为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

铁路信号基础课件-5轨道电路

2019-02-11 73页 ppt 1MB 24阅读

用户头像 个人认证

一米阳光

暂无简介

举报
铁路信号基础课件-5轨道电路轨道电路* 在铁路信号系统中如何检测指定的线路上是否有车辆占用是极其重要的。在铁路信号发展的初期,主要依靠工作人员的观察和判断来确定线路的占用情况,时有因观察和判断失误而造成车辆冲突事故。由于不能实时自动实现列车位置检测,也不可能实现信号控制的自动化,直到1870年美国人鲁宾逊发明了开路式轨道电路,1872年又研制成功了闭路式轨道电路,从此,自动、实时检查线路占用的课题才得到解决,用轨道电路将列车运行与信号显示联系起来,诞生了铁路自动信号,开创了自动信号的新时代。 经历了一百多年发展,轨道电路有了多种制式、多种变化,现在它已不...
铁路信号基础课件-5轨道电路
轨道电路* 在铁路信号系统中如何检测指定的线路上是否有车辆占用是极其重要的。在铁路信号发展的初期,主要依靠工作人员的观察和判断来确定线路的占用情况,时有因观察和判断失误而造成车辆冲突事故。由于不能实时自动实现列车位置检测,也不可能实现信号控制的自动化,直到1870年美国人鲁宾逊发明了开路式轨道电路,1872年又研制成功了闭路式轨道电路,从此,自动、实时检查线路占用的课题才得到解决,用轨道电路将列车运行与信号显示联系起来,诞生了铁路自动信号,开创了自动信号的新时代。 经历了一百多年发展,轨道电路有了多种制式、多种变化,现在它已不仅用来检查线路空闲,而且还可以用来向列车传输信息,成为机车信号和列控车载设备工作的基础。 除了轨道电路,近年来诞生的计轴设备利用记录进入、出清指定线路的轮对数量,也能实现自动检查线路空闲的功能。另外,查询应答器、轨道感应环线也都由于具有列车定位与向列车传输信息的能力,在现代铁路信号系统中得到广泛应用。1.轨道电路第一节轨道电路概述一、轨道电路的基本组成轨道电路是利用一段铁路线路的钢轨为导体构成的电路,用于自动、连续检测这段线路是否被机车车辆占用,也用于控制信号装置,以保证行车安全的设备。组成:钢轨、钢轨绝缘、轨端接续线、送电端(轨道电源和限流器)、受电端(轨道继电器)等*其中: 钢轨线路是由钢轨、轨端接续线和绝缘节组成。 钢轨绝缘安装于轨道电路分界处,是为了分隔或划分轨道回路而装设的。 轨端接续线可以减少钢轨连接处的接触电路。 送电端(又称电源端或始端)由轨道电源和限流器等组成。根据轨道电路的类型不同,轨道电源可以用铅蓄电池浮充供电(或其它直流电源),也可以用轨道变压器或信号发生器供电。限流器一般可以用电阻器或电抗器构成,它的作用是保护电源设备,当轨道电路被机车车辆分路时,防止电流过大而损坏电源,并保证在列车占用轨道时,轨道继电器能可靠地落下,对某些交流轨道电路而言,它还兼有相位调整的功效。 受电端(又称继电器端或终端)的主要设备是轨道继电器,用它接收轨道电流来反映轨道电路的工作状态。 送、受电端的设备,都是通过引接线(钢丝绳)接向钢轨的。 两个绝缘节之间的钢轨线路(即从送电端到受电端之间),称为轨道电路的控制区段,也就是轨道电路的长度。轨道电路的长度要受到轨道电路工作状态的制约。二、轨道电路的基本原理 平时,列车未进入轨道电路,即线路空闲时,电流从轨道电路电源正极→钢轨→轨道继电器→另一股钢轨→电源负极,轨道继电器中有电,使继电器保持在吸起状态,接通信号机的绿灯电路,允许列车进入轨道电路。 当列车进入轨道电路区段内,即线路被占用时,电流同时流过机车车辆轮对和轨道继电器线圈,由于轮对电阻比轨道继电器线圈电阻小的多,使电源输出电流显著加大,限制电流(限流器)上的压降随之也增大,送向两根钢轨间的电压降低。因而流经轨道电路继电器线圈的电流减小到继电器的落下值,使轨道继电器释放衔铁,用继电器的后接点接通信号机的红灯电路,向后续列车发出停车信号,以保证列车在该轨道电路区段内运行的安全。对轨道电路提出了几点要求:(1)当轨道电路无列车占用时,轨道继电器应可靠吸起,保持正常工作。(2)轨道电路在任何一点被列车占用时,即使只有一根车轴进入轨道电路,轨道继电器的衔铁应可靠落下。(3)当轨道电路设备发生故障(如钢轨折断、绝缘破损等)时,轨道继电器应立即失磁,使之关闭信号。三、轨道电路的作用1、监督列车的占用利用轨道电路监督列车在区间或列车和调车车列在站内的占用,是最常用的。由轨道电路反映该段线路是否空闲,为进路或闭塞或建立以及解除提供依据,还可以把信号显示与轨道电路是否被占用结合起来。*2、传递行车信息例如:移频自动闭塞利用轨道电路中传递不同的低频信息来反映前行列车的位置,变换各信号机的显示,为列车运行提供行车命令。轨道电路中传送的行车信息,还为列车运行控制系统直接提供控制列车运行所需要的空闲闭塞分区的数目、运行前方信号机的状态和道岔限速等有关信息,以决定列车运行的目标速度,控制列车在当前运行速度下是否停车或减速。四、轨道电路的分类1.按动作电源分类分为直流轨道电路和交流轨道电路。轨道电路电源采用直流,称为直流轨道电路。该轨道电路电源设备安装较困难,检修不方便,易受迷流影响,现已很少采用。采用交流供电的轨道电路,称为交流轨道电路。交流轨道电路的种类很多,频带用的很宽,大体可分为三段:低频300HZ以下;音频300~3000HZ;高频10~40kHZ。一般交流轨道电路专指工频50HZ的轨道电路。25HZ和75HZ的轨道电路也属于交流轨道电路,但必须注明电源频率,以示区别。国产移频轨道电路的频率在495~905HZ,ZPW-2000和UM71轨道电路的频率在1689~2611HZ,均属音频范围。道口用轨道电路,频率则在14~40kHZ,属于高频。2、按工作方式分类闭路式轨道电路和开路式轨道电路;闭路式轨道电路闭路式轨道电路的发送设备(电源)和接收设备(轨道继电器)分别装设在轨道电路的两端。轨道电路上没有车占用时,轨道继电器吸起。有车占用时,因车辆分路,轨道继电器落下。当发生断轨、断线等故障时,轨道继电器落下,能保证安全。符合故障安全原理。开路式轨道电路的发送设备和接收设备安装在轨道电路的同一端。轨道电路无车占用时,不构成回路,其轨道继电器落下。有车占用时,轨道电路通过车辆轮对构成回路,轨道继电器吸起。由于轨道继电器经常落下,不能监督轨道电路的完整,遇有断轨或引接线、接续线折断等故障,不能立即发现。若此时有车占用,轨道继电器也不能吸起,不符合故障安全原理。开路式轨道电路3、按所传送的电流特性分类可分为连续式、脉冲式、计数电码和频率电码式以及数字编码式。连续式轨道电路中传送连续的交流或直流电流。这种轨道电路的惟一功能是监督轨道的占用与否,不能传送更多信息。脉冲式轨道电路是一种传送断续电流脉冲的轨道电路。其送电端为发码器,发送脉冲电流至钢轨,受电端通过译码器译码,使轨道继电器吸起。我国铁路曾采用的极性频率脉冲(简称极频)轨道电路和不对称脉冲轨道电路就属于此类。前者有四种脉冲编码,除监督空闲与否外,还能传送行车信息。后者只有一种频率的脉冲,只能当一般的轨道电路用。计数电码轨道电路传送的是断续的电流,即由不同长度脉冲和间隔组合成电码。电码由发码器产生,同时只能发一种电码。传到受电端,由译码电路译出,使轨道继电器动作。移频轨道电路在钢轨中传送的是移频电流,在发送端用低频(几赫至几十赫)作为行车信息去调制载频(数百赫至数千赫),使移频频率随低频作周期性变化。在接收端将低频解调出来,去动作轨道继电器。移频轨道电路可传送多种信息的信号。数字编码式轨道电路也采用调频方式,但它采用的不是单一低频调制频率,而是一个若干比特的一群调制频率,根据编码去调制载频,编码包含速度码、线路坡度码、闭塞分区长度码、路网码、纠错码等,可以传输更多的信息。4、按轨道电路的分割方式分类有绝缘轨道电路、无绝缘轨道电路有绝缘轨道电路用钢轨绝缘将轨道电路与相邻的轨道电路互相隔离。钢轨绝缘在车辆运行的冲击力、剪切力作用下很容易破损,使轨道电路的故障率较高。绝缘节的安装,给无缝线路带来一定的麻烦,有时需锯轨,降低线路的轨道强度,增加线路维护的复杂性。电气化铁路的牵引回流不希望有绝缘节,为使牵引回流能绕过绝缘节,必须安装扼流变压器。因此有绝缘的轨道电路不理想。无缝线路和电气化铁路希望采用无绝缘轨道电路。无绝缘轨道电路在其分界处不设钢轨绝缘,而采用不同的方法予以隔离。按原理可分为三种:电气隔离式、自然衰耗式、强制衰耗式。电气隔离式又称谐振式,利用谐振槽路,采用不同的信号频率,谐振回路对不同频率呈现不同阻抗,来实现相邻轨道电路间的电气隔离。自然衰耗式,利用轨道电路的自然衰耗和不同的信号特征(频率、相位等),实现轨道电路的互相隔离,在接收端直接接收或通过电流传感器接收。钢轨中的电流可沿正反两个方向自由传输,基本上靠轨道的自然衰耗作用来衰减信号。道口信号所用的道口控制器就采用这种方式的无绝缘轨道电路。强制衰耗式是在自然衰耗式的基础上,吸收电气隔离式的长处(谐振回路的强制性衰耗)而形成的。它采用电压发送、电流接收的方式,接收端由电流传感器接收信号。它在轨道电路受电端设置陷波器,使信号传输一个轨道电路区段后,被陷波器衰耗掉大部分,使剩余的部分不足以影响相邻区段。5、按使用处所分类分为区间轨道电路和站内轨道电路区间轨道电路主要用于自动闭塞区段,不仅要监督各闭塞分区是否空闲,而且要传输有关行车信息。一般来说,区间要求轨道电路传输距离较长,要满足闭塞分区长度的要求,轨道电路的构成也比较复杂。站内轨道电路用于站内各区段,一般只有监督本区段是否空闲的功能,不能发送其他信息。为了使机车信号在站内能连续显示,要对站内轨道电路实现电码化,即在列车占用本区段或占用前一区段时用切换方式或叠加方式转为能发码的轨道电路。站内轨道电路除了股道外,一般传输距离不长。在客运专线的小站和大站的正线,也采用和区间制式一致的一体化轨道电路。6、按轨道电路内有无道岔分类站内轨道电路分为无岔区段轨道电路和道岔区段轨道电路。无岔区段轨道电路内钢轨线路无分支,构成较简单,一般用于股道、尽头调车信号机前方接近区段、进站信号机内方、两差置调车信号机之间。在道岔区段,钢轨线路有分支,道岔区段的轨道电路就称为分支轨道电路或分歧轨道电路。在道岔区段,道岔处钢轨和杆件要增加绝缘,还要增加道岔连接线和跳线。当分支超过一定长度时,还必须设多个受电端。7、按适用区段分为非电气化区段轨道电路和电气化区段轨道电路。非电气化区段轨道电路,没有抗电化干扰的特殊要求,一般的轨道电路指非电气化区段轨道电路。电气化区段轨道电路,既要抗电化干扰,又要保证牵引回流的畅通无阻。因钢轨中已流有50Hz的牵引电流,轨道电路就不能采用50Hz,而必须采用50Hz以外的频率。我国目前站内多采用25Hz相敏轨道电路,区间多采用移频轨道电路。8、按机车牵引电流的回归方式分单轨条轨道电路:利用轨道电路中一根钢轨作为牵引电流回线的轨道电路双轨条轨道电路:利用轨道电路两根钢轨作为牵引电流回线的轨道电路五、轨道电路的应用主要用于区间和车站。区间的轨道电路通常是与自动闭塞制式相一致的轨道电路,按照自动闭塞通过信号机分区,每个闭塞分区就有其轨道电路。在半自动闭塞区段,区间一般不设轨道电路,只有在进站信号机的外方设有接近区段的轨道电路,以通知列车的接近以及构成接近锁闭。站内轨道电路应用更为广泛。对于电气集中联锁来说,列车进路和调车进路都必须安装轨道电路,…对于机车信号来说,各种制式的区间轨道电路和站内电码化以后的轨道电路,就是其地面发送的设备,也就是信息来源。对于列车运行控制系统,带有编码信息的轨道电路是车-地之间传输信息的通道之一。*一、轨道电路的基本参数轨道电路的基本参数指的是它的一次参数和二次参数1.轨道电路的一次参数轨道电路是通过钢轨传输电流的,钢轨铺设在轨枕上,轨枕置于道碴中,所以轨道电路是具有低绝缘电阻的电气回路。因此钢轨阻抗Z(钢轨电阻R和钢轨电抗ωL的向量和)和漏泄导纳Y(漏泄电导G和漏泄容抗的向量和)就成为轨道电路本身固有的电气参数,所以轨道电路的一次参数就是Z、Y、R、L、G、C的总称。第二节轨道电路的基本工作状态和基本参数(1)道碴电阻轨道电路的漏泄电流是由一根钢轨经轨枕、道碴和道床流往另一根钢轨的,其大小由钢轨线路的绝缘阻抗,即道碴电阻决定的。道碴电阻是一个分布参数,通常以每一公里钢轨线路所具有的漏阻值示,称为单位道碴电阻或简称道碴电阻,用rd表示,其单位是Ω·km。道碴电阻愈小,两钢轨间漏泄电流就愈大,轨道电路消耗的电能就会增多。而且道碴电阻值变化的范围越大,轨道电路的工作就越不稳定。 道碴电阻的大小,一方面取决于道碴的材料、道碴层的厚度、轨枕的材料和数量;另一方面还取决于温度、湿度的变化,以及道床土壤的导电率等因素。因此,要保证轨道电路稳定地工作,必须尽可能地提高最小道碴电阻值。提高道床排水能力,定期清筛道碴,及时更换腐朽及破裂的轨枕等,都是提高道碴电阻值的有效。(2)钢轨阻抗每一公里两根轨条(回路)的阻抗,称为单位钢轨阻抗或简称钢轨阻抗,用小写字母z来表示,单位是Ω/km。它包括钢轨本身的阻抗以及钢轨接头处的阻抗。2.轨道电路的二次参数轨道电路的特性阻抗Zc、传输常数γ,它们是一次参数—钢轨阻抗和道碴电阻的函数,即轨道电路的二次参数。在测算轨道电路一次参数时,通常的方法是从轨道电路始、终端电压、电流的关系(列方程组)中,先求出二次参数,再根据二次参数求得一次参数。二、轨道电路的基本工作状态轨道电路的基本工作状态分为调整状态、分路状态和断轨状态三种。轨道电路在各种工作状态下,要受到许多外界因素的影响,其中受道碴电阻、钢轨阻抗和电源电压的影响最大。1.调整状态:就是轨道电路空闲(无车占用)、接受设备(如轨道继电器)正常工作时的状态。在调整状态,对轨道继电器来说,它从钢轨上接收到的电流越大,它的工作就越可靠。最不利因素:道碴电阻最小、钢轨阻抗最大、电源电压最低这三个不利因素。这些不利因素,构成了轨道电路调整状态的最不利工作条件。但在这种最不利工作条件下,轨道电路接收设备应能可靠工作,反映轨道电路的空闲状态。2.分路状态轨道电路分路状态,就是当轨道电路区段有车占用时,接收设备(如轨道继电器)应被分路而停止工作的状态。在分路状态,要求在任何情况下分路时(即在任何地点、任何参数条件以及任意车轴数分路时),应使轨道电路的接收设备处于不工作状态。分路状态的最不因素:当钢轨阻抗最小、道碴电阻最大、电源电压最高、列车分路电阻也最大(车轻、轮对少、车轮与钢轨接触面不洁)。在分路状态的最不利条件下,轨道电路接收设备应能可靠地停止工作,反映轨道电路区段有车占用。3.轨道电路的断轨状态轨道电路的断轨状态,是指轨道电路的钢轨在某处折断时的情况。此时,虽然钢轨已经断开,但轨道电路仍旧可以通过大地而构成回路,轨道电路的接收没备中还会有一定数量的电流流过。最不利条件:断轨时轨道电路的参数变化使得轨道接收设备中获得最大电流值。这种条件是除了钢轨阻抗最小、电源电压最大两个因素外,断轨地点和道碴电阻的大小也有一定的影响。有一个使接收设备中电流最大的最不利数值——临界断轨地点和临界道碴电阻。三、轨道电路分路的几个术语列车分路电阻:列车占用轨道电路时,轮对跨在两根钢轨上形成的电阻,就称为列车分路电阻。它由车轮和车轴本身的电阻,以及轮缘与钢轨顶部的接触电阻组成。由于轮缘与钢轨的接触面很小,因此车轮和车轴的电阻比接触电阻小得多,可忽略不计。所以列车分路电阻,实际上就是轮缘与钢轨的接触电阻。列车分路电阻的大小与轨道上分路的车轴数、车辆的载重情况、列车的运行状态、轮缘的装配质量和磨损程度、钢轨顶部的洁净程度等因素有关,它的变化范围很大。分路效应:由于有列车分路而使轨道电路接收设备中电流减少,并处于不工作状态的现象,称谓有分路效应。分路灵敏度:指的是在轨道电路的钢轨上,用一电阻在某点对轨道电路进行分路,若恰好能够使轨道继电器线圈中的电流减小到释放值(脉冲式轨道电络为不吸起值),则这个分路电阻值就叫做轨道电路在该点的分路灵敏度。极限分路灵敏度:对某一具体的轨道电路来说,各点的分路灵敏度中的最小值,就是该轨道电路的极限分路灵敏度。分路灵敏度:标准分路灵敏度是衡量各种轨道电路分路状态情况优劣的标准.我国规定一般的轨道电路标准分路灵敏度为0.06Ω。对于一轨道电路,在分路状态最不利的条件下,用0.06Ω的标准电阻线,在任何地点分路时轨道电路的接收设备必须停止工作,该轨道电路的分路效应才符合标准。第三节轨道电路区段划分和极性交叉一、轨道电路区段的划分 为了较准确地反映机车车辆所在的位置,并满足提高站内作业的效率的要求,轨道电路要划分成若干个区段。划分的原则如下: ①信号机的内外方应划分为不同的区段。 ②凡是能平行运行的进路,应用钢轨绝缘将它们隔开,形成不同的轨道电路区段。 ③在一个轨道电路区段内,单动道岔最多不超过3组,复式交分道岔不得超过2组。否则,道岔组数过多,轨道电路难以调整。 ④有时为了提高咽喉使用效率,把轨道电路区段适当划短,使道岔能及时解锁,立即排列别的进路。但列车提速以后,为了保证机车信号的连续显示,又不希望轨道电路区段过短。二、轨道电路区段的命名 道岔区段和无岔区段采用不同的命名方式。 道岔区段轨道电路是根据道岔编号来命名的。如图所示站场中,只包含一组道岔的,用其所包含的道岔编号来命名,如1DG、3DG。包含两组道岔的用两组道岔编号连缀来命名,如7-9DG、13-19DG。若包含三组道岔,则以两端的道岔编号连缀来命名,如11-27DG,包含了11、23、27号三组道岔。 无岔区段命名有不同的情况。对于股道,以股道号命名,如ⅠG、ⅡG。进站信号机内方及双线单方向运行的发车口的无岔区段,根据所衔接的股道编号加A(下行咽喉)及B(上行咽喉)来表示。如图,上行发车口处的无岔区段衔接股道为ⅡG,该无岔区段即称为ⅡAG。半自动闭塞区间进站信号机外方的接近区段,用进站信号机名称后加JG来表示,差置调车信号机之间的无岔区段,以两端相邻的道岔编号写成分数形式加WG来表示。牵出线、机待线、机车出入库线、专用线等调车信号机外方的接近区段,用调车信号机编号后加G来表示,如图中的D5G。三、轨道电路的极性交叉1、极性交叉:有钢轨绝缘的轨道电路,为了实现对钢轨绝缘破损的防护,要使绝缘节两侧的轨面电压具有不同的极性或相反的相位。*2、极性交叉的作用:可以防止在相邻的轨道电路间的绝缘节破损时引起轨道继电器的错误动作。对于交流供电来说,只要两相邻轨道电路的电流相位相反,它们的瞬间极性也相反,就得到极性交叉的效果。对于计数电码、频率电码轨道电路而言,因相邻区端的编码不同,无法实现极性交叉,采用的是周期防护或频率防护的方法。3、极性交叉的配置:在无分支线路上,极性交叉配置比较容易,只要依次变换轨道电路供电电源的极性。而在有分支线路上,即有道岔处,则要求在一个闭合的回路中,绝缘节的数量必须达到偶数才能实现极性交叉,若为奇数,采用移动绝缘节的方法实现,可以将绝缘节移至弯股。如果车站内要求正线电码化时,则可以采用人工极性交叉方式,即在奇数绝缘节的闭合回路中再增加一个绝缘节。第四节几种典型的轨道电路一、工频交流连续式轨道电路工频交流连续式轨道电路采用工频50Hz交流电源,以JZXC-480型继电器为轨道继电器,故又称JZXC-480型交流轨道电路。二、25Hz相敏轨道电路我国铁路电气化铁路均采用工频50Hz交流供电,钢轨既是牵引电流的回流通道,又是轨道电路信号电流的传输通道。因此轨道电路必须采用非工频制式。在电气化区段站内轨道电路中,应用最广泛的是25Hz相敏轨道电路。三、移频轨道电路1)、移频的概念移频轨道电路是移频自动闭塞的基础,又可以监督该闭塞分区的空闲。选用频率参数作为控制信息,采用频率调制的方式,将低频调制信号Fc搬移到较高频率Fo(载频)上,以形成振荡不变、频率随低频信号的幅度作周期性变化的信号。而采用这种方式的轨道电路就称移频轨道电路。*移频轨道电路根据可以发送信息的数量分为4信息、8信息及18信息移频轨道电路。我国铁路广泛应用的UM系列和ZPW-2000系列都是可以发送18信息的无绝缘移频轨道电路。2)4信息移频:为了防止钢轨绝缘双破损后两相邻轨道电路产生错误动作,所以,相邻的闭塞分区采用了不同的载频。下行:550、750HZ上行:650、850HZ传送11HZ、15HZ、20Hz、26Hz四种低频信号。*3)8信息移频:由于4信息移频轨道电路传输的信息较少,又研究了8信息移频轨道电路,8信息移频轨道电路有8种低频,分别为8(30)、9.5、11、15、13.5、16.5(17.5)、20、26Hz。*4)法国引进的UM71轨道电路采用调频方式,谐振式无绝缘轨道电路载频为:1700、2000、2300、2600HZ频偏:±11HZ低频信息:10.3---29HZ每隔1.1HZ呈等差数列共18个,可以传输18个低频信息。由设在室内的发送器、接收器、轨道继电器、以及设在室外的调谐单元、空心线圈、带模拟电缆网络的匹配变压器和若干补偿电容组成。*5)ZPW—2000型无绝缘轨道电路ZPW—2000型无绝缘轨道电路是在充分吸收利用UM—71长处,同时借鉴移频轨道电路应用DSP数字信号处理技术成功经验的基础上自主开发出来的。它沿用了UM—71的电气隔离方式,但在轨道电路的传输长度、传输安全性等方面作了很大改进。2.计轴设备 自从轨道电路诞生以来,它就成为所属区段的道岔是否能转动、列车是否能进入该区段的关键依据。然而,由于轨道电路的工作状态严重依赖于道床状态。在道床电阻很低的场合,轨道电路无法正常工作,轨道继电器GDJ无法吸起。有些地方由于钢轨表面生锈,粉尘等物质污染,造成轨道电路分路不良,列车通过此段钢轨时,轨道继电器GDJ无法落下。另外,在我国单线铁路区段,站间一般没有装设轨道电路。在这些情况下,计轴设备可以用来检测相应区段(或区间)是否处于空闲状态。一)、计轴设备基本工作原理计轴设备是利用轨道传感器、计数器来记录和比较驶入和驶出轨道区段的轴数,以此确定轨道区段的占用或空闲。其工作原理:当列车驶入,车轮进入轨道传感器作用区时,轮对经过传感器磁头时,向驶入端处理器传送轴脉冲,轨道区段驶入端处理器开始计轴,驶入端处理器首先判定运行方向,确定对轴数是累加计数还是递减计数。列车进入轨道区段,驶入端计轴器对轮轴进行累加计数,并发出区段占用信息,同时,驶入端处理器经传输线向驶出端处理去发送驶入轮轴数,列车全部通过驶入端计轴点时,停止计数。当列车到达区段驶出端计轴点时,由于列车是驶离区段,驶出端计轴器进行减轴运算,同时再传送给驶入端处理器,列车全部通过后,两站的微机同时对驶入区间和驶离区间的轮轴数进行比较运算,两站一致时,证明进入区段的轮轴数等于离开区段的轮轴数,可以认为区段已经空闲,发出区间空闲信息表示,当无法证明进入区段的轮轴数等于离开区段的轮轴数,则认为区间仍将处于占用状态。二)计轴设备组成计轴设备主要组成部分包括:轨旁计轴点:主要用于产生车轴脉冲,包括轮轴传感器和电气连接箱;信息传输部分:用来传递信息,包括传输线、防雷及线路连接设备;计轴处理部分:主要功能是对计轴点产生的车轴脉冲进行计数和确定列车运行方向,比较计轴点入口点和出口点所记轴数及记录计数结果。包括计数、比较、监督、表示等装置;电源:提供可靠不间断的电能;计轴设备与轨道电路比较优点: 适用于道床状态差、道床泄漏电阻过低的轨道区段。 可以检测钢轨生锈及轻车情况下的轨道区段占用/空闲。 可以避免轨道电路由传输距离的限制而设置的多个轨道电路。 不需要绝缘节。缺点: 如果作为站内多区段轨道电路的替代,投资较轨道电路大。 电源部分必须可靠确保不因电源瞬间中断造成轴信息的丢失。 无法检测钢轨断轨。 由于其它铁器如铁等在磁头上的动作可能造成错误计轴。 单独无法实现机车信号电码化的信息传输。3.点式应答器一、应答器的发展 1.固定点式设备早在50年前,一些国家就开始研究点式停车装置,在一些固定点,特别是进站信号前方安装点式设备,这个点式装置及机车上均有感应线圈,当需要列车在进站信号前方停车时,点式装置可以发生特定的停车信号频率,列车通过装有该设备的点时,机车上的线圈与点式设备线圈之间产生谐振,使机车接收到停车信息。这种点式装置是查询-应答器的前身。 2.随着电子技术的进步,可以发送数据报文的高速数据传输点式设备得到广泛应用,这就是查询-应答器又称为点式应答器(Balise,Beacon),它已经成为现代铁路信号系统中的重要地面设备,成为沟通列车与地面的一种点式信息交换装置,当列车通过装有该设备的点时,列车与该设备发生信息交换。二、应答器的基本概念查询应答器系统由查询器和应答器两部分组成。如果是为了列车获取地面信息,查询器安装在机车上,应答器安装在地面上;反之,应答器也有安装在机车上,查询器安装在地面上,用于把列车的有关信息,如车次号、列车类型传输给地面系统的。CTCS系统都是把应答器安装在钢轨间中央道床上。三、应答器的分类根据能源供应及信息提供方式,应答器可分为无源应答器及有源应答器。1.无源应答器点式无源应答器,或称固定信息应答器,与外界无物理连接,不需要外加电源,平时处于休眠状态,无源应答器自身功耗很低,仅在列车通过并获得车载查询器发送的功率载波能量时被激活,激活后立即发送调制好的数据编码信息。无源应答器中的信息是经特殊设备固化在应答器存储单元里,一般安装以后不能改变,用于发送固定信息,在我国CTCS2级系统中,用于发送线路速度、坡度等线路条件信息和信号点轨道区段等信息。2.有源应答器有源应答器,或称可变信息应答器,通过外接电缆获得电源。有源应答器中的信息是可以通过外接电缆由地面控制设备实时改变的,一般设置在进站和出站信号机前方,用于向列车传送实时可变信息,如临时限速、进路信息等。四、应答器系统的组成应答器系统分为地面设备和车载设备两部分。地面设备包括地面应答器和地面电子单元(LEU)。车载设备包括车载天线、车载解码器和应答器传输模块(BTM)。车载解码器除对应答器报文进行解码还原,还包含载频发生器与功率放大器。1.地面应答器地面应答器包含特定的地面信息。当机车经过地面应答器时,通过无线射频激活应答器,使其发射预置数据,从而机车获得诸如公里标、限速、坡度等信息,保障列车运行安全。2.地面电子单元(LEU)地面电子单元(简称LEU)是一种数据采集与处理单元,当有数据变化时,LEU依据变化后的数据形成报文并送给地面有源应答器进行发送。一个LEU可同时向4个地面有源应答器发送4种不同数据报文。LEU可以实时监测与地面有源应答器间信息通道的状态,并及时向车站列控中心回送。当LEU与地面有源应答器通信中断时,LEU保障不产生危机行车安全的后果。当外部控制条件无效或通信故障时,LEU应向有源应答器发送默认报文。3.车载天线车载天线是一个双工的收发天线,既要向地面发送激活地面应答器的功率载波,还要同时接收地面应答器发送的数据报文。车载天线置于机车底部,距轨道约180~300mm。4.车载解码器车载解码器用于对地面应答器信息的接收、滤波、数字解调与处理,并传送给列控车载计算机。载频发生器与功率放大器用于产生激活地面应答器所需的载频能量并通过车载天线传递给地面应答器。5.应答器传输模块(BTM)BTM(应答器传输模块)是用于对地面应答器的数据进行处理的模块,由微处理器、滤波器和其他相关单元组成。五、应答器的工作原理 以无源应答器为例说明其工作原理 无源应答器由两部分组成:一是接收能源无线和发送信息天线;二是信息储存装置。列车接通应答器时,首先通过能源无线发送变频能源给地面应答器,应答器通过能源接收天线接收高频能源并转变成电能提供给信息储存装置及发送天线;信息储存装置将信息编码通过发送天线送向机车查询器;机车查询器通过接收天线收到地面数据,这样耦合一次,即完成一次传送信息任务。原理图 当机车经过地面应答器时,查询器以27.095MHz的无线射频激活应答器,应答器接收电磁能量,应答器开始工作,以编码信息的形式向列车查询器发射预置在应答器中的信息数据,应答器是以4.234MHz±200kHz中心频率循环不间断串行发送1023位传输报文,信息传输速率为564.48kbit/s,直至能量消失。六、应答器的用户报文结构 每一条应答器用户报文都由帧标志(包头)、用户数据位和报文结束标志结束包构成,具体格式如下:七、传输信息包 1.应答器链接 2.线路坡度 3.线路速度 4.等级转换 5.轨道区段 6.临时限速 7.特殊区段 8.纯文本信息包 9.地理位置信息包八、CTCS2级列控系统应答器的一般设置原则1.下列应答器组应至少包含两个应答器:(1)发送线路参数的应答器组;(2)发送等级转换信息的应答器组;(3)用于识别列车运行方向的应答器组;(4)位于发车进路始端的应答器组。仅用于定位的应答器组为单个应答器。应答器组设置应满足应答器容量要求,当应答器容量不能满足要求时应增加组内应答器数量。4.应答器组内相邻应答器间的距离应为5±0.5m。设置在闭塞分区入口处的应答器组距调谐单元(BA)或机械绝缘节应为200±0.5m,进站信号机处的应答器组距调谐单元(BA)或机械绝缘节的距离应为30±0.5m(从靠近绝缘节的应答器计算)。5.对于200~250km/h客货共线的客运专线,出站信号机处的应答器组距出站信号机机械绝缘节的距离应为65±0.5m(从靠近绝缘节的应答器计算);对于仅开行动车组的客运专线,出站信号机处的应答器组距出站信号机机械绝缘节的距离应为20±0.5m(从靠近绝缘节的应答器计算)。6.设置在车站的应答器组中的有源应答器宜靠近信号机侧。7.相邻应答器组间距离应满足最小距离要求,正线应答器组内应答器距调谐单元(BA)或机械绝缘节的最小距离为30±0.5m。应答器链接及数据覆盖范围�B2B3B4B5B1正向正向反向B2B3B4B5B1最大常用制动距离B1应答器数据范围4.轨道感应环线 在轨道上高速行驶的列车需要了解运行前方许多情况,也需要将本列车运行状况反映给调度中心,因此,列车需要与地面实时双向通信,点式应答器和轨道电路都不易于实现。 德国在20世纪60年代开始研制轨道交叉感应环线方法,实现了车-地信息传输,20世纪80年代开始推广应用,先后研制了LZB系列产品,在地铁系统中应用轨道交叉感应电缆方法实现了移动闭塞控制。我国许多地铁线路依靠轨道交叉感应电缆方法实现列车控制。地面沿着轨道布置有感应环线,列车上安装了感应线圈,列车在轨道上行驶与感应线圈相互感应,就可以构成与地面的连续、双向信息交换。从地面向机车传输信息的频率为36±0.4KHz、传输速率1200Bd,机车向地面的传输频率为56±0.2KHz、传输速率600Bd。地面向列车传递各种线路数据、目标速度、目标距离等信息。列车向地面主要传递列车位置确认信息及其它列车数据(如列车长度、速度、机车类型等)。采用这种方式,通过地面控制中心系统及车载列控设备可以实现列车的闭环控制。*********
/
本文档为【铁路信号基础课件-5轨道电路】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索