单元1、天然气脱水的意义1)天然气在进输气管道中将逐渐冷却,天然气中的饱和水蒸汽逐渐析出形成水和凝析液体。该液体伴随天然气流动,并在管线较低处蓄积起来,造成阻力增大。当液体蓄积到形成段塞时,其流动具有巨大的惯性,将造成管线末端分离器的液体捕集器损坏。2)管道中有液体存在,会降低管线的输送能力。3)水和其它液体在管道中和天然气中的硫化氢、二氧化碳形成腐蚀液,造成管道内腐蚀,缩短管道的使用寿命,同时增大了爆管的频率。4)水在管道中容易形成水合物,堵塞管道,影响正常生产。为了保护天然气的长输管道,提高管线输送效率,天然气进入输气管道之前,必须进行脱水处理。2、天然气脱水的方法及特点天然气脱水的方法很多,按其原理可以分为冷冻分离法、固体干燥吸附和溶剂吸收三大类,xxx天然气净化厂采用的三甘醇(TEG)脱水工艺。三甘醇(TEG)学名三乙二醇醚,分子式为HO(CH2)2O·(CH2)2O·(CH2)2OH,主要物理特性见表2.2。三甘醇具有强吸水性、高温条件下容易再生等特点,利用这种特点可作为脱水剂来降低天然气中的含水量。三甘醇脱水过程是一个物理过程,利用三甘醇的强吸水性将天然气中水分吸收,吸收了水分的三甘醇称为富液;富液进入重沸器后,在常压、高温情况下将水分蒸发出去,再加上干气汽提,可得到浓度大于99%的三甘醇贫液,贫液循环再利用。该工艺具有以下特点:1)工艺流程简单、技术成熟,露点降大(30~60℃)、热稳定性好、易于再生、损失小、投资和操作费用省等优点。2)将贫液冷却设在循环泵入口前,既改善了循环泵的操作条件,又可降低产品气的温度,减小了对长输管道管输能力的影响。3)在富液管线上设置过滤器,以除去溶液系统中携带的机械杂质和降解产物,保持溶液清洁,有利于装置长周期运行。4)可以避免专为三甘醇再生而设置中压蒸汽系统。表2.2  三甘醇的物理特性相对分子量冰点℃密度(20℃)沸点℃理论热分解温度℃再生温度℃粘度Pa·s(20℃)150.2-7.21.1254285.5206.7176.7~20447.8×10-33、脱水工艺流程和设备脱水单元主要的工艺设备有脱水塔(泡罩塔盘)、过滤器、重沸器、循环泵等。工艺原理流程示意图如图2.5所示:图2.5 三甘醇脱水工艺原理3.1脱水单元的天然气流程从脱硫单元来的湿净化天然气进入脱水塔底,从下向上与从上而下的TEG贫液逆流接触,其中的H20被脱除。从脱水塔顶出来的产品气在干净化气分离器中分离出携带的三甘醇溶液后进入集配气总站配气区。3.2三甘醇循环流程从吸收塔底部流出的三甘醇富液经换热器升温后进入闪蒸罐,尽可能闪蒸出其中所溶的烃类,闪蒸气用作燃料气,闪蒸后的富液经过滤器过滤后流入贫—富液换热罐,甘醇富液被预热到一定温度后进入重沸器,在重沸器中,富液中部分水分变成蒸汽,由重沸器精熘柱塔顶离开系统;再生后的甘醇贫液在换热罐内与甘醇富液换热后,再泵送至吸收塔循环使用。(三)硫磺回收单元硫磺回收装置是脱硫单元配套环保工程,主要是将脱硫单元脱除的酸气转化成硫磺,尾气进酸气焚烧单元焚烧后经烟囱排入大气。核心单元(反应单元)为系列连续化生产,辅助单元(硫成型单元)为间歇生产。主要生产装置有:硫回收单元、硫磺成型和包装、硫磺仓库第一净化厂硫磺回收装置处理酸气能力10-27×104m3/d,其中H2S含量为1.3-3.4%(mol)。第二净化厂硫磺回收装置处理酸气能力12–30×104m3/d,其中H2S含量为1.55-3.59%(mol)。两套装置均采用德国林德公司的Clinsulf-DO直接氧化法工艺。1、Clinsulf-DO工艺原理Clinsulf-DO工艺由德国Linde公司开发,采用该公司独特的内冷式Clinsulf反应器将H2S直接氧化为单质硫。该工艺允许酸性气体流量范围为500~50000m3/h之间,且对原料气中H2S的浓度无下限要求,操作弹性很大,H2S允许浓度约为1~20%,这是常规Claus装置所不能作到的。Clinsulf-Do工艺是一种选择性催化氧化工艺。H2S与O2在内冷式催化剂床层内反应直接生成硫磺,而不发生H2、CO及低级饱和烃的氧化反应。反应原理如下:H2S3/2O2=====SO2H202H2SSO2=====3/xSx2H2O2、工艺流程简述空气和脱硫单元来的酸气按照一定的比例(理想配比的空气数量是由一分子O2和1/2计算出来的,空气和H2S的比例一般为0.42)经过中压蒸汽预热至200℃后,进入反应器中,在催化剂的作用下酸气中的硫化氢和氧气发生放热反应生成单质硫,反应器的正常温度为292.1℃(这个温度随着H2S含量的变化而变化,控制依据见下表),自反应器出来的硫蒸气经过硫冷凝器、硫分离器后,液态硫进入液硫储槽后,由液硫泵将液体硫磺输送到硫固化冷凝器,通过布料器均匀滴落于旋转钢带上,在冷却水的作用下,液体硫磺在钢带上固化成半球状颗粒,收集于包装料斗中。半球状颗粒硫磺从包装料斗中自由落下,由产品包装称自动包装,采用叉车送入硫磺仓库储存。尾气进入酸气焚烧单元焚烧后排放。详细的工艺流程见图2.6。表2.2反应器床层温度(TI-1506A、TI-1506B、TI-1507A、TI-1507B)控制依据序号H2S含量(%)反应器温度(℃)备注11.325921.526832.029242.531653.032463.4338表2.3 硫磺装置尾气温度(TI-1512)控制依据序号H2S含量(%)反应器温度(℃)硫蒸汽冷凝点(℃)TI-1512(℃)备注11.3259180190-19521.5268192202-20732.0292206216-221图2.6  硫磺回收流程示意图3、产品硫磺性质及规格  符合国家GB/T2449-92。外观:亮黄色     纯度:≥99.9%(wt)水分:≤0.1%(wt)  灰分:≤0.03%(wt)酸度(以硫酸计):≤0.03%(wt)有机物 :≤0.03%(wt)(四)酸气焚烧单元酸气焚烧单元主要用于焚烧脱硫单元脱除的酸性气体,将酸性气体H2S氧化成SO2后排入大气。在硫磺回收装置建成以后,本单元主要处理硫磺回收装置产生的尾气。1、工艺流程简述脱硫装置脱除的酸气进入硫磺回收单元进行处理,产生的尾气进入本单元,经负压焚烧炉(H-2101)燃烧,使尾气中的H2S和硫氧化成SO2后排入大气。从焚烧炉出来的高温烟气进入烟囱排放。为了保证安全,在酸气进口、燃料气进口管均安装有阻火器。正常操作时应控制炉膛温度在600℃左右,炉膛温度与燃料气压力串级控制,通过调节燃料压力来达到控制炉膛温度的目的。2、正常操作参数酸气进气条件为0.03MPa、45℃;炉膛操作压力:微负压。温度一般控制为:炉头、炉膛温度:550~600℃;烟道温度:450~500℃。炉头和炉膛温度不能过高是为了防止高温对耐火层造成损坏;炉膛温度不能过低是为了提供H2S充分燃烧有足够的温度。烟道温度维持在450℃左右,是为没有燃烧充分的单质硫提供继续燃烧的条件,防止形成单质硫堵塞烟道。当酸气量发生变化时,调整燃料气量,以保证灼烧温度。炉膛内温度过高时,调节尾部的蝶阀,掺入适当的空气以调节炉膛的温
/
本文档为【天然气净化(处理)工艺原理及流程】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索