为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

方阵最小多项式的性质探究

2018-11-10 12页 doc 100KB 54阅读

用户头像

is_196623

暂无简介

举报
方阵最小多项式的性质探究方阵最小多项式的性质探究 :讨论方阵最小多项式的几个性质及相关的几个简单应用 :方阵,最小多项式,零化多项式,特征多项式 1:设方阵A,若f(x) F(x),使f(A)=0,则称f(x)为A的零化多项式。 1:方阵的零化多项式是存在的。 证明:设为方阵,MF表示域F上的所有方Ann,nn,,,n 2阵的集合,构一线性空间,它的维数为,属于,由MFAn,,n 22n2EAAA,,,, 这个向量必定线性相关。则存在一组不全n,1 2naaa,,,为零的数:, 使得, aEaAaA,,,,0220101nn 2n作多...
方阵最小多项式的性质探究
方阵最小多项式的性质探究 :讨论方阵最小多项式的几个性质及相关的几个简单应用 :方阵,最小多项式,零化多项式,特征多项式 1:设方阵A,若f(x) F(x),使f(A)=0,则称f(x)为A的零化多项式。 1:方阵的零化多项式是存在的。 :设为方阵,MF表示域F上的所有方Ann,nn,,,n 2阵的集合,构一线性空间,它的维数为,属于,由MFAn,,n 22n2EAAA,,,, 这个向量必定线性相关。则存在一组不全n,1 2naaa,,,为零的数:, 使得, aEaAaA,,,,0220101nn 2n作多项式,且,有,fxaaxax(),,,,fx()0,fA()0,201n 即MF中的任意向量来说,零化多项式是存在的。 A,,n 2:次数最低首项为1的零化多项式称为最小多项式。 由命题1的证明过程,我们知道最小多项式是存在的。只要由 kk,随增大往上找。但是这也只能说方阵的最小多AEAA,,, 2项式的次数最多不超过,这个估计是比较粗糙的,我们可以估n 计得更精确些。 2:(cayley-Hamilton定理)设是数域P上一个矩阵,Ann,fxEA(),,,是的特征多项式,则 A nnn,1fAAaaaAAE()()(1)0,,,,,,,,, 1122nn 证明:详见北大数教材《高等代数》P303。 也就是说可以把方方阵的最小多项式的次数缩小到不超过nn, 。 n 下面介绍几个最小多项式的性质: 3:矩阵A的最小多项式是唯一的。 4:设g(x)为方阵A 的最小多项式,那么f(x)以A为根当且仅当g(x)整除f(x). 5:相似矩阵具有相同的最小多项式。 证明:设方阵的最小多项式是,矩阵最小多项式是ABmx() ,1BPAP,n(x),由与相似知,有,其中为可逆阵。 ABP ,,11则 mBmPAPPmAP()()()0,,, 由命题4得整除,同理可证整除,且,nx()mx()mx()nx()mx() 都是首一的。所以。得证 nx()mxnx()(), A,,1 ,,A2,,A,6:设是一个分块矩阵,,的最AA,, ,,A,,s is,1,2,,小多项多等于的最小多项式的最小公倍式,。 Ai 证明:设的最小多项式为,的最小多项式为Afx()Aii ,的最小公倍式是,由整除知, fx()fx()gA()0,fx()gx()gx()iiiis,1,2,,。 gA(),,1 ,,gA()2,,gA()0,,故 ,, ,,gA()s,, 整除(可由命题4得)。 因此 fx()gx() fA(),,1 ,,fA()2,,fA()0,,又因为 因此对于每,, ,,fA(),,s一个有 ,即 整除 。而是的ifA()0,fx()fx()fx()gx()iii最小公倍式。故整除 ,综上所得。 gx()fx()fxgx()(), 因为每一个复数域上的方阵,都可以相似于一个分块矩阵, 即Jordan标准型,所以利用Jordan标准型求最小多项式也是证 明中常用的方法。 7:方阵的最小多项式是的最后一个不变因子。 AA a,, ,,1a,,J,k证明此定理前先给出一个引理:级若当块 ,, ,,1a,, k的最小多项式为()xa,。 0,, ,,10k,,JaE,,J()xa, 证明:的特征多项式为,而, ,, ,,10,, 00,, ,,0k,1,,()0,,,JaE ,所以的最小多项式为J,,0 ,,100,, k。 ()xa, 下面证明命题7: J,,1 ,,J21,,,PAP, 证明:存在可逆矩阵,使 P,, ,,J,,s ,,,i ,,,1i,,其中 。 ,,Jis,1,2,,i,, ,,,1i,,ni 由命题6知,J的最小多项式为的最小多项式的公倍式,且由引 niis,1,2,,()x,,理知的最小多项式为,。从而J的最小多Jii nnns12,,项式 gxxxxgx()(),(),,()(),,,,,,,,JsA12,, 为的最小多项式。 A 由于一个初等因子决定一块Jordan块,且由初等因子的定义知它是不变因子分解在互不相同的一次因式的方幂。我们知道 in,1,2,,,。因此有, dd整除gxdx()()整除ii,1An又由最小公倍式定义得,且与都是dxgx()()整除dx()gx()nAnA首一的。所以可推得。 dxgx()(),nA 8:数域P上的n级矩阵A与对角阵相似的充分必要条件为 A的最小多项式是P上的互素的一次因式的乘积。 证明参见北大教材P323。 :复数域上的矩阵A与对角阵相似的充分必要条件是A的最小多项式无重根。 9 :设n阶矩阵A的全体实系数我项式所成的线性空间W,则W的维数等于A的最小多项式m(x)的次数k。 k,1,则这k个矩阵必相关,存 证明:假设EAA,,,维()WK, k,1lElAlA,,,,0在不全为零的数,使 lll,,,011k,011k, 与为最小多项式矛盾。则 . 维()WK,mx() mk,1 下证,只要证明Amk(),,可由线性EAA,,,维()WK, 表出即可。 k 若 mxx(),,显然成立。 k 若 mxx(),,由代余除法知:存在R[x]上的多项式,Px() m,使得xPxmxrx,,()()(),次数或者。则 rx()rxk(),rx()0, mmk,1AAPAmArArA,,,()()()(),即可由线性表EAA,,, 出。所以。 维()WK, 综上所得。 维()WK, 命题10:设A是n阶方阵,则A的特征多项式f(x)与A的最小多项式m(x)的根相同,当A的特征值互异时,则f(x)=m(x). 证明:一方面,因为故A的最小多项式的mxfx()()整除mx()根是 的根。 fx() 另一方面, ,。由fxxEAdxdxdx()()()(),,,mxdx()(),12nn 设是的根,则 整除。于是必有,使 x()xx,ifx()fx()00 整除。又是整除,故为的根。 ()xx,dx()dx()dx()xmx()0iin0 综上所得 与有相同的根。 mx()fx() 若,其中 fxxEAxxxxxx()()()(),,,,,,xxx,,,12n12n互不相同,由前面知与有相同的根。知 。 mx()fx()mxfx()(),命题11 :设A是n级矩阵,是次数大于零的多项式, fx()mx()是A的最小多项式: (1)如果整除,那么退化的。 fx()mx()fA() (2)如果是和的最大公因式,那么与dx()fx()mx()fA() 的秩相等。 dA() (3)为非退化的充分必要条件是和互素。 fA()mx()fx()证明:(1)假设退化。由已知存在(), 次q(x),次mx()fA()qx() mAfAqAfAqA()()()0()()0,,,可逆 则 mxfxqx()()(), 与为最小多项式矛盾。 mx() (2)由已知存在,使 , uxvx(),()dxuxfxvxmx()()()()(),, 秩(d(A))秩(,f(A))dAuAfAvAmAuAfA()()()()()()(),,,,则 又 整除,则存在 ,使 dx()fx()Px()fxdxPx()()(), 秩(d(A))秩(,f(A))即 ,则 fAdAPA()()(), 秩(d(A))秩(,f(A))综上可得。 (3)必要性:设 ,由(2)知, dxfxmx()((),()), 秩(d(A))秩(,f(A))=n,若,由整除, 次dx()0,dx()mx() ,使,则由 存在 qx()mxdxqx()()(),mAdAqA()()()0,,dAqA()()0可逆,,而 与为最小多项式矛 次次qx(),m(x)mx()盾。所以。 ((),())1fxmx, 充分性:,则存在 使得 ((),())1fxmx,uxvx(),() ,则uAfAvAmAEmA()()()()()0,,, uxfxvxmx()()()()1,, 则 ,则非退化。 uAfAE()(),fA() ,1A12:非奇异(退化)矩阵的最小多项式与的最小多项A 式之间的关系。 证明:设非奇异矩阵的最小多项式为A ,1mm,1Afxxaxa(),,,, ,设的最小多项式为1m ss,1gxxbxb(),,,,。 1s 由为的最小多项式得,即Afx()fA()0, mm,1AaAaE,,,,0,由A非奇异知,则上式可a,01mm a1mm,,111化为aAEAA(())0,得 ,,,,maamm a1,,11m1EAA()0。 ,,,, aamm a1m,11Pxxx(),,,,令,由 PA()0,,则, gxP()整除(X) aamm 知 ,即 。 次次(gxP(),X)sm, ,,,111ss,1()()0AbAbE,,,,由gA()0,,即 ,两边同时乘 1sssAEbAbA,,,,0,得,由 得 b,0s1s bb1ss,1s,11EAAA0,则 整除 ,,,,,fx()bbbsss bb1ss,1s,11,知 ,即 xxxms,,,,,次fxs(), bbbsss 综上所述 。又与都是首一多项式且整除 ms,Px()gx()gx() ,所以。 Px()Pxgx()(), a1,1m1A所以的最小多项式为由观察知 Pxxx(),,,, aamm 的系数倒过来排再同除以常数项即为。 fx()gx() *A同理可推知,的最小多项式为: mm,1AaAaA()()m,11mm,1hxxxx(),,,,, 。 aaammm 100,, ,,13i,,Aww,,00,例1:设矩阵, ,,22,,00w,, VfxfxRxR,,()(),是实数域设,求维(V)=? ,,,, ,,13i22证: fxxEAxxwxww()(1)()(),,,,,,,, 2三个互异特征值,由命题10知 2fxxEAxxwxw()(1)()(),,,,,, (为A的最小多项mx()式)再由命题9知维(V)=次()=3。 mx() 例2:判断以下三种矩阵是否可对角化? 22mmAE,AA,A,0A,0 ;;,(为整数),但。 m 22AE,fxxxx()1(1)(1),,,,,(1),为A的零化多项式 整除,则 且无重根,由命题4知,A的最小多项式gx()fx()A 无重根,由命题8知,A可对角化。 gx()A 2AA,(2),同理证。 mmm(3)由于,则的最小多项式为,m,1,A,0A,0x mm即A的最后一个不变因子为,则A有一个初因子为,(有xx重根)则A不可对角化。 : 1、《高等代数》北京大学数学系几何与代数教研室编 高教出版社。 2、《最小多项式的性质及应用》王莲花等编 河南教育学报。 3、《高等代数解题方法与技巧》李师正编 高教出版社 4、《高等代数学》张贤科,许甫华编著 清华大学出版社 5、《高等代数》 姚慕生编著 复旦大学出版社豆丁网(DocIn)是全球优秀的C2C文档销售与分享社区。 豆丁允许用户上传包括 .pdf, .doc, .ppt, .txt 在内的数十种格式的文档文件,并 以Flash Player的形式在网页中直接展示给读者。简而言之,豆丁就如同文档版的Youtube。现在每天都有数以万计的文档会上传到豆丁,正基于此,豆丁将致力构建全 球最大的中文图书馆。 豆丁努力使世界上任何人都能够自由地发挥他们的创造力。文档资料只通过少 数、单一的出版物来传播的时代已经结束。现在,互联网给文档资料提供了世界范围 内的传播渠道,豆丁希望能够给每个独立的文档持有者利用这个新机会的方法。现在, 我们为原创人群提供安全、自由、民主、便利的文档发布与营销平台。借助豆丁,你 可以为你的文档定价,并通过豆丁发表到不同博客、论坛、联盟中,进行广泛传播, 在分享的同时获得收入回报。 豆丁致力于构建全球领先的文档发布与销售平台,面向世界范围提供便捷、安全、 专业、有效的文档营销服务。包括中国、日本、韩国、北美、欧洲等在内的豆丁全球 分站,将面向全球各地的文档拥有者和代理商提供服务,帮助他们把文档发行到世界 的每一个角落。豆丁正在全球各地建立便捷、安全、高效的支付与兑换渠道,为每一 位用户提供优质的文档交易和账务服务。 现在,已经有成千上万的用户在豆丁上传Word、PDF、PPT等各种格式的文档,分享给全世界,每个月超过4000万的用户,会来豆丁浏览文档。 豆丁全球Alexa排名已进入1500以内,并稳步攀升。
/
本文档为【方阵最小多项式的性质探究】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索