为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > TDA7375__TDA7377__TDA8595参数

TDA7375__TDA7377__TDA8595参数

2011-05-09 28页 pdf 1MB 532阅读

用户头像

is_463306

暂无简介

举报
TDA7375__TDA7377__TDA8595参数 TDA7377 2 x 30W DUAL/QUAD POWER AMPLIFIER FOR CAR RADIO HIGH OUTPUT POWER CAPABILITY: 2 x 35W max./4Ω 2 x 30W/4Ω EIAJ 2 x 30W/4Ω EIAJ 2 x 20W/4Ω @14.4V, 1KHz, 10% 4 x 6W/4Ω @14.4V,1KHz, 10% 4 x 10W/2Ω @14.4V, 1KHz, 10% MINIMUM EXTERNAL COMPONENTS COUNT: – NO BOOT...
TDA7375__TDA7377__TDA8595参数
TDA7377 2 x 30W DUAL/QUAD POWER AMPLIFIER FOR CAR RADIO HIGH OUTPUT POWER CAPABILITY: 2 x 35W max./4Ω 2 x 30W/4Ω EIAJ 2 x 30W/4Ω EIAJ 2 x 20W/4Ω @14.4V, 1KHz, 10% 4 x 6W/4Ω @14.4V,1KHz, 10% 4 x 10W/2Ω @14.4V, 1KHz, 10% MINIMUM EXTERNAL COMPONENTS COUNT: – NO BOOTSTRAP CAPACITORS – NO BOUCHEROT CELLS – INTERNALLY FIXED GAIN (26dB BTL) ST-BY FUNCTION (CMOS COMPATIBLE) NOAUDIBLEPOPDURINGST-BYOPERATIONS DIAGNOSTICS FACILITY FOR: – CLIPPING – OUT TO GND SHORT – OUT TO VS SHORT – SOFT SHORT AT TURN-ON – THERMAL SHUTDOWN PROXIMITY Protections: OUPUT AC/DC SHORT CIRCUIT – TO GND – TO VS – ACROSS THE LOAD SOFT SHORT AT TURN-ON OVERRATING CHIP TEMPERATURE WITH SOFT THERMAL LIMITER LOAD DUMP VOLTAGE SURGE VERY INDUCTIVE LOADS FORTUITOUS OPEN GND REVERSED BATTERY ESD September 1998  BLOCK DIAGRAM MULTIWATT15V MULTIWATT15H ORDERING NUMBERS: TDA7377V TDA7377H DIAGNOSTICS 1/10 DESCRIPTION The TDA7377 is a new technology class AB car radio amplifier able to work either in DUAL BRIDGE or QUAD SINGLE ENDED configuration. The exclusive fully complementary structure of the output stage and the internally fixed gain guaran- tees the highest possible power performances with extremely reduced component count. The on-board clip detector simplifies gain compression operation. The fault diagnostics makes it possible to detect mistakes during car radio set assembly and wiring in the car. GENERAL STRUCTURE ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit Vop Operating Supply Voltage 18 V VS DC Supply Voltage 28 V Vpeak Peak Supply Voltage (for t = 50ms) 50 V IO Output Peak Current (not repetitive t = 100µs) 4.5 A IO Output Peak Current (repetitive f > 10Hz) 3.5 A Ptot Power Dissipation (Tcase = 85°C) 36 W Tstg, Tj Storage and Junction Temperature -40 to 150 °C THERMAL DATA Symbol Description Value Unit Rth j-case Thermal Resistance Junction-case Max 1.8 °C/W PIN CONNECTION (Top view) DIAGNOSTICS TDA7377 2/10 ELECTRICAL CHARACTERISTICS (Refer to the test circuit, VS = 14.4V; RL = 4Ω; f = 1KHz; Tamb = 25°C, unless otherwise specified Symbol Parameter Test Condition Min. Typ. Max. Unit VS Supply Voltage Range 8 18 V Id Total Quiescent Drain Current RL = ∞ 150 mA VOS Output Offset Voltage 150 mV PO Output Power THD = 10%; RL = 4Ω Bridge Single Ended Single Ended, RL = 2Ω 18 5.5 20 6 10 W W W PO max Max. Output Power (***) VS = 14.4V, Bridge 31 35 W PO EIAJ EIAJ Output Power (***) VS = 13.7V, Bridge 27 30 W THD Distortion RL = 4Ω Single Ended, PO = 0.1 to 4W Bridge, PO = 0.1 to 10W 0.02 0.03 0.3 % % CT Cross Talk f = 1KHz Single Ended f = 10KHz Single Ended 70 60 dB dB f = 1KHz Bridge f = 10KHz Bridge 55 60 dB dB RIN Input Impedance Single Ended Bridge 20 10 30 15 KΩ KΩ GV Voltage Gain Single Ended Bridge 19 25 20 26 21 27 dB dB GV Voltage Gain Match 0.5 dB EIN Input Noise Voltage Rg = 0; ”A” weighted, S.E. Non Inverting Channels Inverting Channels 2 5 µV µV Bridge Rg = 0; 22Hz to 22KHz 3.5 µV SVR Supply Voltage Rejection Rg = 0; f = 300Hz 50 dB ASB Stand-by Attenuation PO = 1W 80 90 dB ISB ST-BY Current Consumption VST-BY = 0 to 1.5V 100 µA VSB ST-BY In Threshold Voltage 1.5 V VSB ST-BY Out Threshold Voltage 3.5 V Ipin7 ST-BY Pin Current Play Mode Vpin7 = 5V 50 µA Max Driving Current Under Fault (*) 5 mA Icd off Clipping Detector Output Average Current d = 1% (**) 90 µA Icd on Clipping Detector Output Average Current d = 5% (**) 160 µA Vsat pin10 Voltage Saturation on pin 10 Sink Current at Pin 10 = 1mA 0.7 V (*) See built-in S/C protection description (**) Pin 10 Pulled-up to 5V with 10KΩ; RL = 4Ω (***) Saturatedsquare wave output. TDA7377 3/10 C1 0.22µF 1 DIAGNOSTICS 4 7 C10 2200µF D94AU063A C7 10µF 10K R1 ST-BY IN FL C2 0.22µF IN FR 5 C4 0.22µF 12IN RL C3 0.22µF IN RR 11 C8 47µF 6 13 C5 1000µF C6 100nF 3 VS C9 2200µF 2 15 C11 2200µF C12 2200µF 14 OUT FL OUT FR OUT RL OUT RR8 9 10 STANDARD TEST AND APPLICATION CIRCUIT Figure 1: Quad Stereo C1 0.47µF 1 DIAGNOSTICS 4 7 D94AU064A C5 10µF 10K R1 ST-BY IN L C2 0.47µF 5 12IN R 11 C8 47µF 6 13 C3 1000µF C4 100nF 3 VS 2 15 14 OUT L 8 9 10 OUT R Figure 2: Double Bridge 0.22µF 1 DIAGNOSTICS 4 7 D94AU065A 10µF 10K ST-BY IN L 0.47µF 5 IN BRIDGE 12 47µF 6 13 1000µF100nF 3 VS 2 15 14 OUT L 8 9 10 OUT BRIDGE 11 0.22µF IN L OUT R 2200µF 2200µF Figure 3: Stereo/Bridge Note: C9, C10, C11, C12 could be reduced if the 2Ω operation is not required. TDA7377 4/10 High Application Flexibility The availability of 4 independent channels makes it possible to accomplish several kinds of applica- tions ranging from 4 speakers stereo (F/R) to 2 speakers bridge solutions. In case of working in single ended conditions the polarity of the speakers driven by the inverting amplifier must be reversed respect to those driven by non inverting channels. This is to avoid phase inconveniences causing sound alterations especially during the reproduc- tion of low frequencies. Easy Single Ended to Bridge Transition The change from single ended to bridge configu- rations is made simply by means of a short circuit across the inputs, that is no need of further exter- nal components. Gain Internally Fixed to 20dB in Single Ended, 26dB in Bridge Advantages of this design choice are in terms of: componentsand space saving output noise, supply voltage rejection and dis- tortion optimization. Silent Turn On/Off and Muting/Stand-by Func- tion The stand-by can be easily activated by means of a CMOS level applied to pin 7 through a RC filter. Under stand-by condition the device is turned off completely (supply current = 1µA typ.; output at- tenuation= 80dB min.). Every ON/OFF operation is virtually pop free. Furthemore, at turn-on the device stays in muting condition for a time determined by the value as- signed to the SVR capacitor. While in muting the device outputs becomes in- sensitive to any kinds of signal that may be pre- sent at the input terminals. In other words every transient coming from previous stages produces no unplesantacoustic effect to the speakers. STAND-BY DRIVING (pin 7) Some precautions have to be taken in the defini- tion of stand-by driving networks: pin 7 cannot be directly driven by a voltage source whose current capability is higher than 5mA. In practical cases a series resistance has always to be inserted, having it the double purpose of limiting the cur- rent at pin 7 and to smooth down the stand-by ON/OFF transitions - in combination with a ca- pacitor - for output pop prevention. In any case, a capacitor of at least 100nF from pin 7 to S-GND, with no resistance in between, is necessary to ensure correct turn-on. OUTPUT STAGE The fully complementary output stage was made possible by the development of a new compo- nent: the ST exclusive power ICV PNP. A novel design based upon the connection shown in fig. 20 has then allowed the full exploitation of its possibilities. The clear advantagesthis new approach has over classical output stages are as follows: Rail-to-Rail Output Voltage Swing With No Need of Bootstrap Capacitors. The output swing is limited only by the VCEsat of the output transistors, which is in the range of 0.3Ω (Rsat) each. Classical solutions adopting composite PNP- NPN for the upper output stage have higher saturation loss on the top side of the waveform. This unbalanced saturation causes a signifi- cant power reduction. The only way to recover power consists of the addition of expensive bootstrap capacitors. Absolute Stability Without Any External Compensation. Referring to the circuit of fig. 20 the gain VOut/VIn is greater than unity, approximately 1+ R2/R1. The DC output (VCC/2) is fixed by an auxiliary amplifier common to all the channels. By controlling the amount of this local feedbackit is possible to force the loop gain (A*β) to less than unity at frequency for which the phase shift is 180°. This means that the output buffer is in- trinsically stableand not prone to oscillation. Most remarkably, the above feature has been achieved in spite of the very low closed loop gain of the amplifier. In contrast, with the classical PNP-NPN stage, the solution adopted for reducing the gain at high frequencies makes use of external RC networks, namely the Boucherotcells. BUILT–IN SHORT CIRCUIT PROTECTION Figure 20: The New Output Stage TDA7377 5/10 Reliable and safe operation, in presence of all kinds of short circuit involving the outputs is as- sured by BUILT-IN protectors. Additionally to the AC/DC short circuit to GND, to VS, across the speaker, a SOFT SHORT condition is signalled out during the TURN-ON PHASE so assuring cor- rect operation for the device itself and for the loudspeaker. This particular kind of protection acts in a way to avoid that the device is turned on (by ST-BY) when a resistive path (less than 16 ohms) is pre- sent between the output and GND. As the in- volved circuitry is normally disabled when a cur- rent higher than 5mA is flowing into the ST-BY pin, it is important, in order not to disable it, to have the external current source driving the ST- BY pin limited to 5mA. This extra function becomes particularly attractive when, in the single ended configuration, one ca- pacitor is shared between two outputs (see fig. 21). Supposing that the output capacitor Cout for any reason is shorted, the loudspeaker will not be damaged being this soft short circuit condition re- vealed. Diagnostics Facility The TDA7377 is equipped with a diagnostic cir- cuitry able to detect the following events: Clipping in the output signal Thermal shutdown Output fault: – short to GND – short to VS – soft short at turn on The information is available across an open collector output (pin 10) through a current sink- ing when the event is detected A current sinking at pin 10 is triggered when a certain distortion level is reached at any of the outputs. This function allows gain compression possibility whenever the amplifier is overdriven. Thermal Shutdown In this case the output 10 will signal the proximity of the junction temperature to the shutdown threshold. Typically current sinking at pin 10 will start ~10°C before the shutdown threshold is reached. HANDLING OF THE DIAGNOSTICS INFORMA- Figure 21. Figure 22: Clipping Detection Waveforms Figure 23: Output Fault Waveforms (see fig. 24) TDA7377 TDA7377 6/10 TION As various kinds of information is available at the same pin (clipping detection, output fault, thermal proximity), this signal must be handled properly in order to discriminate each event. This could be done by taking into account the dif- ferent timing of the diagnostic output during each case. SOFT SHORT OUT TO Vs SHORT FAULT DETECTION CORRECT TURN-ON OUT TO GND SHORT t t t ST-BY PIN VOLTAGE 2V OUTPUT WAVEFORM Vpin 10 CHECK AT TURN-ON (TEST PHASE) SHORT TO GND OR TO VsD94AU149A Figure 24: Fault Waveforms t t t ST-BY PIN VOLTAGE Vs OUTPUT WAVEFORM Vpin 10 WAVEFORM SHORT TO GND OR TO VsD94AU150 CLIPPING THERMAL PROXIMITY Figure 25: Waveforms TDA7377 7/10 Normally the clip detector signalling produces a low level at pin 10 that is shorter than that present under faulty conditions; based on this assumption an interface circuitry to differentiate the informa- tion is represented in the schematic of fig. 26. Figure 26. TDA7377 PCB-LAYOUT GROUNDING (general rules) The device has 2 distinct ground leads, P-GND (POWER GROUND) and S-GND (SIGNAL GROUND) which are practically disconnected from each other at chip level. Proper operation re- quires that P-GND and S-GND leads be con- nected together on the PCB-layout by means of reasonably low-resistance tracks. As for the PCB-ground configuration, a star-like arrangement whose center is represented by the supply-filtering electrolytic capacitor ground is highly advisable. In such context, at least 2 sepa- rate paths have to be provided, one for P-GND and one for S-GND. The correct ground assign- ments are as follows: STANDBY CAPACITOR, pin 7 (or any other standby driving networks): on S-GND SVR CAPACITOR (pin 6): on S-GND and to be placed as close as possible to the device. INPUT SIGNAL GROUND (from active/passive signal processor stages): on S-GND. SUPPLY FILTERING CAPACITORS (pins 3,13): on P-GND. The (-) terminal of the electrolytic ca- pacitor has to be directly tied to the battery (-) line and this should represent the starting point for all the ground paths. TDA7377 8/10 Multiwatt15 V DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A 5 0.197 B 2.65 0.104 C 1.6 0.063 D 1 0.039 E 0.49 0.55 0.019 0.022 F 0.66 0.75 0.026 0.030 G 1.02 1.27 1.52 0.040 0.050 0.060 G1 17.53 17.78 18.03 0.690 0.700 0.710 H1 19.6 0.772 H2 20.2 0.795 L 21.9 22.2 22.5 0.862 0.874 0.886 L1 21.7 22.1 22.5 0.854 0.870 0.886 L2 17.65 18.1 0.695 0.713 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 L7 2.65 2.9 0.104 0.114 M 4.25 4.55 4.85 0.167 0.179 0.191 M1 4.63 5.08 5.53 0.182 0.200 0.218 S 1.9 2.6 0.075 0.102 S1 1.9 2.6 0.075 0.102 Dia1 3.65 3.85 0.144 0.152 OUTLINE AND MECHANICAL DATA TDA7377 9 /10 DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A 5 0.197 B 2.65 0.104 C 1.6 0.063 E 0.49 0.55 0.019 0.022 F 0.66 0.75 0.026 0.030 G 1.14 1.27 1.4 0.045 0.050 0.055 G1 17.57 17.78 17.91 0.692 0.700 0.705 H1 19.6 0.772 H2 20.2 0.795 L 20.57 0.810 L1 18.03 0.710 L2 2.54 0.100 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 L5 5.28 0.208 L6 2.38 0.094 L7 2.65 2.9 0.104 0.114 S 1.9 2.6 0.075 0.102 S1 1.9 2.6 0.075 0.102 Dia1 3.65 3.85 0.144 0.152 Multiwatt15 H OUTLINE AND MECHANICAL DATA TDA7377 10/10 新型大功率车用音频功放集成电路 TDA737sAVmTDA~s95 ◎吴红奎 音频功放集成 电路因为外围电 路简单,性能可靠,保护功·能完善 , 在车用放大器中占有很大比例,与消 费、娱乐类的应用相比,车 用音频放 大器有很多特殊的地方。 首先是抗电源干扰的能力要强 , 包括电火花干扰、瞬间电源尖峰干扰 等。第二是可靠性高、坚固耐用 , 为此车用音频集成功放—般是采用固 定增益方式以尽量减少外围元件的数 量,尤其是电解电容的使用数量。保 护功能以输出短路、电源短路保护为 主,一般还需要有警示电路以提醒使 用者。第三是抗高温的能力,因 为车 内有时的温度要比环境温度高很多。 第四是要适应车载电源。第五是 要有大电流输出能力,以驱动车用低 阻抗扬声器。第六是节能,汽车的供 电系统采用的是电池组,提高效率就 显 得 非 常 必 要 J最 后就是 对静态噪声指 标、本底噪声 指标的要求可 以适当降低 , 因为汽车里的 听音环境没有 一般家居环境 那样安静。基于上述原因,一般车用 型号的集成电路的价格会比较高。 ST(STMbroe|eckrOn|cs,意法半 导体)和 Ph|ps(飞利浦)公司生产 的音频功放|C有很多相似之处,如 外 围电路简单、THD(总谐波失真)指 标高、听感亮丽、音色偏冷硬等,而 车用功放集成电路则是两家的强项 , 如我们熟悉的TDA2OO9等 ,本文介绍 两家公司新推出的车用功放集成电路 TDA737sAV和TDASs95,供大家选 型参考。 ■Ip gˇ币W TDA7375AV是 ST公 司最近两年推 出的AB类车用音频功放集成电路 ,它 采用 “C∨ PNP” 双极晶体管技术,不 需要自举电容和输出相位补偿电路 , 外围电路相当简单,只需要改变信号 输入方式就可以自动适应○TL和 BTL工 作模式,无需附加电路及转换电路。 TDA7375A∨ 中采用了新型基板 绝缘技术 (top bottom治o aton抬ch- ㈧q∞s),以降低PN结对基板的泄漏电 流,这项技术在ST公 司的多款产品中 ● 都有应用。TDA7375AV中 集成的NPN/ PNP互补功率输出级 ,其饱和导通电阻 在O3Ω 左右。由此带来的好处是末级 晶体管的饱和压降可以忽略 ,负载得 到的最高电压几乎与电源电压—样 , 而不会因末级晶体管饱和压降造成明 显的电压跌落 ,所以无需自举电路。 采用 “lCV PNP” 技术的另一好处是末 级的增益几乎只与负反馈电阻有关 , 高频相移可以通过控制负反馈量来解 决 ,所以—般不需要通常为了抑制放 貂 TDA737sAV 8TL 丿 J (2)双通遘 BtL卯橛因 大器高频振荡倾向的输出补偿电路 , 即我们通常所说的 “茹贝尔电路 ” 。 lDA7375AV典型应用采用14,4∨单 电源供电,任何工作模式都可以驱动 2~4Ω负载 ,其实际外形如图1所示 , 主要技术特性如下 : 辋 娴 鞯 瞄 锄 渊 确 Ⅲ 瑚 硼 煳 啪 邸 ‖ 额定工作电压 :8~18∨,典型值 14W,可耐受2BV的 直流电压和4OV的 尖峰电压5⊙ms。 连续输 出功率 (14‘ 4∨ 电源 , THD≤ 1O%,4Ω 负载);四通道○TL 模式 :7W/通道 ;2Ω 负载上可以实 现4× 12W的 输出功率 ;双通道BTL模 式:2渊 `通 道。 THD(典型值 )∶ OO2%(○TL四 通道 ,气 =⊙ 1~4W)/OO3%(BTL双 通道,凡 =0,1~1OX/V)。 串音抑制能力:7OdB(典型值 , Ol L四通道)朽5dB(最小值,BTL双通 道)。 电源抑制比 (PSRR)不 小于 sOdB。 固定增益方式 ,按典型值计 :Ol L 方式为2OdB,BTL为26dB方式 ,通道 增益误差小于O5dB。 无开关机冲击声,无需自举电容。 故障诊断端子 (输 出削波、过 热、输出故障)。 冫 完善的保护功能 :输 出端对电源 短路保护、过热保护、电源反接保护等。 TDA7375AV的 四通道和三通道典 型应用原理图如图2所示 ,双通道典型 应用原理图和配套印板图如图3所示。 在图2、 图3中 ,如果不需要故障 信号输出指示 ,第 1O脚可悬空不用。 使能控制功能如果不用,可以通过R1 直接与电源连接。在图3所示的印板图 中使用RP1来实现手动使能控制,实际 上也可以用系统主机的CM0S电平信 2009.08 无线电 0镫 M劈 昼ζ⑾"lC1 TDA7375AV lN2 oVt2 lN3 0Vt3 IN4 C2022 12 ??? 故u诊浙信号输出 IN1 ' '° vt1 IC1 TDA737sAV lN2 lN3 lN4 svR 曷 量 基 vT4 故陛诊断信号榆出 M唠 蛋ζ。田 IC1 I卜⒓ TDA`37sAV $vR弓量墓 °uT。 铡 号来统—控制。1,sV以下为待机,3引 以上为正常工作。需要注意的是 ,如 果使用○TL方式时,输出电容应该根据 负载阻抗进行调整 ,比如要驱动2Ω 负 载 ,输出电容 (C5~C8)的容量应减 /l\至刂1OOO u F。 TDA7375AV的 DAG(1O脚 )端子 通过输出脉宽不同的方波信号来指示 集成电路工作状态的多种信息 ,这些 信息包括输出削波、过热关断、输出 故障 (对地、对电源等短路),要 正 确地利用这些信号还需要一定的外围 电路配合,其原理简图如图4所示。 TDA7375AV内 部集成了完善的保 护电路 ,在应用四通道方式时两个通 道可以共用一个输岿 电容 ,以减少元 件数量并节省占板面积 ,如图5所示。 即使输出电容因为意外原因出现短路 故障 ,依赖完善的保护电路 ,扬声器 或者集成电路本身也不会因为电流过 大而烧毁。 lDA7375AV如按照图2所示的三通 道工作方式工作 ,也非常适合于目前 电脑多媒体中流行的21系统的应用 , 直接采用电脑电源中的+12∨供电,Bl L 通道用于重低音放大 ,○TL通道用于 主声道放大 ,虽然集成电路的成本高 ∞4无线电 2009.08 ∶ 了些 ,但可以节省额外的电源供给电 路 ,因而增加的成本将很有限。 曰m侧邓 TDA8595是 Ph ps公司2OO6年推 出的大功率多通道AB类 车用音频功放 集成电路 ,它 采用BCDM○ S工艺技术 制造 ,单 电源供 电,四 通道BTL放 大 器 ,通过集成的′C总线可以实现多种 系统状态信息的显示和可选增益控制 功能 ,也可以采用非|2C方 式,除了一些控制功能不能 实现外 ,丝毫不影响其音频 功率放大功能。 BCDM○ S工 艺简称为 BCD工艺 ,这是一种将双 极、CMOS和 DM○S(双扩 散M○Sl晶体管集成在同一 硅衬底的混合集成工艺,这 样即使在同一芯片上 ,原本 特性和优势各不相同的半导 体单元也有了同时发挥其长 处的机会。CM○S允许高逻 辑密度 ,适合集成微控制器 等逻辑控制单元 ;双极型半 导体单元和CM○S的 组合可 以实现高精度电路 ,如参考 电压电蹯等。DM○S晶体管单元则具备 高电流、高电压(约 2OA、 8OV的水平)、 低导通电阻的特征 ,适合做功率输出 单元。 TDA8595有 3种 封装形式可供选 择以适应不同的具体应用环境 :DB- S27P、 RDBS27P、 HS○P36, 对应型 号彡〉另刂是±: TDA8595J、 TDAB595SD、 TDA8595ηH。 l DAg595J禾口l DAB595SD 的引脚兼容 ,TDA8595TH的 引脚数 量及其排布与其他两种有所不同。 TDAl3s95的内部等效电路框图、引脚定 义和封装外形如图6所示 ,括号里的引 脚号是Ⅲ泗∞95SD的。 l DAss∞内含四路独立的BTL放大 器,主要针对车载音频应崩,也可以 应用于高端的电脑多媒体,它 的主要 技术特征如下 (引 脚编号以TDA8595J 为例): 工作电压为8~18∨(q=4Ω) 或者8~16∨(风 =2Ω ),典型值为 144∨。 , 输出功率 (THD=O5%,典 型 值):4× 2OW(R=4Ω );4× 32W (R=2Ω )。 THD(R=4Ω ,气 =1~12W, ㈧1 蕊凳墓ζζ+。vT1 lN3 ~0VT1 IN2 +oVT3 IN4 0VT3 lC1 TDA8595J`sD sGNG +oVV AGND 峋 VV sVR +oVT4 sT: 琶 暑 害 害 富 酽vt4 ~「ˉ 典型值 ):O‘OH%('=1kHZ)、OO9% (F=1Ok|9) 、 O14% (尸 =2O kHz) 。 PSRR(典型值):7○dB;CMRR (典型值) : 65dB。 增益:26dB或者可选;频响带宽 (1dB) : 2OHz~2OkHz。 多种安全保护功能,通过FC控制 方式可实现更多功能。 图7所示的是lDA8595的非FC模式 的典型应用原理图,引 脚排列同样以 l DAg595J/SD为例。 lDAB595采用的是被称为 “伪平 衡输入”的信号输入方式,SX/R引 脚 (11 脚)外接的中点电位滤波电容 (C11) 的容量至少应该为输入电容 (C1等 ) 的4倍 以上,这样才能保证电路有良 好的电源抑制比和破音抑制能力。 TDA8595内 部集成的保护功能相 当完善,主要有:扬声器故障检测、 每通道独立的短路保护,所有端子对 地、电源误接保护,过压、超压保护 (可达5OV,5Oms)禾口主要针对车用环 境的地开路和电源浪涌保护,所有输 出端对地、电源、端对端误接保护 , 电池欠压检测等。这些功能有些是|2C 模式和非卩C模式下都具各的,有些则 是′C模式下独有的。两种工作模式通 过几个有特殊功能的端子进行设置并 实现相应的特殊功能,下面简述之。 1 “ADSEL” 端子 (1脚 ):工作 模式控制,接地为非12C模式,悬空为 FC模式。 2.STB端 子 (2脚 ):非|2C模式 下,STB为 静音控制端子 ,可 以实现 待机、静音、开机三状态控制或者待 机、 (瞬时静音)开机两状态控制 , 视加到STB端子的电平而定。卩C模式 下,Sl B与DAC端子相互配合,实现放 大器的软开机、软静音以及对1、 3和 2、 4通道分别进行静音控制;不过STB 的电平控制过程相同,小于等于1∨为 待机,25~45∨为静音,大于8.4∨为 祈型大功率卒Ⅲ啻掇功放艹戚唰ⅢⅦ涔婵四蝌Ⅲ唧叫卩闼爿 开机状态。 3,D扒G端子 (5脚 ):这是故障信 号 (d。gn°S刂C)和削波指示信号 (引p detecton)输出端子,仅在′C模式下有 效。在FC模式下,SlB端子也可以被配 置为多功能端子,作为削波指示信号 的单独输出端子。 4SCL(23月却, 数据线)、 SDA(26 脚,时钟线)端子 :′C总线,仅在FC 模式下有效。通过′C总线控制方式 , 可以实现多种额外的控制和设定功 能,主要如下 : 上电检测电源和负载连接状况 , 看电源和负载是否正确连接 ,如 果有 负载接八即启动该通道的无开机冲击 声的启动过程。 1、 3(前置)通道和 2、 4(后 置)通道可以分别单独设置静音控制 功能。 STB端子 (2脚 ,静音控制)可以 设置为多功能端子,配合D|AG端子可 以显示更多的放大器特征△作参数 , 如 :输 出端偏移电压、负载接入状 况、短路、扬声器是否正确接入等。 削波失真控制可以分2%、 5%、 1O%三挡进行调整,过热预警同样也可 以选择过热温度值。 1、 3通道和2、 4通道的增益分别 独立可选, 16或者2GdB。 图8所示的是 PhⅡps推荐的配套 印制板图,这是直插和贴片元件混排 , 双面板设计 ,′C模式和非卩C模式都 是适用的。由于lDAg595的外围电路 相当简单,业余条件下完全可以使用单 面板。 本文介绍的两款新型大功率车用 功放集成电EgTDAz37sAV、Ⅱ珀∞95具 有输出功率大、低压单电源供电、多 通道、外围电路简单,容易控制、保 护功能完善的特点 ,同 时又各有自己 的特点,这为我们的新品设计提供了 更多的选择空间和弹性。◇ ‘ ○ ?? ? ? ? ?? ? 磅暑:翕○ gi黯饕曩躔 Ⅱ口 口 口 臼 臼 口 锊囔暝 鼋 2009,08 无线电 0各5 TDA7375A 2 x 37W DUAL/QUAD POWER AMPLIFIER FOR CAR RADIO HIGH OUTPUT POWER CAPABILITY 2 x 43W/4Ω MAX 2 x 37W/4Ω EIAJ 2 x 26W/4Ω @14.4V, 1KHz, 10% 4 x 7W/4Ω @14.4V,1KHz, 10% 4 x 12W/2Ω @14.4V, 1KHz, 10% MINIMUM EXTERNAL COMPONENTS COUNT: – NO BOOTSTRAP CAPACITORS – NO BOUCHEROT CELLS – INTERNALLY FIXED GAIN (26dB BTL) ST-BY FUNCTION (CMOS COMPATIBLE) NO AUDIBLE POP DURING ST-BY OPERA- TIONS DIAGNOSTICFACILITIES – CLIPDETECTOR – OUT TO GND SHORT – OUT TO VS SHORT – SOFT SHORT AT TURN-ON – THERMAL SHUTDOWN PROXIMITY Protections: OUPUT AC/DC SHORT CIRCUIT – TO GND – TO VS – ACROSS THE LOAD SOFT SHORT AT TURN-ON OVERRATING CHIP TEMPERATURE WITH SOFT THERMAL LIMITER LOAD DUMP VOLTAGE SURGE VERY INDUCTIVE LOADS FORTUITOUS OPEN GND REVERSED BATTERY ESD October 1998  Multiwatt15 V BLOCK DIAGRAM ORDERING NUMBERS: TDA7375AV TDA7375AH 1/14 DESCRIPTION The TDA7375A is a new technology class AB car radio amplifier able to work either in DUAL BRIDGE or QUAD SINGLE ENDED configurati
/
本文档为【TDA7375__TDA7377__TDA8595参数】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索