为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

提动阀座课程设计

2017-11-17 22页 doc 191KB 52阅读

用户头像

is_983143

暂无简介

举报
提动阀座课程设计提动阀座课程设计 1 前言 金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。 课程设计是我们专业课程知识...
提动阀座课程设计
提动阀座课程设计 1 前言 金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。 课程设计是我们专业课程知识综合应用的实践训练,这是我们迈向社会,从事职业工作前一个必不少的过程。“千里之行始于足下”,通过这次课程设计,我深深体会到这句千古名言的真正含义。我今天认真的进行课程设计,学会脚踏实地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础。说实话,课程设计真的有点累。然而,当我一着手清理自己的设计成果,漫漫回味这,周的心路历程,一种少有的成功喜悦即刻使倦意顿消。虽然这是我刚学会走完的第一步,也是人生的一点小小的胜利,然而它令我感到自己成熟的许多,另我有了一种“春眠不知晓”的感悟。通过课程设计,使我深深体会到,干任何事都必须耐心,细致。课程设计过程中,有时不免令我感到有些心烦意乱。但一想起老师平时对我们耐心的教导,想到今后自己应当承担的社会责任,想到世界上因为某些细小失误而出现的令世人无比震惊的事故,我不禁时刻提示自己,一定要养成一种高度负责,认真对待的良好习惯。这次课程设计使我在工作作风上得到了一次难得的磨练。 短短四周是课程设计,使我发现了自己所掌握的知识是真正如此的缺乏,自己综合应用所学的专业知识能力是如此的不足,几年来的学习了那么多的课程,今天才知道自己并不会用。所以我会更加努力。最后,我要感谢我的老师们,是您严厉批评唤醒了我,是您的敬业精神感动了我,是您的教诲启发了我,是您的期望鼓励了我,我感谢老师您今天又为我增添了一幅坚硬的翅膀。今天我为你们而骄傲,明天你们为我而自豪。 2 零件图分析 2.1 零件的总体分析 提动阀和提动阀座组成一对偶件,相互配合面很小,近似线接触,以保证控制的灵敏和准确。在工作过程中,提动阀在弹簧的作用下与提动阀座在配合处发生冲击磨损,往往因提动阀锥面被局部磨损或冲击产生缺陷而造成高压油的泄露,使整个阀失去控制作用。提动阀座在提动阀的冲击作用下,接触面将逐渐增大,使油封性能降低。因此,提动阀座应具有较高强度,在承受提动阀冲击时,不致产生打的塑性畸变。液压技术的广泛应用,对液压元件的性能上要求高压、大流量、高转速、高容积效率等方向发展,在结构上要求微型化,在质量上要求高的可靠性。液压元件的零件特点是体积小而精度要求,在工作中承受复杂的服役条件。因此,在选材上与热处理上应保证高的强度,良好的韧性,高的耐磨性和尺寸稳定性高。 2.2 零件的结构形状分析 零件结构形状如图所示 2.3 零件的尺寸及技术要求分析 尺寸要求:大圆直径:13mm 小圆直径:12mm 长度:16mm 技术要求:调质硬度为28,32HRC 碳氮共渗的化合物层深度10,20μm 2.4 零件的服役条件及失效形式分析 2.4.1 服役条件 提动阀和提动阀座组成一对偶件,相互配合面很小,近似线接触。提动阀座在提动阀的冲击作用下,接触面将逐渐增大,使封油性能降低。 2.4.2 失效形式 提动阀和提动阀座在工作过程中,提动阀在弹簧的作用下与提动阀座在配合处发生冲击磨损,往往因提动阀座面被局部磨损或冲击产生缺陷而造成高压油泄露,使整个阀失去控制作用。 3 材料选择 3.1 提动阀座的性能要求 根据提动阀座的工作状况,可以初步得出其材料应满足的性能要求:一是具有良好的耐冲击韧性、耐腐蚀性和强度,以保证提动阀座满足液压元件在高压和高冲击在阀座下具有足够高的耐冲击韧性;二是具有良好的疲劳性能,是提动阀座能够在良好的服役条件下长时间工作。 因此,一般要求表面耐磨而心部要求良好的韧性,阀座多用15CrMo。提动阀座在承受提动阀冲击时,不致产生打的塑性畸变应选用42CrMo,并一般施以低温的化学热处理以提高其耐磨性。为提高提动阀座的耐磨性和硬度,在最后精加工钱一般进行碳氮共渗。由于液压元件一般要求尺寸精度高,所以提动阀座加工精度要求也较高,为此,热处理过程中要严格控制畸变。其主要措施是铁丝捆扎、垂直吊挂加热等。 工件有优良的机械、物理性能,它可以有各种不同的强度、硬度、韧性配合的综合性能,还可兼具一种或多种特殊性能,如耐磨、耐高温和低温、耐腐蚀等。 3.2 42CrMo的性能特点 42CrMo钢属于超高强度钢,具有高强度和韧性,淬透性也较好,无明显的回火脆性,调质处理后有较高的疲劳极限和抗多次冲击能力,低温冲击韧性良好。该钢适宜制造要求一定强度和韧性的大、中型塑料模具。 强度、淬透性高,韧性好,淬火时变形小,高温时有高的蠕变强度和持久强度。用于制造要求较35CrMo钢强度更高和调质截面更大的锻件,如 机车牵引用的大齿轮、增压器传动齿轮、压力容器齿轮、后轴、受载荷极大的连杆及弹簧夹,也可用于 2000m以下石油深井钻杆接头与打捞工具,并且可以用于折弯机的模具等。 成分 C Si Mn Cr Mo Ni P Cu S 42CrMo 0.38,0.17,0.50,0.90,0.15,???? 0.45% 0.37% 0.80% 1.20% 0.25% 0.030% 0.035% 0.030% 0.035% (1)C 钢中的主要元素,可产生古榕强化和硬化,增加淬透性 (2)Si提高钢的淬透性和耐回火性,对钢的综合力学性能特别是弹性极限有力,还可增强钢在自然条件下的耐蚀性。 (3)Mn扩大γ相区,形成无限固溶体。对铁素体和奥氏体均有较强的固溶强化作用。与S形成熔点较高的MnS,可防止因FeS而导致的热脆现象。强烈提高淬透性,能提高耐磨性。 (4)Cr缩小γ相区,在α-Fe中无限固溶,可增加钢的淬透性并有二次硬化作用,提高耐磨性,使钢具有良好的高温抗氧化性和耐氧化性介质服饰的作用并增加钢的热强性。 (5)Mo阻抑奥氏体向珠光体转变的能里很强,从而提高钢的淬透性,能降低或抑制其他合金元素导致的回火脆性,在较高的回火温度下形成弥散分布的特殊碳化物,二次硬化的作用提高热强性和蠕变强度。 (6)Ni细化铁素体晶粒,对塑性韧性有所提高,特别是低温塑性。 4 确定加工路线(冷、热加工) 加工工艺主要包括机加工和热处理工艺。机加工是指通过加工机械精确去除材料的加工工艺。它直接改变毛坯的形状、尺寸和表面质量等,使其成为零件的过程称为机械加工工艺过程。热处理是将金属材料放在一定的介质内加热、保温、冷却,通过改变材料表面或内部的金相组织结构,来控制其性能的一种金属热加工工艺。 该零件结构简单,可以通过铸造铸出毛坯,通过机加工使其成型;之后进行去应力退火,消除残余内应力。改善其切削性能然后经过机加工使其复合尺寸要求;接着调制使其达到硬度要求;再经过化学热处理(氮碳共渗)使表面获得一 层化合物渗层,提高零件表面耐磨性和抗疲劳性能;最后经过研磨,以满足尺寸精度,即可得到所需的零件。 可采用的工艺流程: 提动阀座的整体加工工艺流程:下料锻造?预备热处理?一次机加工(粗加工)?调制?二次机加工(精加工)?氮碳共渗。 5 热处理工艺方法选择 5.1 退火工艺的选择 42CrMo经过铸造及粗加工后组织不均匀内应力较大,易变形开裂,所以在精加工前需施以消除内应力稳定组织为目的的去应力退火。其内应力主要产生在有塑性到弹性变形的过渡阶段。因此在这个温度区间内,冷却速度愈慢,内应力就愈小。消除内应力的退火应该是将粗加工后铸件缓慢加热到高于塑性变形的温度范围内,然后保温,使铸件各部分组织均匀,内应力减小。故一般在选用低温去应力退火。 5.2 调制工艺 调制处理是使机械零件达到设计性能要求的关键。淬透性的大小直接影响刚的最后力学性能。 调制钢热处理的第一步工序是淬火,一般合金调制钢都在油中淬火。处于淬火状态的钢,内应力大,脆性很大,不能直接使用,必须要进行第二步工序——回火,其目的是消除内应力,增加韧性,调整强度,获得良好的综合力学性能。 该提动阀座应加热到(850?10)?,保温1.5h后,进行油淬,再在(580?10)?,保温1h进行回火。 6 制定热处理工艺制度 6.1 退火工艺的制定 将冷变形后的金属在低于再结晶温度加热,以消除内应力,但仍保留加工硬化效果的热处理。在实际生产中,热锻轧、铸造、各种冷变形加工、切削或切割、焊接、热处理甚至机器零部件的装配,在不改变组织状态、保留冷作、热作或表面硬化的条件下,将工件加热至Ac1一下某一温度,保温一定时间,然后缓慢冷 却,以消除内应力,减小变形以及开裂倾向的热处理,统称为去应力退火。 表 42CrMo加热和冷却的临界点 Ac Ac Ms 13 42CrMo 730? 780? 360? 为了消除毛胚锻造应力,降低硬度以及改善切削加工性能,同时均匀组织,细化晶粒,为了后续加热处理做准备。 (1)退火温度,选用680,700?,退火温度是将工件加热到Ac以下30,150?,42CrMo临界温度点为730?,一般采用热炉装料,加热过程中工件内温差较大,为了缩短工件在高温时的停留时间,一般加热温度稍高。 (2)退火保温时间,保温时间与钢的化学成分、工件形状、尺寸、炉子类型、装炉量等多种因素有关,一般按每毫米厚度保温1.5-2.5min估算。主轴的直径为13mm,考虑加工余量5mm,因而其有效厚度为20mm,保温时间为1.5h左右。 6.2 调制工艺的制定 (1)加热温度,亚共析钢淬火加热温度为Ac+30-50?,综合考虑淬火加热3 温度应选用850?。 (2)淬火加热时间,应包括工件整个截面加热到预定淬火温度,并使之在该温度下完成组织转变、碳化物溶解和奥氏体成分均匀化所需的时间。常用经验公式为: τ=α?k?D 式中 τ——加热时间,min; α——加热时间系数,min/mm; k——装炉量修正系数; D——工件有效厚度,mm。 对于管型工件的有效厚度,当高度/壁厚?1.5时,可按1.5壁厚计算,图中最大壁厚为16mm,考虑到圆锥部位的壁厚稍大一些,因而取最大壁厚为20mm。工件的有效厚度D=50mm,加热系数α和装炉修正系数k分别见表3和表4,对于 42CrMo,α=1.0,k=1.0,则τ=1.0×1.0×50=50min,考虑到透热之后,还需要5-15min的组织转变时间,因而我选择1.5h的保温时间。 [2]表3 常用钢的加热系数(min/mm) 直径 <600?气体介 750-850?盐浴炉 800-900?气体 1100-1300?盐 工件材料 /mm 质炉中预热 中加热或预热 介质炉中加热 浴炉中加热 ?50 0.3-0.4 1.0-0.2 碳素钢 >50 0.4-0.5 1.2-1.5 ?50 0.45-0.5 1.2-1.5 低合金钢 >50 0.5-0.55 1.5-1.8 高合金钢 0.3-0.35 0.17-0.2 0.35-0.40 0.65-0.85 高速钢 0.3-0.35 0.16-0.18 [5] 表4 工件装炉修正系数 工件装炉方式 修正系数K 工件装炉方式 修正系数K 1.0 1.0 1.0 1.4 2.0 4.0 0.5d0.5d 1.4 2.2 1d2d 1.3 2.0 2d 1.7 1.8 (3)冷却方法的选择,考虑到所给主轴的形状复杂,尺寸较大,淬火过程易发生形变或开裂,我选用中断淬火法。把加热到淬火温度的工件,先在冷却能力强的盐水中冷却至接近Ms点,然后取出转入油冷,以达到在不同淬火冷却温度区间,有比较理想的淬火冷却速度。这样既保证了获得较高的硬度层和淬硬层深度又可减少内应力及防止发生变形或开裂。在水中停留时间为每5-6mm有效厚度约1s。由于出水温度难以掌握,须凭经验操作,当水中的工件抖动停止,在水中30S取出可放入油中油冷。另外,工件入水宜动不宜静,应按照工件的几何形状,作规则运动。静止的冷却介质加上静止的工件,导致硬度不均匀,应力不均匀而使工件变形大,甚至开裂。 (4)回火温度的确定:根据零件要求,调质后的硬度为235-265HBS, 选择回火温度为(570?10)?。 (5)回火时间的确定:回火时间一般从工件入炉后炉温升至回火温度时开始计算,一般为1-3h,在实践中常用工件的有效厚度估算,表5是单个工件的保温时间表,多个工件堆积可适当延长保温时间。由于工件的有效厚度是50mm,二十个工件同时加热,我选择保温时间为1,2h。 [2] 表5 中、高温回火保温时间参数表 有效厚度/mm <25 25-50 50-75 75-100 100-125 125-150 盐炉 20-30 30-45 45-60 75-90 90-120 120-150 保温时间 /min 空气炉 40-60 70-90 100-120 150-180 180-210 210-240 6.3 氮碳共渗化学处理工艺的制定 6.3.1 表面处理工艺的选择 提动阀座零件工作环境要求零件应具有的性能为:表面硬度高,耐磨性好, 疲劳性能优良。金属表面化学热处理是利用元素的扩散性能,使合金元素渗入金属表层的一种热处理技术。基本工艺过程: ?将工件置于含有渗入元素的活性介质中加热到一定温度,使活性介质通过分解并释放出欲渗入元素的活性原子; ?活性原子被工件吸附并溶入表面; ?溶入表面的原子向金属表层扩散渗入形成一定厚度的扩散层,从而改变工件表层的成分、组织和性能。 渗氮工艺特点:可以使金属表面硬度达到950,1200HV,使工件具有极高的耐磨性;可以使表面产生很大的残余压应力,从而提高疲劳强度;此外还可以提高工件的耐蚀性能。渗氮能形成优越性能的渗氮层,但由于工艺时间较长(氮化物形成温度低,扩散较慢,工艺时间较长,如获得0.5mm的渗氮层,约需要40,50h),使得生产率太低,成本高,应尽量少用。 渗碳工艺特点:渗碳也可以使工件表面获得高硬度、耐磨性、耐侵蚀磨损性及接触疲劳强度等,但其也存在许多不足:?工艺过程繁琐,渗碳后还要进行淬火加回火处理,工件变形大,一般不用于高几何尺寸精度要求的零件的处理;?与高频淬火相比,生产成本高;渗碳层硬度和耐磨性不如渗氮层好。 碳氮共渗工艺特点:碳氮共渗是在渗碳和渗氮工艺基础上发展起来的,其具有前者的优点,同时还具有自己的特点:?与渗碳相比,处理温度低,晶粒不易长大,变形开裂倾向小,能源消耗低;?与渗氮相比,工艺周期大大缩短,对材料适用范围广。但也有其不足,渗后需进行渗后处理,渗后直接淬火或渗后淬火加回火,虽然变形小,但也要产生变形。 氮碳共渗的工艺特点:热处理温度低,一般在500,600?,过程以渗氮为主,渗碳为辅,渗碳量很小。其有很多优点,应用范围较广:?氮碳共渗层有优良的性能,渗层硬度高,脆性低,有优良的耐磨性、耐疲劳性能、抗咬合性、热稳定性和抗腐蚀性;?工艺温度低,且不淬火,工件变形小;?处理时间短,经济性好;设备简单,工艺易掌握。适用于渗层浅且不承受重载的零件。 通过比较以上四种工艺的特点,结合提动阀座性能要求,经济性,我们选用氮碳共渗工艺。 6.3.2 氮碳共渗工艺规范的确定 6.3.2.1 氮碳共渗方式的确定 因为这里需要在较低温度下进行共渗,所以我们需要在固体渗氮、液体渗氮及气体渗氮中选择。盐浴氮碳共渗是最早采用的氮碳共渗方式,按盐浴中CN-含量可将氮碳共渗分为低氰、中氰和高氰型。由于环保的原因,中、高氰盐浴已经逐渐被淘汰。低氰盐浴与氧化配合,排放的废气、废水、废盐中CN-量应符合国家规定标准。根据工件的尺寸要求与性能要求,可选择盐浴氮碳共渗方式进行处理。相比气体氮碳共渗与固体氮碳共渗,盐浴氮碳共渗具有提高耐磨性、抗疲劳性和耐蚀性等优点,而且经过盐浴氮碳共渗后,工件尺寸及精度变化极小,对工件的安装、使用等影响甚微。因此选择盐浴氮碳共渗方式处理。由于尿素型原料无毒,液体流动性能很好,渗入速度快,低成本等优点,盐浴类型可选尿素型。盐浴质量百分比为:尿素:碳酸钠:氯化钾,3:2:2,使用温度为550?,580?。但在共渗之前还需进行以下操作:(1)表面处理:清理表面,彻底去除表面油污及铁锈;(2)预热:进行氮碳共渗前将工件在电炉中预热至400?,500?,以防止工件放入坩埚中使盐浴温度降低过多。 6.3.2.2 氮碳共渗温度的确定 氮碳共渗温度的选择要考虑到渗层形成质量,同时考虑渗速,一般选在Fe-N共析温度附近,多数钢的共渗温度在560,580?,同时温度应低于调质回火温度以不降低基体的强度,碳钢、低合金钢和铸铁一般选择为(570?10)?,在此温度下可获得足够厚的化合物层和较高的硬度。 6.3.2.3 氮碳共渗时间的确定 如图6所示化合物层厚度,渗层硬度在0,4h内增加很快,随后随时间延长变化变得缓慢,在2,3小时之间达到最大值,过长时间则硬度下降。 6.3.2.4 氮碳共渗冷却方式的确定 共渗温度高于共析温度565?,共渗组织会有ε、r相共存,缓慢冷却时发生转变,硬度下降,当快冷时ε相析出r,同时共析反应受阻生成马氏体,使硬度提高,所以液体氮碳共渗后一般采用快冷,铸铁采用先空冷以使组织均匀,后用水快冷以析出马氏体。 [6]图6软氮化时间对硬度与深度的影响 6.3.2.5 氮碳共渗工艺参数的确定 综上所述,氮碳共渗处理工艺可制定为:装炉前应先对工件表面进行清理,去除油污及铁锈。装炉后先预热至400?,500?,再加热至570?并保温,在尿素型盐浴中进行氮碳共渗。氮碳共渗过程应进行约3h,共渗后先在空气中预冷至350?附近,然后水冷。 7 热处理的组织性能分析 去应力退火一般在Ac1以下进行,组织并未发生变化,原始组织,在缓慢冷却的过程中,工件各部分均匀冷却和收缩,消除了铸造和机加工的残余内应力,并使其稳定化,避免在使用或随后的加工过程中产生变形或开裂,为后续加工做好准备。 氮碳共渗,又称软氮化或低温碳氮共渗,即在铁-氮共析转变温度以下,在工件表面同时渗入氮、碳元素,且使工件表面在主要渗入氮的同时也渗入碳。碳渗入后形成的微细碳化物能促进氮的扩散,加快高氮化合物的形成,这些高氮化合物反过来又能提高碳的溶解度,碳氮原子相互促进便加快了渗入速度。表面氮浓度不断增加,形成白亮层及扩散层。碳在氮化物中还能降低脆性。氮碳共渗后得到的化合物层韧性好,硬度高,耐磨,耐蚀,抗咬合。 8 热处理设备的选择 热处理常用的加热设备按能源分有燃料加热设备和电加热设备;按工作温度可分为高温炉(,1000?)、中温炉(650?,1000?)和低温炉(?650?)。生 产上常用的加热设备有电阻炉、浴炉、气体渗碳炉、高频感应加热设备等。炉型的选择应依据不同的工艺要求及工件的类型来决定。热处理设备的选择要从多方面来考虑,包括:经济性、可靠性、配套性、安全性、以及工厂的实际情况等。 8.1 箱式电阻炉的选择 热处理电阻炉是以电为能源的,通过炉内电热元件将电能转化为热能而加热工件的炉子,是一种造价相对便宜的炉子,以降低成本。中温箱式电阻炉可用于 的尺寸退火、正火、回火或固体渗碳等。表6为中温箱式电阻炉各种参数,主轴为222×115.4×48.2mm,并且为单件小批生产,故在回火过程中选择RX3-30-9型号的箱式电阻炉。主轴平放在炉膛内,一次最多可放20根。 [7]表6 中温箱式电阻炉产品规格及技术参数 型号 功率电压 相数 最高工作炉膛尺寸(长×炉温850?时的指标 /KW /V 温度? 宽×高)/(mm× 空载耗能空炉升温最大装载mm×mm) /KW 时间/h 量/kg 5 RX3-15-9 15 380 1 950 600×300×250 2.5 80 RX3-30-9 30 380 3 950 950×450×350 7 2.5 200 RX3-45-9 45 380 3 950 1200×600×400 9 2.5 400 RX3-60-9 60 380 3 950 1500×750×450 12 3 700 RX3-75-9 75 380 3 950 1800×900×550 16 3.5 1200 (1)鉴于所需要的加热温度,选择中温箱式电阻炉进行加热。中温箱式电阻炉可用为大批量生产考虑经济性和实用性,故选用正火选用RX3-75-9箱式电阻炉批量生产。调制淬火选用RX3-45-9箱式电阻炉批量生产。回火选用RX3-75-9箱式电阻炉批量生产。 )鉴于工件需要局部淬火根据淬火温度,直径48.2mm选用RDM-30-6中温盐(2 浴炉局部淬火、选用GY2-10-8外部电热中温浴炉加热回火。 8.2 氮碳共渗用炉的选择 由于氮碳共渗处理采用盐浴式,因此处理设备可选择盐浴炉。盐浴炉按温度划分为低、中、高温浴炉。盐浴炉的品种和代号见下表。 表7 盐浴炉的品种和代号 品种代号 结构形式 最高工作温度/? RYN3 300 矩形浴槽,内部管状加热元件加热 RYN4 400 RYW5 矩形浴槽,外部电加热 550 RYW8 圆形浴槽,外部电加热 850 RYD6 650 RYD8 850 矩形或圆形浴槽,内部电极加热 RYD9 950 RYD13 1300 根据上表和工件生产的实际情况,可选择RYD6式盐浴炉。 9 工装设计(夹具、辅具等) 9.1 工装夹具的选择 9.1.1 热处理夹具的选择 热处理夹具的选择原则为: ?符合热处理技术条件:保证零件热处理加热,冷却,炉气成分均匀度,不致使零件在热处理过程中变形。 ?符合经济要求:在保证零件热处理质量复合热处理技术要求时,确保设备具有高的生产能力。夹具应具有质量轻,吸热量少,热强度高及使用寿命长的特点。 ?符合使用要求:保证装卸零件方便和操作安全。 9.1.2 去应力退火处理的夹具选择 零件进行去应力退火处理时,加热方式采用中温箱式电阻炉,根据工件的尺寸可采用如图8所示的夹具。 9.1.3 氮碳共渗处理的夹具选择 由于采用盐浴氮碳共渗,可使用如图9夹具将工件夹住,再用将夹具吊挂在挂轴上,使工件浸入盐浴炉进行盐浴处理。 9.1.4 工件的放置情况 去应力退火我们根据零件的几何形状,考虑经济性,我们选择最后一个安排方式。 [3]图8 箱式炉装料盘 [3]图9 盘形零件渗氮夹具 [3]图10工件放置情况与装炉系数 对于氮碳共渗,同理,为了达到更好的氮碳共渗效果,我们选择右侧倒数第二个安排方式。 9.2 清洗设备的选择 零件在热处理前需清除锈斑、油演、污垢、切削冷却液和研磨剂等,以保证不阻碍加热和冷却,不影响介质和气氛的纯度。以防零件出现软点、渗层不均匀、组织不均匀等影响热处理质量的现象。热处理后也常需清洗,以去除零件表面残油、残渣和炭黑等附着物,以保障热处理零件清洁度、防锈和不影响下道工序加工等要求。根据零件对清洁度要求、生产方式、生产批量及工件外形尺寸选用相应的清洗设备。 一般清洗机常用于清除残油和残盐,可分为间歇式和连续式两种。前者有清洗槽、室式清洗机,强力加压喷射式清洗剂等;后者有传送带式清洗机及各类生产线、自动线配置的悬挂输送链式、链板式、推杆式和往复式等各类专用清洗设备。室式清洗机它主要用于批量不大的中小零件。输送带式清洗机,适用于批量较大的小型零件。根据生产特点,小批量的中小型零件,可以选用室内清洗机。 10 检验设备及方法选择 10.1 硬度的检验设备及方法选择 由于氮碳共渗后渗层较薄,用表面洛氏硬度计和维氏硬度计都不能正确测量渗层的硬度,所以氮碳共渗的表面硬度及硬度梯度只能用显微硬度计测量(常用载荷100g),表示为HV表检查数量为每批抽检1%,3%。检测维氏硬度,用一个对面间夹角为136ºC的金刚石四方棱锥体压头,在规定的F下,保持一段时间(10—15S)后,卸除,再测量d值,算出面积S求出HV。 [7](F/S)HV=F/S=1.8544F/d2 式中,F的单位为kgf;d的单位是mm。(1kgf=9.80665N)。 试验时根据氮碳共渗化合物层的深度选择载荷,一般在试样厚度允许的情况下尽可能选择较大载荷,以获得较大压痕,提高精度。新的国家标准为GB/T4340.1-1999《金属维氏硬度实验 第1部分:试验方法》。 10.2 渗层厚度的检验设备及方法选择 总氮碳共渗层深度为10,20μm 在共渗层测定前,试样需进行时效处理,温度为300?,时间为1h,然后制样,测定各种表面强化层深度的常用方法是金相检验。经过时效处理的共渗试样的化合物在显微镜下观察为一白色带,这样既可测出化合物层厚度。根据硬化层深度可以分为大于0.3mm及小于等于0.3mm的两种情况。国际标准和国家标准中都规定将深度小于等于0.3mm的硬化层作为薄表面硬化层。 测定方法有硬度法和金相法,且两种方法同等有效。对于薄层的情况,用硬度法测量时试验力较小,规行为1.96,2.94N。在技术要求中若提出以硬度法作为仲裁结果,或硬化层对侵蚀剂不敏感时可采用显微硬度法;当检验批量较大时则采用金相法为宜。由于渗层深度较浅,可采用斜截面试样,使测量精度明显提高。一般把试样表面到扩散区与基体金属交界处作为氮碳共渗渗层的总深度。 10.3 白色化合物层的检验 经抛光后的氮碳共渗金相试样,未经浸蚀,在金相显微镜下就可以观察到表面有一层结构致密的白亮化合物层。化合物层组织的致密程度按化合物层中存在微孔(疏松)的多少、大小及分布情况分为5级(JB2849-80,《钢铁零件渗氮层金相检验》),通常以1,3级的渗层具有较好的韧性,是合格的;4、5级渗层是不合格的,它们具有较大脆性,易起皮剥落。 10.4 外观检查 氮碳共渗一般为工件的最终热处理,希望工件能有良好的外观质量,所以工件表面不应有锈蚀斑、腐蚀等缺陷。 10.5 化合物致密程度的测定 化合物致密程度对共渗层的硬度、耐磨性、耐疲劳性和耐蚀性都有很大影响,可根据样品中化合物层的微孔数量、大小及分布按下图来评级,A、B两级为较好,C、D、E为不良。 10.6 金相组织检验 金相组织检查包括渗氮层组织和心部组织两部分。合格的渗氮组织应是索氏体加氮化物,不应有白色的针状、脉状、网状及鱼骨状氮化物,否则会使渗层变脆、剥落。最外层出现的ε脆性相应磨去,合格的心部组织应为回火索氏体组织,不允许出现大量游离铁素体存在。 [6]图13 氮碳共渗层致密度等级图 11 热处理缺陷分析 11.1 在实际热处理过程中存在的缺陷 在实际的热处理过程中,由于原材料的缺陷、工艺设计不当、工序不当、操作不当等原因,易造成各种热处理缺陷的产生。轴类在加工过程中可能出现的热处理缺陷如下: (1)硬度过高,W(C)>0.45%的中、高碳钢在正火过程中容易出现硬度过高现象。产生原因:冷却速度快,组织中珠光体片间距变细,碳化物弥散度增大;装炉量大,炉温不均匀。严格控制工艺参数,可消除硬度过高缺陷。 (2)淬火畸变,产生原因:热处理前后组织比体积不同是引起体积变化的主要原因,加热温度不均,淬火冷却时的不同时性形成的热应力和组织应力使工件局部发生塑性变形。消除方式:降低淬火加热温度对减少热应力和组织应力畸变都有作用,缓慢加热或对工件进行预热,可减少加热过程中的热畸变,合理捆扎和吊挂工件。根据工件的形状采用合理的淬入方式。 (3)淬火开裂,产生原因:冷却不当,在Ms温度以下快冷,因组织应力大引起开裂,还可能是淬火后未及时回火,工件内部的显微裂纹在淬火应力作用下扩展成宏观裂纹。消除方式:正确进行预先热处理,避免正火、退火组织缺陷。合理选择淬火介质和淬火方法。易开裂工件,淬火后要及时回火。 (4)感应淬火易出现硬度不足,产生原因:单位表面功率低,加热时间短,加热表面与感应器间隙过大,这些因素都使感应加热温度降低,淬火组织中有较多的未溶铁素体。还可能是加热结束至冷却开始的时间间隙太长,喷液时间短,喷液供应量不足或喷液压力低,淬火介质冷却速度慢,使组织中出现非马氏体组织。消除方式:正确选择感应设备,严格按照工艺参数加工。 11.2 氮碳共渗过程中可能产生的缺陷 [6]表8 氮碳共渗件的常见缺陷及防治方法 缺陷种类 主要原因 防治措施 渗层深度1. 盐浴中盐含量过低 1. 保证盐浴成分; 不够 2. 共渗温度低,时间短 2. 保证足够的温度和时间 3. 按正常工艺重新处理时间稍短 表面疏松1. 盐浴含盐量过高; 严格按照工艺参数操作,重新盐浴到温后停起皮 2. 共渗温度过高,时间稍长; 置一段时间后再处理工件 3. 盐活性太强 表面花斑 1. 共渗前工件表面不洁; 1. 共渗前认真清洗工件; 2. 盐浴不洁;共渗温度低 2. 保证盐浴清洁 3. 工件重叠,靠近炉壁 3. 避免工件重叠,靠近炉壁 4. 冷却速度太慢 4. 选择合适冷却介质 5. 按正常工艺重新处理时间稍短 表面锈斑 残盐清洗不够 1. 加强清洗工件 2. 在弱酸中短时间清理后,再短时间重新 处理一下 12 结束语 通过这次热处理工艺设计,我在多方面都有所提高。完成这次课程设计的过程,是提供了一个自己把在课堂上学到的理论知识和实际生产相结合的一次实践平台。在完成设计的过程中,你需要考虑许多课堂上不需要考虑的东西比如说经济性、环保性等。同时不仅让我们把以前学到的许多专业课的知识都复习了一遍,而且仅仅这些还不够,我们还得到图书馆、到网上的资源数据库里去查阅资料。 通过分析零件图,制定合适的工艺路线,分析工艺路线的可行性、经济性和环保性,分析可能产生的缺陷并提供消除办法,分析工艺过程中组织性能变化和,制定预备处理和后续处理以及制定检测方法等,让我真正了解了一下一个零件生产出来前走过的路,专业知识也在不知不觉中得到了提高。同时,也让我看到了自己的不足,理论联系实际能力欠缺,分析问题能力欠缺,专业知识水平欠缺,今后还得更加努力的学习,弥补自己的不足,才能使自己在将来的工作岗位上得心应手。 课程设计是我们迈向社会,从事职业工作前一个必不少的过程。我们今天进行课程设计,实际上就是在学会脚踏实地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础。 参 考 文 献
/
本文档为【提动阀座课程设计】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索