为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > 2019新人教版高中化学选择性必修二第二章重点知识点归纳总结(分子结构与性质)

2019新人教版高中化学选择性必修二第二章重点知识点归纳总结(分子结构与性质)

2022-10-20 2页 pdf 729KB 123阅读

用户头像 个人认证

is_647659

一线高级中学教师,专业硕士,教学经验丰富,热爱教育,专注教育!

举报
2019新人教版高中化学选择性必修二第二章重点知识点归纳总结(分子结构与性质)第二章分子结构与性质第一节共价键一、共价键(一)共价键的形成与特征1、共价键的形成(1)概念:原子间通过共用电子对所形成的相互作用,叫做共价键。(2)成键的粒子:一般为非金属原子(相同或不相同)或金属原子与非金属原子。(3)本质:原子间通过共用电子对(即原子轨道重叠)产生的强烈作用。2、共价键的特征(1)饱和性:按照共价键的共用电子对理论,一个原子有几个未成对电子,便可和几个自旋状态相反的电子配对成键,这就是共价键的饱和性。(2)方向性:除s轨道是球形对称外,其他原子轨道在空间都具有一定的分布特点。在形成共价键时,原子轨道重叠...
2019新人教版高中化学选择性必修二第二章重点知识点归纳总结(分子结构与性质)
第二章分子结构与性质第一节共价键一、共价键(一)共价键的形成与特征1、共价键的形成(1)概念:原子间通过共用电子对所形成的相互作用,叫做共价键。(2)成键的粒子:一般为非金属原子(相同或不相同)或金属原子与非金属原子。(3)本质:原子间通过共用电子对(即原子轨道重叠)产生的强烈作用。2、共价键的特征(1)饱和性:按照共价键的共用电子对理论,一个原子有几个未成对电子,便可和几个自旋状态相反的电子配对成键,这就是共价键的饱和性。(2)方向性:除s轨道是球形对称外,其他原子轨道在空间都具有一定的分布特点。在形成共价键时,原子轨道重叠的越多,电子在核间出现的概率越大,所形成的共价键就越牢固,因此共价键将尽可能沿着电子出现概率最大的方向形成,所以共价键具有方向性。如图所示。(二)共价键类型1、σ键形成由两个原子的s轨道或p轨道“头碰头”重叠形成s-s型类s-p型型p-p型以形成化学键的两原子核的连线为轴做旋转操作,共价键电子云特征的图形不变,这种特征称为轴对称;σ键的强度较大12、π键形成由两个原子的p轨道“肩并肩”重叠形成p-pπ键π键的电子云具有镜面对称性,即每个π键的电子云由两块组成,分别位于特征由两原子核构成平面的两侧,如果以它们之间包含原子核的平面为镜面,它们互为镜像;π键不能旋转;不如σ键牢固,较易断裂3、判断σ键、π键的一般规律共价单键为σ键;共价双键中有一个σ键、一个π键;共价三键由一个σ键和两个π键组成。共价单键——σ键按共用电子对的数目共价双键——1个σ键、1个π键共价三键——1个σ键、2个π键共价键的分类特征σ键――→电子云呈轴对称按电子云重叠方式特征π键――→电子云呈镜面对称二、键参数——键能、键长与键角(一)键能1、概念气态分子中1_mol化学键解离成气态原子所吸收的能量。它通常是298.15K、100kPa条件下的值,单位是kJ·mol-1。2、应用(1)判断共价键的稳定性原子间形成共价键时,原子轨道重叠程度越大,释放能量越多,所形成的共价键键能越大,共价键越稳定。(2)判断分子的稳定性一般来说,结构相似的分子,共价键的键能越大,分子越稳定。(3)利用键能计算反应热ΔH=反应物总键能-生成物总键能(蒲公英语)(二)键长和键角1、键长(1)概念:构成化学键的两个原子的核间距,因此原子半径决定共价键的键长,原子半径越小,共价键的键长越短。2(2)应用:共价键的键长越短,往往键能越大,明共价键越稳定,反之亦然。2、键角(1)概念:在多原子分子中,两个相邻共价键之间的夹角。(2)应用:在多原子分子中键角是一定的,这表明共价键具有方向性,因此键角影响着共价分子的空间结构。(3)试根据空间结构填写下列分子的键角分子的空间结构键角实例正四面体形109°28′CH4、CCl4平面形120°苯、乙烯、BF3等三角锥形107°NH3V形(角形)105°H2O直线形180°CO2、CS2、CH≡CH(4)部分键角图解第二节分子的空间结构一、分子结构的测定1、早年科学家主要靠对物质的化学性质进行系统总结得出规律后进行推测,现代科学家应用了许多测定分子结构的现代仪器和方法,如红外光谱、晶体X射线衍射等。2、红外光谱在测定分子结构中的应用分子中的原子不是固定不动的,而是不断地振动着的。当一束红外线透过分子时,分子会吸收跟它的某些化学键的振动频率相同的红外线,再记录到图谱上呈现吸收峰。通过和已有谱图库比对,或通过量子化学计算,可以得知各吸收峰是由哪种化学键、哪种振动方式引起的,综合这些信息,可分析分子中含有何种化学键或官能团的信息。3、质谱法在测定分子相对分子质量中的应用现代化学常利用质谱仪测定分子的相对分子质量。它的基本原理是在质谱仪中使分子失去电子变成带正电荷的分子离子和碎片离子等粒子。由于生成的离子具有不同的相对质量,它们在高压电场加速后,通过狭缝进入磁场得以分离,在记录仪上呈现一系列峰,化学家对这些峰进行系统分析,便可得知样品分子的相对分子质量。二、多样的分子空间结构1、三原子分子化学式电子式结构式键角空间结构空间结构名称3CO2O==C==O180°直线形H2O105°V形2、四原子分子化学式电子式结构式键角空间结构空间结构名称CH2O约120°平面三角形NH3107°三角锥形3、五原子分子化学式电子式结构式键角空间结构空间结构名称CH4109°28′正四面体形CCl4109°28′正四面体形4、其他多原子分子的空间结构三、价层电子对互斥模型1、价层电子对互斥模型(VSEPRmodel):对ABn型的分子或离子,中心原子A的价层电子对(包括成键的σ键电子对和未成键的孤电子对)之间由于存在排斥力,将使分子的空间结构总是采取电子对相互排斥最弱的那种结构,以使彼此之间斥力最小,分子或离子的体系能量最低,最稳定。2、价层电子对的计算4(1)中心原子价层电子对数=σ键电子对数+孤电子对数。(2)σ键电子对数的计算由化学式确定,即中心原子形成几个σ键,就有几对σ键电子对。如H2O分子中,O有2对σ键电子对。NH3分子中,N有3对σ键电子对。(3)中心原子上的孤电子对数的计算1中心原子上的孤电子对数=(a-xb)2①a表示中心原子的价电子数;对主族元素:a=最外层电子数;对于阳离子:a=价电子数-离子所带电荷数;对于阴离子:a=价电子数+离子所带电荷数。②x表示与中心原子结合的原子数。③b表示与中心原子结合的原子最多能接受的电子数,氢为1,其他原子=8-该原子的价电子数。3、价层电子对的空间结构(即VSEPR模型)价层电子对数目:2、3、4VSEPR模型:直线形平面三角形正四面体形4、VSEPR模型的应用——预测分子空间结构由价层电子对的相互排斥,得到含有孤电子对的VSEPR模型,然后,略去VSEPR模型中的中心原子上的孤电子对,便可得到分子的空间结构。(1)中心原子不含孤电子对分子或σ键电子孤电子对数VSEPR模型及名称分子(或离子)的空间结构及名称离子对数CO220直线形直线形2-CO330平面三角形平面三角形CH440正四面体形正四面体形(2)中心原子含孤电子对分子或离子价层电子对数孤电子对数VSEPR模型及名称分子的空间结构及名称5NH341三角锥形四面体形H2O42形四面体形VSO231V形平面三角形四、杂化轨道理论简介(一)杂化轨道理论要点1、原子在成键时,同一原子中能量相近的原子轨道可重新组合成杂化轨道。2、杂化前后原子轨道数目不变,且杂化轨道的能量相同。3、杂化改变了原子轨道的形状、方向。杂化使原子的成键能力增加。杂化轨道在角度分布上比单纯的s或p轨道在某一方向上更集中,例如s轨道与p轨道杂化后形成的杂化轨道一头大一头小,如图,成键时根据最大重叠原理,使它的大头与其他原子轨道重叠,重叠程度更大,形成的共价键更牢固。4、为使相互间的排斥最小,杂化轨道在空间取最大夹角分布。同一组杂化轨道的伸展方向不同,但形状完全相同。二、杂化轨道类型与分子空间结构的关系1、杂化轨道的类型(1)sp3杂化轨道——正四面体形13sp3杂化轨道是由1个ns轨道和3个np轨道杂化而成,每个sp3杂化轨道都含有s和p的成分,sp344杂化轨道间的夹角为109°28′,空间结构为正四面体形。如下图所示。(2)sp2杂化轨道——平面三角形12sp2杂化轨道是由1个ns轨道和2个np轨道杂化而成的,每个sp2杂化轨道含有s和p成分,sp2杂336化轨道间的夹角都是120°,呈平面三角形,如下图所示。(3)sp杂化——直线形11sp杂化轨道是由1个ns轨道和1个np轨道杂化而成的,每个sp杂化轨道含有s和p的成分,sp杂22化轨道间的夹角为180°,呈直线形,如下图所示。2、杂化轨道类型与分子空间结构的关系(1)当杂化轨道全部用于形成σ键时,分子或离子的空间结构与杂化轨道的空间结构相同。杂化类型spsp2sp3轨道夹角180°120°109°28′杂化轨道示意图实例BeCl2BF3CH4分子结构示意图分子空间结构直线形平面三角形正四面体形(2)当杂化轨道中有未参与成键的孤电子对时,孤电子对对成键电子对的排斥作用,会使分子或离子的空间结构与杂化轨道的形状有所不同。ABn型分中心原子杂化类型中心原子孤电子对数空间结构实例子2AB2sp1V形SO2NH3、PCl3、NF3、3三角锥形AB3sp1+H3O7或AB2-2V形H2S、NH2(B2A)第三节分子结构与物质的性质一、共价键的极性(一)键的极性和分子的极性1、共价键的极性极性键非极性键由不同原子形成的共价键,电子电子对不发生偏移的共价定义对发生偏移键原子吸引电子能力不同相同共用电子对共用电子对偏向吸引电子能力强的原子共用电子对不发生偏移成键原子电性显电性电中性成键元素一般是不同种非金属元素同种非金属元素举例Cl—Cl、H—H2、分子的极性(1)极性分子与非极性分子(2)共价键的极性与分子极性的关系(二)键的极性对化学性质的影响+例如,羧酸是一大类含羧基(—COOH)的有机酸,羧基可电离出H而呈酸性。羧酸的酸性可用pKa的大小来衡量,pKa越小,酸性越强。羧酸的酸性大小与其分子的组成和结构有关,如下表所示:不同羧酸的pKa8羧酸pKa丙酸(C2H5COOH)4.88乙酸(CH3COOH)4.76甲酸(HCOOH)3.75氯乙酸(CH2ClCOOH)2.86二氯乙酸(CHCl2COOH)1.29三氯乙酸(CCl3COOH)0.65三氟乙酸(CF3COOH)0.23二、分子间作用力1、范德华力及其对物质性质的影响(1)概念:是分子间普遍存在的相互作用力,它使得许多物质能以一定的凝聚态(固态和液态)存在。(2)特征:很弱,比化学键的键能小1~2个数量级。(3)影响因素:分子的极性越大,范德华力越大;组成和结构相似的物质,相对分子质量越大,范德华力越大。(4)对物质性质的影响:范德华力主要影响物质的物理性质,如熔、沸点,组成和结构相似的物质,范德华力越大,物质熔、沸点越高。2、范德华力的正确理解(1)广泛存在于分子之间。(2)只有分子间充分接近时才有分子间的相互作用力(范德华力),如固体和液体物质中。(3)范德华力无方向性和饱和性。只要分子周围空间允许,分子总是尽可能多地吸引其他分子。3、氢键及其对物质性质的影响(1)概念:由已经与电负性很大的原子形成共价键的氢原子与另一个电负性很大的原子之间的作用力。(2)表示方法:氢键通常用A—H…B表示,其中A、B为N、O、F,“—”表示共价键,“…”表示形成的氢键。(3)氢键的本质和性质氢键的本质是静电相互作用,它比化学键弱得多,通常把氢键看作是一种比较强的分子间作用力。氢键具有方向性和饱和性,但本质上与共价键的方向性和饱和性不同。①方向性:A—H…B三个原子一般在同一方向上。原因是在这样的方向上成键两原子电子云之间的排斥力最小,形成的氢键最强,体系最稳定。②饱和性:每一个A—H只能与一个B原子形成氢键,原因是H原子半径很小,再有一个原子接近时,会受到A、B原子电子云的排斥。(4)分类:氢键可分为分子间氢键和分子内氢键两类。9存在分子内氢键,存在分子间氢键。前者的沸点低于后者。(5)氢键对物质性质的影响:氢键主要影响物质的熔、沸点,分子间氢键使物质熔、沸点升高,分子内氢键使物质熔、沸点降低。4、溶解性(1)“相似相溶”规律非极性溶质一般能溶于非极性溶剂,极性溶质一般能溶于极性溶剂,如蔗糖和氨易溶于水,难溶于四氯化碳;萘和碘易溶于四氯化碳,难溶于水。(2)影响物质溶解性的因素①外界因素:主要有温度、压强等。②氢键:溶剂和溶质之间的氢键作用力越大,溶解性越好。③分子结构的相似性:溶质和溶剂的分子结构相似程度越大,其溶解性越大,如乙醇与水互溶,而戊醇在水中的溶解度明显减小。三、分子的手性1、概念(1)手性异构体:具有完全相同的组成和原子排列的一对分子,如同左手与右手一样互为镜像,却在三维空间里不能叠合,互称手性异构体(或对映异构体)。(2)手性分子:具有手性异构体的分子。2、手性分子的判断(1)判断方法:有机物分子中是否存在手性碳原子。(2)手性碳原子:有机物分子中连有四个各不相同的原子或基团的碳原子。如,R1、R2、R3、*R4互不相同,即C是手性碳原子。10
/
本文档为【2019新人教版高中化学选择性必修二第二章重点知识点归纳总结(分子结构与性质)】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索