为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

1394接口

2017-09-27 7页 doc 46KB 5阅读

用户头像

is_589748

暂无简介

举报
1394接口1394接口 “数码生活”这个词相信是现在媒体上曝光几率最多的了,而且我们也越来越感受到数码技术日新月异的发展给我们的生活带来的变化。打印机,扫描仪,数码相机对于我们早就不是什么新鲜的东西了,甚至数码摄像机也已经走进了千家万户。每逢过年过节,全家外出旅游,带上数码设备用它记录下那精彩的点点滴滴生活时刻,同时,也记录下了科技改变生活变化的每个细节。谈到数码设备,就不能不谈这些设备的接口类型。从早期的串口,并口到USB接口,技术的发展,带给我们的是传输速度的急速飞跃和使用方式的极大便捷。今天我们就来说说目前接口应用市场上的佼佼者...
1394接口
1394接口 “数码生活”这个词相信是现在媒体上曝光几率最多的了,而且我们也越来越感受到数码技术日新月异的发展给我们的生活带来的变化。打印机,扫描仪,数码相机对于我们早就不是什么新鲜的东西了,甚至数码摄像机也已经走进了千家万户。每逢过年过节,全家外出旅游,带上数码设备用它下那精彩的点点滴滴生活时刻,同时,也记录下了科技改变生活变化的每个细节。谈到数码设备,就不能不谈这些设备的接口类型。从早期的串口,并口到USB接口,技术的发展,带给我们的是传输速度的急速飞跃和使用方式的极大便捷。今天我们就来说说目前接口应用市场上的佼佼者。 IEEE1394接口类型 IEEE1394接口最早在国内出现应该是在97,98年左右,但那个时候它对于我们绝大多数人来说还只是简单的停留在概念的层面上,那几年,很少能在MAC及其相关配件市场上看到具有IEEE1394接口类型的硬件设备,偶尔出现也只是那些“富人”才能享受的起。可是随着时间的推移,进入20世纪以后,市场上带有IEEE1394接口类型的设备不断涌现,已经有了应用此接口的扫描仪,数码相机,Webcam,硬盘等设备。 一、 IEEE1394的定义和特点: 1394卡的全称是IEEE1394 Interface Card,它是IEEE化组织制定的一项具有视频数据传输速度的串行接口标准。它支持外接设备热插拔、同时可为外设提供电源,省去了外设自带的电源、支持同步数据传输。IEEE1394接口最初由苹果公司开发,早期是为了取代SCSI接口而设计的,英文取名为FIREWIRE。 后来大家称其为火线,一方面是因为速度快(接口最快传输速率达到了400MBPS,而且即将推出的IEEE1394B标准更是将速度提升到了800MBPS甚至1.6GBPS的标准上,无可争议的坐在了外设接口的速度第一的宝座上),另一方面也是由此英文名翻译而来。后来,由于这种接口速度超快,而且相对于SCSI来讲又要小巧许多,所以逐渐被大家接受,并且广泛普及。它的出现是数字数据传输的一大革命。作为新一代的高性能串行总线标准,IEEE 1394的主要性能特点如下: (1) 数字接口:数据能够以数字形式传输,不需数模转换,从而降低了设备的复杂性,保证了信号的质量; (2) “热插拔”:即系统在全速工作时,IEEE 1394设备也可以插入或拆除,用户会发现,增添一个1394器件,就像将电源线插入其电气插座中一样容易; (3) 即插即用:无需设定ID(识别符)或终端负载,主节点可以动态确定; (4) 总线结构:采用读,写映射空间的结构,而不是IEEE1212标准规定的寻址发送数据方式,对于外部电缆和底板技术规格,都有详细规定; (5) 速度快:IEEE 1394标准定义了三种传输速率:98(304 Mbps,196(608 Mbps,392(216 Mbps。因为这三种速率分别在100 Mbps,200 Mbps,400 Mbps附近,所以标准中亦称之为S100,S200,S400。这个速度完全可以用来传输未经压缩的动态画面信号。而IEEE 1394(b标准正在研讨支持800 Mbps和1 600 Mbps的传输速率; (6) 兼容性好:IEEE 1394总线可适应台式个人机用户的全部I,O要求,并可以与SCSI并口(小型计算机系统接口)、RS232标准串口、IEEE 1284标准并口、Centronics接口、Apple's Desktop Bus等接口兼容; (7) 接口设备对等(peer,to,peer),不分主从设备,都是主导者和服务者。其中有足够的智能用于连接,不需附加控制功能。如此便可不通过计算机而在两台摄像机之间直接传递数据,也可以让多台计算机共享一台摄像机; (8) 物理体积小,制造成本低,易于安装; (9) 非专利性:使用IEEE 1394串行总线不存在专利问题; (10) 价廉:适合于家电产品。IEEE 1394的价格降低,部分原因是通过串行数据传输来达到的,它采用了简化电子电路和电缆设计。其发送和接收器件作为标准芯片组提供,处理寻址、初始化、仲裁和。 二、 IEEE1394接口的两种类别: IEEE1394接口有6针和4针两种类型。6角形的接口为6针,小型四角形接口则为4针。 最早苹果公司开发的IEEE1394接口是6针的,后来,SONY公司看中了它数据传输速率快的特点,将早期的6针接口进行改良,从新设计成为现在大家所常见的4针接口,并且命名为ILINK。(这也是IEEE1394的另外一种叫法)6针的,主要用于普通的台式电脑,时下很多主板都整合了这种接口,特别是APPLE电脑,统统采用的这种接口;另一种是4针的接口,从外观上就显得要比6针的小很多,主要用于笔记本电脑和DV上,与6针的接口相比,4针的接口没有提供电源引脚,所以无法供电,但优势也很明显:就是小~ 特别是近一段时间,笔记本电脑和DV都在朝着小型化和超薄化发展,像SONY近期上市的IP系列数码摄像机,机身小巧,整合度高,在这样的机器上如果采用6针的接口,则显得非常笨拙。另外,DV的1394接口主要用于传输影像数据,所以也无需供电。但是如果您是添加外置硬盘,6针的1394端子就非常必要了,首先是外置硬盘体积比较宽大,所以也就不计较接口大小。其次,外置硬盘运行时需要供电,其次是需要有非常高速的传输速率,此时带供电的6针1394接口就非常必要了。在这方面,APPLE的IPOD就比较有代性,其一方面通过1394接口传输文件,另一方面其也通过FIREWIRE线缆进行自动充电。 纵上所述,这两种IEEE1394接口可谓是各有千秋,所以也无法说谁比谁更好。不过说到这里,还要告诉大家一个小问题,目前市面上不仅有四针对四针、六针对六针的传输线缆,也有六针转四针的传输线缆。但是由于IEEE1394接口的传输速率很快,以致其连接线缆对屏蔽性的要求非常高,所以市面上见到的IEEE1394线都不长,大概最长的也就是3米多一些。据我所知,4米以上的1394线只有一些国外公司能够生产,并且已经申请了专利,需要专门定购,而且价格非常贵。 三、 未来接口标准之争: 对于串口,并口和IEEE1394的比较而言,它们早就是过时的标准了,所以这里我们就着重说说现在应用最广泛的USB和IEEE1394的对比。其实,IEEE1394和USB早期的版本1.1在速度上也没有什么可比性,IEEE 1394以其400Mbps的传输速率峰值遥遥领先,而USB 1.1最大只有12Mbps。显而易见,当经常传输与多媒体相关的大文件时,前者的高速率具有绝对优势。但USB2.0的出现,则打破了这个局面,是对IEEE1394传输速度的最直接的挑战,它的传输速率在理论上能达到480Mbps,已经超过了IEEE1394的速度。下面我们看看这两种接口类型的比较: 1、两者的主要区别在于各自面向的应用上。USB 2.0主要用于外设的连接,而IEEE 1394主要定位在声音/视频领域,用于制造消费类电子设备,如数字VCR、DVD和数码电视等。未来,USB 2.0和IEEE 1394在许多消费类系统上应当可以共同存在,比如现在新的苹果电脑和一些PC电脑都同时配有这两种接口。 2、当今,提供了USB功能的电脑越来越多,市面上出现了大量可与电脑连接的USB外设。所以很自然地要求USB的速度有进一步提高,为USB外设的全面普及作好准备。而在影音消费类电器领域,IEEE 1394已成为一种事实上的连接标准。因此,未来的电脑如果想同这种电器连接,本身便必须符合IEEE 1394标准。 3、USB 2.0传输速度为每秒480 Mbps,比起IEEE1394还快,而USB 2.0的第二版更将达到800 Mbps的速度(最高理想值1600 Mbps),将会成为超越IEEE1394的最高传输标准。此外“USB 2.0”兼容目前所有的“USB 1.1”,且单位造价比IEEE1394还便宜,所以以INTEL、COMPAQ、HP为首的国际计算机厂商都支持“USB 2.0”。 4、由于IEEE1394接口是由苹果的FireWare接口发展而来成为通用的国际标准的,而PC业界的龙头老大,INTEL公司当然不会允许苹果公司指定的标准来抢PC 的市场,虽说没办法公开反对但肯定不会支持得太好,所以Intel的芯片组发布了多款却一直对IEEE1394的支持遮遮掩掩,说句实话,1394设备到今天还没有发展壮大多少有些和Intel的支持有关。虽然如此,但在此笔者不敢妄下结论评判未来那个接口标准会是主流,只能说未来的外设接口应该是USB2.0、IEEE1394并立(不排除还有新的标准出现),最终谁将成为主流还有待厂商和用户的支持。 连接技术新规范——CompactPCI 基于PICMG 2.0 CompactPCI规范的连接器能够顺利地与PCI Express器件连接,满足了仪器仪表、军事和航 空市场CompactPCI用户的未来需求,还定义了相应的板(3U,6U)和背板连接器、电子及机械标准。其系统插槽(板)可容纳多达24个通道和4个PCI Express连接,每个方向的最大系统带宽为 6Gb/s。外围插槽最多可具有16个 4Gb/s通道(1型外设板)或8个2Gb/s通道(2型外设板)。 越来越多连接器应用在高速、高端领域,为了提高信号完整性,在连接器技术上必须采用差分信号对。ERmet ZD和HM ERmet连接器不仅满足了高速应用信号完整性的要求,还支持PICMG新近批准的CompactPCI Express PICMG EXP.0 R1.0规范。 PICMG EXP.0通过用于ATCA标准称作“高级差分结构(ADF)”的ERmet ZD连接器传输PCI Express信号。符合该标准的连接器要求具有可靠的高速信号传输、高端子密度,并支持其他工业标准以及有第二资源的可靠供货。其中3排信号对的版本符合新的CompactPCI Express标准,并可在每25mm线性长度提供30对差分信号。此外,由于距离插件板中心较远,这种3排的ZD连接器可用在3U板上插入PMC模块或XMC模块。ERmet ZD连接器也是现有PICMG 2.20和PICMG 3.0(ACTA)规范的标准连接器。 从机械转向电气 以前,连接器的选型主要由机械工程师负责,因为他们需要考虑到整个电路板或子系统的布局,连接器的选择更多是尺寸和空间的考虑。而电气性能通常只考虑端子的额定电流,设计中需要决定由多少个端子来传输信号、连接器主体的大小和形状及连接器的结实程度,尤其是在军用项目中。航空电子或便携式系统中,每个器件的尺寸都很关键,对连接器的选型是个很大的挑战。 今天的连接器设计已经完全改观,需要由专门的信号整合工程师来负责选型,新的连接器设计也必须从满足电气性能要求,而不是像过去那样当整个连接器设计完成后再来测量电气性能参数。尤其是10GHz以上的高速信号,电气性能非常关键。设计高性能连接器时,无论是昂贵的背板连接器还是常见的标准PC连接器,首先要考虑的就是电气性能要求。连接器的选型也由包装工程师转向了设计电路的电气工程师负责。 提高数据传输速度 当数据传输速度提高时,电容和阻抗的影响也愈加明显。一个端子上的信号会串扰到相邻的端子并影响其信号完整性。此外,接地电容减小了高速信号的阻抗,使信号衰减。新的串行PCI标准PCI Express,在2.5Gb时,每个方向的最大数据传输速度为500MB,大大提高了单个连接器所能传输的信号速度。过去,高速信号通常由共轴电缆和共轴连接器来控制信号路径的阻抗。在PCI Express中采纳类似的概念,每个信号传输端子都彼此隔开。差分信号对就能够很好地达到这个目的,因为每个差分信号对的一侧都有接地引脚,以减少串扰。 高速传输在背板连接器中应用最多,高达10Gb/s的连接器采用了非常精密的设计技术。通常第一层是开阵脚的区域以分离相邻的接地端子。下一个层次是装在行间的接地屏蔽。顶层的应用则会包括一个金属接地结构围绕着每个信号端子(或差分信号对, 如图1所示)。这样的C型金属屏蔽实现了最佳的数据传输速度和信号完整性的组合,是理想的高速应用连接器。 图1 ERNI公司ERmet Zero XT连接器
/
本文档为【1394接口】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索