为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

电动机启动控制

2017-09-19 30页 doc 1MB 27阅读

用户头像

is_634082

暂无简介

举报
电动机启动控制电动机自耦降压启动(自动控制电路) 上图是交流电动机自耦降压启动自动切换控制电路,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故 控制过程如下: 1、合上空气开关QF接通三相电源。 2、按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压低压抽头(例如65%)将三相电压的65%接...
电动机启动控制
电动机自耦降压启动(自动控制电路) 上图是交流电动机自耦降压启动自动切换控制电路,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故 控制过程如下: 1、合上空气开关QF接通三相电源。 2、按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压低压抽头(例如65%)将三相电压的65%接入电动。 3、KM1辅助常开触点闭合,使时间继电器KT线圈通电,并按已整定好的时间开始计时,当时间到达后,KT的延时常开触点闭合,使中间继电器KA线圈通电吸合并自锁。 4、由于KA线圈通电,其常闭触点断开使KM1线圈断电,KM1常开触点全部释放,主触头断开,使自耦变压器线圈封星端打开;同时 KM2线圈断电,其主触头断开,切断自耦变压器电源。KA的常闭触点闭合,通过KM1已经复位的常闭触点,使KM3线圈得电吸合,KM3主触头接通电动机在全压下运行。 5、KM1的常开触点断开也使时间继电器KT线圈断电,其延时闭合触点释放,也保证了在电动机启动任务完成后,使时间继电器KT可处于断电状态。 6、欲停车时,可按SB1则控制回路全部断电,电动机切除电源而停转。 7、电动机的过载保护由热继电器FR完成。 安装与调试 1、电动机自耦降压电路,适用于任何接法的三相鼠笼式异步电动机。 2、自耦变压器的功率应予电动机的功率一致,如果小于电动机的功率,自耦变压器会因起动电流大发热损坏绝缘烧毁绕组。 3、对照原理图核对接线,要逐相的检查核对线号。防止接错线和漏接线。 4、由于启动电流很大,应认真检查主回路端子接线的压接是否牢固,无虚接现象。 5、空载试验;拆下热继电器FR与电动机端子的联接线,接通电源,按下SB2起动KM1与KM2和动作吸合,KM3与KA不动作。时间继电器的整定时间到,KM1和KM2释放,KA和KM3动作吸合切换正常,反复试验几次检查线路的可靠性。 6、带电动机试验;经空载试验无误后,恢复与电动机的接线。再带电动机试验中应注意启动与运行的接换过程,注意电动机的声音及电流的变化,电动机起动是否困难有无异常情况,如有异常情况应立即停车处理。 7、再次启动;自耦降压起动电路不能频繁操作,如果启动不成功的话,第二次起动应间隔4分钟以上,入在60秒连续两次起动后,应停电4小时再次启动运行,这是为了防止自耦变压器绕组内启动电流太大而发热损坏自耦变压器的绝缘。 常见故障 1、带负荷起动时,电动机声音异常,转速低不能接近额定转速,接换到运行时有很大的冲击电流,这是为什么? 分析现象;电动机声音异常,转速低不能接近额定转速,说明电动机起动困难,怀疑是自耦变压器的抽头选择不合理,电动机绕组电压低,起动力矩小脱动的负载大所造成的。 处理;将自耦变压器的抽头改接在80%位置后,在试车故障排除。 2、电动机由启动转换到运行时,仍有很大的冲击电流,甚至掉闸。 分析现象;这是电动机起动和运行的接换时间太短所造成的,时间太短电动机的起动电流还未下降转速为接近额定转速就切换到全压运行状态所至。 处理;调整时间继电器的整定时间,延长起动时间现象排除。 绕线式电动机转子回路串频敏变阻器启动电路 绕线式电动机转子回路串频敏变阻器启动电路原理图 一、频敏变阻器的工作原理:     频敏变阻器实际上是一个特殊的三相铁芯电抗器,它有一个三柱铁芯,每个柱上有一个绕组,三相绕组一般接成星形。频敏变阻器的阻抗随着电流频率的变化而有明显的变化电流频率高时,阻抗值也高,电流频率低时,阻抗值也低。频敏变阻器的这一频率特性非常适合于控制异步电动机的启动过程。启动时,转子电流频率fz 最大。Rf 与Xd 最大,电动机可以获得较大起动转矩。启动后,随着转速的提高转子电流频率逐渐降低,Rf 和Xf 都自动减小,所以电动机可以近似地得到恒转矩特性,实现了电动机的无级启动。启动完毕后,频敏变阻器应短路切除。 二、启动电路原理:   启动过程可分为自动控制和手动控制。由转换开关SA完成。   1、自动控制     ㈠ 合上空气开关QF接通三相电源。     ㈡ 将SA板向自动位置,按SB2交流接触器KM1线圈得电并自锁,主触头闭合,动机定子接入三相电源开始启动。(此时频敏变阻器串入转子回路)。     ㈢  此时时间继电器KT也通电并开始计时,达到整定时间后KT的延时闭合的常开接点闭合,接通了中间继电器KA线圈回路,KA其常开接点闭合,使接触器KM2 线圈回路得电,KM2的常开触点闭合,将频敏变阻器短路切除,启动过程结束。   ㈣  线路过载保护的热继电器接在电流互感器二次侧,这是因为电动机容量大。为了提高热继电器的灵敏的度和可靠性,故接入电流互感器的二次侧。   ㈤ 另外在启动期间,中间继电器KA的常闭接点将继电器的热元件短接,是为了防止启动电流大引起热元件误动作。在进入运行期间KA常闭触点断开,热元件接入电流互感器二次回路进行过载保护,     2、手动控制     ㈠ 合上空气开关QF接通三相电源     ㈡ 将SA搬至手动位置     ㈢ 按下启动按钮SB2, 接触器KM1线圈得电,吸合并自锁,主触头闭合电动机带频敏变阻器启动。     ㈣ 待转速接近额定转速或观察电流接近额定电流时,按下按钮SB3中间继电器KA线圈得电吸合并自锁,KA的常开触点闭合接通KM2线圈回路,KM2的常开触点闭合将频敏变阻器短路切除。     ㈤ KA的常闭触点断开,将热元件接入电流互感器二次回路进行过载保护 绕线式电动机转子回路串频敏变阻器启动接线示意图 电动机全波能耗制动控制电路 电动机全波能耗制动控制电路原理图     很多生产机械都希望在停车时有适当的制动作用,使运动部件迅速停车。停车制动有机械制动和电气制动等多种。能耗制动是一种应用很广泛的一种电气制动方法。     能耗制动就是将运行中的电动机,从交流电源上切除并立即接通直流电源,在定子绕组接通直流电源时,直流电流会在定子内产生一个静止的直流磁场,转子因惯性在磁场内旋转,并在转子导体中产生感应电势有感应电流流过。并与恒定磁场相互作用消耗电动机转子惯性能量产生制动力矩,使电动机迅速减速,最后停止转动。     1、合上空气开关QF接通三电源     2、按下启动按钮SB2,接触器KM1线圈通电并自锁,主触头闭合电动机接入三相电源而启动运行。     3、当需要停止时,按下停止按钮SB1,KM1线圈断电,其主触头全部释放电动机脱离电源。     4、此时,接触器KM2和时间继电器KT线圈通电并自锁,KT开始计时KM2主触点闭合将直流电源接入电动机定子绕组,电动机在能耗制动下迅速停车。   另外,时间继电器KT的常闭触点延时断开时接触器KM2线圈断电,KM2常开触点断开直流电源,脱离电源及脱离定子绕组,能耗制动及时结束,保证了停止准确。     5、该电路的过载保护由热继电器完成     6、互锁环节:     ⑴ KM2常闭触点与KM1线圈回路串联,KM1常闭触点与KM2线圈回路串联。保证了KM1与KM2线圈不可能同时通电,也就是在电动机没脱离三相交流电源时,直流电源不可能接入定子绕组。     ⑵ 按纽SB1的常闭触点接入KM1线圈回路,SB1的常开触点接入KM2线圈回路,这是按纽互锁也保证了KM1、KM2不可能同时通电,与上面的互锁触点起到同样作用。 7、直流电源采用二极管单相桥式整流电路,电阻R用来调节制动电流大小,改变制动力的大小。 电动机全波能耗制动控制接线示意图     按时间控制的自动循环电路 按时间控制的自动循环电路      按时间控制的自动循环电路常用于间歇运行的设备。当控制开关SA置于运行位置时(接通),KM线圈有电,主触头吸合使设备运行;另外时间继电器KT1线圈也有电开始延时,当KT1达到整定时间后,其常开触点闭合,使中间继电器MA线圈得电吸合,KA的常闭触点断开,KM和KT1断电释放,设备停止运行。同时KA的常开触点闭合,时间继电器KT2线圈得电开始延时,当达到整定时间后KT2的常闭触点断开,时KA失电,其常开触点断开KT2失电,常闭触点闭合,使KM和KT1又得电,设备又启动运行,使系统进入循环工作。 按时间控制的自动循环电路接线示意图 鼠笼式三相异步电动机Y-△降压手动控制电路 鼠笼式三相异步电动机Y-△降压手动控制电路原理图     凡正常运行时定子绕组接成三角形的是三相鼠笼式异步电动机,在启动时临时成星形,待电动机启动后接近额定转速时,在将定子绕组通过Y-△降压启动装置接换成三角形运行,这种启动方法叫Y-△降压启动。属于电动机降压启动的一种方式,由于启动时定子绕组的电压只有原运行电压的,启动力矩较小只有原力矩的,所以这种启动电路适用于轻载或空载启动的电动机。     线路分析如下:     1、合上空气开关QF接通三相电源,     2、按下启动按钮SB2,首先交流接触器KM3线圈通电吸合,KM3的三对主触头将定子绕组尾端联在一起。KM3的辅助常开触点接通使交流接触器KM1线圈通电吸合,KM1三对主常触头闭合接通电动机定子三相绕组的首端,,电动机在Y接下低压启动。     3、随着电动机转速的升高,待接近额定转速时(或观察电流表接近额定电流时),按下运行按钮SB3,此时BS3的常闭触点断开KM3线圈的回路,KM3失电释放,常开主触头释放将三相绕组尾端连接打开,SB3的常开接点接通中间继电器KA线圈通电吸合,KA的常闭接点断开KM3电路(互锁),KM3的常开接点吸合,通过SB2的常闭接点和KM1常开互锁接点实现自保,同时通过KM3常闭接点(互锁)使接触器KM2线圈通电吸合,KM2主触头闭合将电动机三相绕组连接成△,使电动机在△接法下运行。完成了Y-△接压启动的任务。     4、热继电器FR作为电动机的过载保护,热继电器FR的热元件接在三角形的里面,流过热继电器的电流是相电流,定值时应按电动机额定电流的    计算。     5、KM2及KM3常闭触点构成互锁环节,保证了电动机Y-△接法不可能同时出现,避免发生将电源短路事故。 鼠笼式三相异步电动机Y-△降压手动控制接线示意图 安装注意事项 1、Y-△降压启动电路,只适用于△形接线,380V的鼠笼异步电动机。不可用于Y形接线的电动机应为启动时已是Y形接线,电动机全压启动,当转入△形运行时,电动机绕组会应电压过高而烧毁。 2、接线时应先将电动机接线盒的连接片拆除。 3、接线时应特别注意电动机的首尾端接线相序不可有错,如果接线有错,在通电运行会出现启动时 电动机左转,运行时电动机右转,应为电动机突然反转电流剧增烧毁电动机或造成掉闸事故。 4、如果需要调换电动机旋转方向,应在电源开关负荷侧调电源线为好,这样操作不容易造成电动机首尾端接线错误。     5、电路中装电流表的目的,是监视电动机起动、运行电流的,电流表的量程应按电动机额定电流的3倍选择。 常见故障:   1、Y启动过程正常,但按下SB3后电动机发出异常声音转速也急剧下降,这是为什么?  分析现象;接触器切换动作正常,表明控制电路接线无误。问出现在接上电动机后,从故障现象分析,很可能是电动机主回路接线有误,使电路由Y接转到△接时,送入电动机的电源顺序改变了,电动机由正常启动突然变成了反序电源制动,强大的反向制动电流造成了电动机转速急剧下降和异常声音。   处理故障;核查主回路接触器及电动机接线端子的接线顺序。   2、线路空载试验工作正常,接上电动机试车时,一起动电动机,电动机就发出异常声音,转子左右颤动,立即按SB1停止,停止时KM2和KM3的灭弧罩内有强烈的电弧现象。这是为什么? 分析现象;空载试验时接触器切换动作正常,表明控制电路接线无误。问题出现在接上电动机后,从故障现象分析是由于电动机缺相所引起的。电动机在Y起动时有一相绕组为接入电路,电动机造成单相启动,由于缺相绕组不能形成旋转磁场,使电动机转轴的转向不定而左右颤动。     处理故障;检查接触器接点闭合是否良好,接触器及电动机端子的接线是否紧固。 鼠笼式电动机自耦降压启动手动控制电路 鼠笼式电动机自耦降压启动手动控制电路 自耦降压启动是利用自耦变压器降低电动机端电压的启动方法,自耦变压器一般由两组抽头可以得到不同的输出电压(一般为电源电压的80%和65%),启动时使自耦变压器中的一组抽头(例如:65%)接在电动机的回路中,当电动机的转速接近额定转速时,将自耦变压器切除,使电动机直接接在三相电源上进入运转状态。     1、合上空气开关QF接通电源.     2、按下启动按钮SB2,交流接触器KM3线圈回路通电,主触头闭合,自耦变压器接成星形。 KM1线圈通电其主触头闭合,由自耦变压器的65%抽头端将电源接入电动机,电动机在低电压下启动。     3、KM1常开辅助触点闭合接通中间继电器KA的线圈回路,KA通电并自锁KA的常开触点闭合为KM2线圈回路通电做准备。     4、当电动机转速接近额定转速时,松开按钮SB2,按下按钮SB3,KM1、KM3线圈断电将自耦变压器切除,KM2线圈得电并自锁,将电源直接接入电动机,电动机在全压下运行。     5、电动机运行中的过载保护由热继电器FR完成.     6、互锁环节;     接触器互锁: KM2常闭触点接入KM3、KM1线圈回路                 KM1常闭触点接入KM2线圈回路     按纽互锁:  按纽SB2常开触点接入KM3、KM1线圈回路                 按纽SB2常闭触点接入KM2线圈回路                 按纽SB3常开触点接入KM2线圈回路                 按纽SB3常闭触点接入KM3、KM1线圈回路 鼠笼式电动机自耦降压启动手动控制电路接线示意图 安装与调试     1、电动机自耦降压电路,适用于任何接法的三相鼠笼式异步电动机。     2、自耦变压器的功率应予电动机的功率一致,如果小于电动机的功率,自耦变压器会因起动电流大发热损坏绝缘烧毁绕组。   3、对照原理图核对接线,要逐相的检查核对线号。防止接错线和漏接线。   4、由于启动电流很大,应认真检查主回路端子接线的压接是否牢固,无虚接现象。   5、空载试验;拆下热继电器FR与电动机端子的联接线,接通电源,按下SB2起动KM1与KM3动作吸合,KM2与KA不动作。再按下SB3运行按钮,KM1和KM3释放,KA和KM2动作吸合切换正常,反复试验几次检查线路的可靠性。     6、带电动机试验;经空载试验无误后,恢复与电动机的接线。再带电动机试验中应注意启动与运行的接换过程,注意电动机的声音及电流的变化,电动机起动是否困难有无异常情况,如有异常情况应立即停车处理。     7、再次启动;自耦降压起动电路不能频繁操作,如果启动不成功的话,第二次起动应间隔4分钟以上,入在60秒连续两次起动后,应停电4小时再次启动运行,这是为了防止自耦变压器绕组内启动电流太大而发热损坏自耦变压器的绝缘。 常见故障   1、带负荷起动时,电动机声音异常,转速低不能接近额定转速,接换到运行时有很大的冲击电流,这是为什么?     分析现象;电动机声音异常,转速低不能接近额定转速,说明电动机起动困难,怀疑是自耦变压器的抽头选择不合理,电动机绕组电压低,起动力矩小脱动的负载大所造成的。     处理;将自耦变压器的抽头改接在80%位置后,在试车故障排除。     2、电动机由启动转换到运行时,仍有很大的冲击电流,甚至掉闸。 分析现象;这是电动机起动和运行的接换时间太短所造成的,时间太短电动机的起动电流还未下降转速为接近额定转速就切换到全压运行状态所至。 处理;延长起动时间现象排除。 鼠笼式异步电动机Y-△启动电路 鼠笼式异步电动机Y-△自动启动电路(时间继电器自动切换) 该电路电动机启动过程的Y-△转换是靠时间继电器自动完成的。 控制电路分析如下:     1、合上空气开关QF引入三相电源。     2、按下启动按钮SB2,交流接触器KM1线圈回路通电吸合并通过自己的辅助常开触点自锁,其主触头闭合接通电动机三相电源,时间继电器KT线圈也通电吸合并开始计时,交流接触器KM3线圈通过时间继电器的延时断开接点通电吸合,KM3的主触头闭合将电动机的尾端连接,电动机定子绕组成Y形连接,这是电动机在Y形接法下降压启动。     3、当时间继电器KT整定时间到时后,其延时常开触点打开,交流接触器KM3线圈回路断电,主触点打开定子绕组尾端的接线,KM3的辅助常闭触点闭合为KM2线圈的通电做好准备。     4、时间继电器KT动作使,其延时常开触点闭合,接通KM2线圈回路,使得KM2通电吸合并通过自己的辅助常开触点自锁,KM2主触头闭合将定子绕组接成三角形,电动机在△接法下运行。     5、电动机的过载保护由热继电器FR完成     6、线路中的互锁环节有:KM2常闭触点接入KM3线圈回路。                           KM3常闭触点接入KM2线圈回路。     7、空气开关下面的电流互感器和电流表,是为了测量电动机电流,便于监视电动机的运行情况。 安装注意事项: 1、Y-△降压启动电路,只适用于△形接线,380V的鼠笼异步电动机。不可用于Y形接线的电动机应为启动时已是Y形接线,电动机全压启动,当转入△形运行时,电动机绕组会应电压过高而烧毁。 2、接线时应先将电动机接线盒的连接片拆除。 3、接线时应特别注意电动机的首尾端接线相序不可有错,如果接线有错,在通电运行会出现启动时电动机左转,运行时电动机右转,应为电动机突然反转电流剧增烧毁电动机或造成掉闸事故。     4、如果需要调换电动机旋转方向,应在电源开关负荷侧调电源线为好,这样操作不容易造成电动机首尾端接线错误。     5、起动时间;     起动时间过短;起动时间过短电动机的转速还为提起来,这时如果切换到运行,电动机的启动电流还会很大,造成电压波动。     起动时间过长;起动时间过长电动机的转速随以转起来,但因起动时间过长,电动机会应低电压大电流电动机发热烧毁。     起动时间调整;为了防止起动时间过短或过长,时间继电器的初步时间确定一般按电动机功率1KW约0.6~0.8秒整定。     6、电动机Y-△降压启动电路,由于启动力矩只有原来的  ,所以只适用于轻载或空载的电动机。 常见故障:     1、Y启动过程正常,但按下SB3后电动机发出异常声音转速也急剧下降,这是为什么?  分析现象:接触器切换动作正常,表明控制电路接线无误。问题出现在接上电动机后,从故障现象分析,很可能是电动机主回路接线有误,使电路由Y接转到△接时,送入电动机的电源顺序改变了,电动机由正常启动突然变成了反序电源制动,强大的反向制动电流造成了电动机转速急剧下降和异常声音。     处理故障:核查主回路接触器及电动机接线端子的接线顺序。     2、线路空载试验工作正常,接上电动机试车时,一起动电动机,电动机就发出异常声音,转子左右颤动,立即按SB1停止,停止时KM2和KM3的灭弧罩内有强烈的电弧现象。这是为什么? 分析现象:空载试验时接触器切换动作正常,表明控制电路接线无误。问题出现在接上电动机后,从故障现象分析是由于电动机缺相所引起的。电动机在Y起动时有一相绕组为接入电路,电动机造成单相启动,由于缺相绕组不能形成旋转磁场,使电动机转轴的转向不定而左右颤动。     处理故障:检查接触器接点闭合是否良好,接触器及电动机端子的接线是否紧固。     3、空载试验时,一按起动按钮SB2,KM2合KM3就噼叭噼把切换不能吸合。这是为什什么? 分析故障:以启动KM2和KM3就反复切换动作,说明时间继电器没有延时动作,一按SB2起动按钮,时间继电器线圈得电吸合,接点也立即动作,造成了KM2和KM3的相互切换,不能正常启动。分析问题出现在时间继电器的接点上。 处理故障;检查时间继电器的接线,发现时间继电器的接点使用错误,接到时间继电器的瞬动接点上了,所以一通电接点就动作,将线路改接到时间继电器的延时接点上故障排除。 (时间继电器往往有一对延时动作接点,还有一对瞬时动作接点,接线前应认真检查时间继电器的接点的使用要求。) 电动机自动往返 电动机可逆运行自动往返控制电路 电动机可逆运行自动往返控制电路 按位置原则的自动控制是生产机械电气化自动中应用最多和作用原理最简单的一种形式,在位置控制的电气自动装置线路中,由行程开关或终端开关的动作发出信号来控制电动机的工作状态。 若在预定的位置电动机需要停止,则将行程开关的常闭触点串接在相应的控制电路中,这样在机械装置运动到预定位置时行程开关动作,常闭触点断开相应的控制电路,电动机停转,机械运动也停止。 若需停止后立即反向运动,则应将此行程开关的常开触点并接在另一控制回路中的启动按钮处,这样在行程开关动作时,常闭触点断开了正向运动控制的电路,同时常开触点又接通了反向运动的控制电路。 我们以三相鼠笼式电动机的自动往返循环控制线路为例来说明行程开关的作用,该线路一般用于导轨磨床、龙门刨床上。下图是一个机械运动的示意图。 电动机自动往返循环控制电路的动作原理如下: 1、合上空气开关QF接通三相电源。 2、按下正向启动按钮SB3接触器KM1线圈通电吸合并自锁,KM1主触头闭合接通电动机电源,电动机正向运行。带动机械部件运动。 3、电动机拖动的机械部件向左运动(设左为正向),当运动到预定位置档块碰撞行程开关SQ1,SQ1的常闭触点断开接触器KM1的线圈回路,KM1断电,主触头释放,电动机断电。与此同时SQ1的常触点闭合,使接触器KM2线圈通电吸合并自锁,其主触头使电动机电源相序改变而反转。电动机拖动运动部件向右运动(设右为反向)。 4、在运动部件向右运动过程中,档块使SQ1复位为下次KM1动作做好准备。当机械部件向右运动到预定位置时,档块碰撞行程开关SQ2,SQ2的常闭触点断开接触器KM2线圈回路,KM2线圈断电,主触头释放,电动机断电停止向右运动。与此同时SQ2的常开触点闭合使KM1线圈通电并自锁,KM1主触头闭合接通电动机电源,电动机运转,并重复以上的过程。 5、电路中的互锁环节:接触器互锁由KM1(或KM2)的辅助常闭触点互锁;按钮互锁由SB2(或SB3)完成。 6、自锁环节:由KM1(或KM2)的辅助常开触点并联SB2(或SB3)的常开触点实现自锁。 7、若想使电动机停转则按停止按钮SB1,则全部控制电路断电,接触器主触头释放,电动机断开电源停止运行。 8、电动机的过载保护由热继电器FR完成。 电动机自动往返控制接线示意图 电动机可逆运行控制电路 电动机可逆运行控制电路 为了使电动机能够正转和反转,可采用两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将造成电源的短路事故,为了防止这种事故,在电路中应采取可靠的互锁,上图为采用按钮和接触器双重互锁的电动机正、反两方向运行的控制电路。 线路分析如下: 一、正向启动: 1、合上空气开关QF接通三相电源 2、按下正向启动按钮SB3,KM1通电吸合并自锁,主触头闭合接通电动机,电动机这时的相序是L1、L2、L3,即正向运行。 二、反向启动: 1、合上空气开关QF接通三相电源 2、按下反向启动按钮SB2,KM2通电吸合并通过辅助触点自锁,常开主触头闭合换接了电动机三相的电源相序,这时电动机的相序是L3、L2、L1,即反向运行。 三、互锁环节:具有禁止功能在线路中起安全保护作用 1、接触器互锁:KM1线圈回路串入KM2的常闭辅助触点,KM2线圈回路串入KM1的常闭触点。当正转接触器KM1线圈通电动作后,KM1的辅助常闭触点断开了KM2线圈回路,若使KM1得电吸合,必须先使KM2断电释放,其辅助常闭触头复位,这就防止了KM1、KM2同时吸合造成相间短路,这一线路环节称为互锁环节。 2、按钮互锁:在电路中采用了控制按钮操作的正反传控制电路,按钮SB2、SB3都具有一对常开触点,一对常闭触点,这两个触点分别与KM1、KM2线圈回路连接。例如按钮SB2的常开触点与接触器KM2线圈串联,而常闭触点与接触器KM1线圈回路串联。按钮SB3的常开触点与接触器KM1线圈串联,而常闭触点压KM2线圈回路串联。这样当按下SB2时只能有接触器KM2的线圈可以通电而KM1断电,按下SB3时只能有接触器KM1的线圈可以通电而KM2断电,如果同时按下SB2和SB3则两只接触器线圈都不能通电。这样就起到了互锁的作用。 四、电动机正向(或反向)启动运转后,不必先按停止按钮使电动机停止,可以直接按反向(或正向)启动按钮,使电动机变为反方向运行。 五、电动机的过载保护由热继电器FR完成 电动机可逆运行控制接线示意图 电动机可逆运行控制电路的调试 1、检查主回路路的接线是否正确,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。 2、检查接线无误后,通电试验,通电试验时为防止意外,应先将电动机的接线断开。 故障现象预处理; 1、不启动;原因之一,检查控制保险FU是否断路,热继电器FR接点是否用错或接触不良,SB1按钮的常闭接点是否不良。原因之二按纽互锁的接线有误。 2、起动时接触器“叭哒”就不吸了;这是因为接触器的常闭接点互锁接线有错,将互锁接点接成了自己锁自己了,起动时常闭接点是通的接触器线圈的电吸合,接触器吸合后常闭接点又断开,接触器线圈又断电释放,释放常闭接点又接通接触器又吸合,接点又断开,所以会出现“叭哒”接触器不吸合的现象。 3、不能够自锁一抬手接触器就断开,这是因为自锁接点接线有误。 电动机可逆点动控制带限位保护电路 电动机可逆点动控制带限位保护电路 电动机可逆运行带限位保护控制电路     按位置原则的控制是生产机械电气化中应用最多和作用原理最简单的一种形式,在位置控制的电气自动装置线路中,由行程开关或终端开关的动作发出信号来控制电动机的工作状态。     若在预定的位置电动机需要停止,则将行程开关的常闭触点串接在相应的控制电路中,这样在机械装置运动到预定位置时行程开关动作,常闭触点断开相应的控制电路,电动机停转,机械运动也停止。     我们以三相鼠笼式电动机的可逆运行带限位控制线路为例来说明行程开关的作用,该线路一般用于电动卷帘门、电葫芦的控制。     电动机可逆运行带限位保护控制电路的动作原理如下:     1、合上空气开关QF接通三相电源。     2、按下正向启动按钮SB1接触器KM线圈通电吸合KM1主触头闭合接通电动机电源,电动机正向运行。带动机械部件运动。电动机拖动的机械部件运动当运动到预定位置档块碰撞行程开关SQ2,SQ2的常闭触点断开接触器KM2的线圈回路,KM2断电,主触头释放,电动机断电停止。     3、按下反向启动按钮SB2接触器KM1线圈通电吸合KM1主触头闭合接通电动机电源,电动机正向运行。带动机械部件运动。电动机拖动的机械部件运动当运动到预定位置档块碰撞行程开关SQ1,SQ1的常闭触点断开接触器KM1的线圈回路,KM1断电,主触头释放,电动机断电停止。     4、在运行的过程中只要松开按钮控制电路立即无电,接触器断电主触头释放,电动机停止运行。     5、电动机的过载保护由热继电器FR完成。 电动机可逆带限位控制电路 电动机可逆带限位控制电路 电动机可逆带限位控制电路是一种带有位置保护的控制电路,这种电路多用在具有往返于机械运动的设备上,为了防止设备在运动时超出运动位置极限,在极限位置装有限位开关SQ使之能够停止。     线路分析如下:     一、正向运动:     1、合上空气开关QF接通三相电源     2、按下正向启动按钮SB3,KM1通电吸合并自锁,主触头闭合接通电动机,电动机这时的相序是L1、L2、L3,即正向运行。如果运动到了极限位置,将碰到限位开关SQ1,SQ1的常闭断开,KM1失电不再吸合,主触点断开电动机停止。     二、反向运动:     1、合上空气开关QF接通三相电源     2、按下反向启动按钮SB2,KM2通电吸合并通过辅助触点自锁,常开主触头闭合换接了电动机三相的电源相序,这时电动机的相序是L3、L2、L1,即反向运行。如果运动到了极限位置,将碰到限位开关SQ2,SQ2的常闭断开,KM2失电不再吸合,主触点断开电动机停止     三、互锁环节:具有禁止功能在线路中起安全保护作用 1、接触器互锁:KM1线圈回路串入KM2的常闭辅助触点,KM2线圈回路串入KM1的常闭触点。当正转接触器KM1线圈通电动作后,KM1的辅助常闭触点断开了KM2线圈回路,若使KM1得电吸合,必须先使KM2断电释放,其辅助常闭触头复位,这就防止了KM1、KM2同时吸合造成相间短路,这一线路环节称为互锁环节。 2、按钮互锁:在电路中采用了控制按钮操作的正反传控制电路,按钮SB2、SB3都具有一对常开触点,一对常闭触点,这两个触点分别与KM1、KM2线圈回路连接。例如按钮SB2的常开触点与接触器KM2线圈串联,而常闭触点与接触器KM1线圈回路串联。按钮SB3的常开触点与接触器KM1线圈串联,而常闭触点压KM2线圈回路串联。这样当按下SB2时只能有接触器KM2的线圈可以通电而KM1断电,按下SB3时只能有接触器KM1的线圈可以通电而KM2断电,如果同时按下SB2和SB3则两只接触器线圈都不能通电。这样就起到了互锁的作用。   四、停止:     1、正常停止,按下按钮SB1,SB1的常闭接点断开,控制回路失电接触器不再吸合,电动机停止运行。     2、紧急停止,紧急停止是设备在运动过程中,运动到了位置极限碰到限位开关SQ1(SQ2)所造成的停止,这是只要启动反方向控制,即可使设备重新运行。 电动机可逆带限位控制电路接线示意图 两台电动机顺序停止控制电路 两台电动机顺序停止控制电路原理图 电路分析如下: 启动过程: 1、按控制按钮SB2或SB4可以分别使接触器KM1或KM 2线圈得电吸合,主触点闭合,M1或M2通电电机运行工作。 2、接触器KM1、KM2的辅助常开接点同时闭合电路自锁。 停止过程: 1、按控制按钮SB3按纽,接触器KM2线圈失电,电机M2停止运行。 2、若先停电机M1按下SB1按纽,由于KM2没有释放,KM2常开辅助触点与SB1的常开触点并联在一起并呈闭合状态,所以按钮SB1不起作用。只由当接触器KM2释放之后,KM2的常开辅助触点断开,按钮SB1才起作用。 保护方法: 1、电动机的过载保护由FR1和FR2分别完成。 2、FR2保护电动机M2,但FR1动作保护后,M2电动机也必须停止工 常见故障: 不能实现顺序停止,KM1能先停止: 分析处理;不能顺序停止这说明SB1控制器作用,并接SB1两端的KM2常开接点有问题。 未接和接成常闭接点,都会出现KM1先停止的现象。 两台电动机顺序停止控制电路接线示意图 两台电动机顺序起动控制电路 两台电动机顺序起动控制电路原理图 顺序控制电路是在一个设备启动之后另一个设备才能启动的一种控制方法,如图KM2要先启动是不能动作的,因为SB4和KM1是断开状态,只有当KM1吸合实现自锁之后,SB4按纽才起作用,使KM2通电吸合,这种控制多用于大型空调设备的控制电路。 常见故障: 1、不能顺序启动KM2可以先启动; 分析处理; KM2先启动说明KM2的控制电路有电,用电试电笔检查FR2控制接点有电,这可能是FR2接点上口的7号线,错接到了FR1上口的3号线或5号线位置上了,这就使得KM2不受KM1控制而可以直接启动。 一、FR2的7号线错接到3号线,就成了两个单方向控制电路。但受FR1控制,过电流时全停止运行。 二、FR2的7号线错接到5号线,没有顺序启动,但有总停控制。 三、FR2的7号线错接到1号线,就成了两个独立的单方向控制电路。 两台电动机顺序起动控制电路接线示意图 电动机多保护控制电路 电动机多保护控制电路 电动机多保护起动电路是外围辅助设备必须达到工作要求时电动机才可以起动的电路,如本图中的SQ是一个限位开关起到位置保护作用,辅助设备未达到位置要求,电动机不能启动。根据工作需要,也可以是压力、温度、液位等多种控制,当需要多种保护时可将各种辅助保护设备的常开接点串接起来即可。 电动机多保护起动电路的起动过程是,合上QF开关电路得电,但这时SB2起动动按钮不起作用,因为辅助保护的SQ常开接点未闭合,只有当辅助设备达到位置要求时,SQ常开接点闭合,SB2按纽在起作用。如果在运行当中辅助设备的位置发生了变化SQ接点立即断开,KM接触器线圈断电释放,KM接触器主触点断开电动机停止运行。从而达到保护的目的。 常见故障 1、不能启动: 一、检查控制电路的熔断器FU1是否接触良好。(用试电笔在1、2处测量应亮) 二、热继电器FR接点是否断开或接错。(用试电笔在3处测量应亮) 三、外围设备的接点是否接通。(用试电笔在5处测量应亮) 2、SB1停止按钮不起作用: 停止按钮不起作用可能使接线有错,错将接触器自锁线7号线接到5号位置,这样SB1将不起作用。 3、不能自锁: 一、应检查接触器的辅助常开接点是否接触良好。 二、接触器的接点用错了,接成了常闭接点。 电动机多保护控制电路接线示意图 电动机单方向运行电路 电动机单方运行电路原理图 工作过程:按下控制起动按钮SB2,接触器KM线圈得电铁芯吸合,主触点闭合使电动机得电运行,其辅助常开接点也同时闭合实现了电路的自锁,电源通过FU1→SB1的常闭→KM的常开接点→接触器的线圈→FU2,松开SB2,KM也不会断电释放。当按下停止按钮SB1时,SB1常闭接点打开,KM线圈断电释放,主、辅接点打开,电动机断电停止运行。FR为热继电器,当电动机过载或因故障使电机电流增大,热继电器内的双金属片会温度升高使FR常闭接点打开,KM失电释放,电动机断电停止运行,从而实现过载保护。 一、电动机正方向运行控制线路检查和试车     1、对照原理图,接线图逐线检查。重点检查按钮盒内的接线和接触器的自保线,防错接线和漏接线。     2、检查各接线端子处接线情况,排除虚接线故障点。     3、用万用表电阻挡(R×l挡)检查,在不通电的情况下,用手动来模拟电器的操动作,用万用表测量线路的通断情况。检查方法应根据控制线路动作来确定检查步骤和内容,根据原理图和接线图选择测量重点。先主回路检查后检查辅助回路。 主回路的检查     取下辅助电路熔体FU1和FU2,用万用表表笔分别测量开关下端子A~B、B~C、A~C之间的电阻,结果均应为断路电阻应无穷大(R=∞)。     若某次测量的结果的电阻较小或为零,则说明所测两相之间的接线有短路点,应仔细逐相检查排除短路点。     用手按压接触器触头架,使三极主触点闭合,重复上述测量,可分别测得电动机各相绕的阻值。若某测量结果为断路(R=∞)则应仔细检查所测两相之间的各段接线。例如测量B~C之间电阻值R=∞则说明主电路B、C两相之间的接线有断路处。可将―支表笔接B处,另一只表笔依次测B相各段导线两端端子,均应测得R=0,再将表笔移到 W相各段导线两端测量,则分别测得电动机―相绕组的阻值,这样即可准确地查出断路点,并予以排除。 二、辅助电路检查内容:     1、按下接触器KM触点架,检查辅助接点常闭应断开,常开应闭合,测量接触器线圈电阻值。     2、检查自保线路:将表笔接在③ ⑤之间按下KM触点架,使常开辅助接点闭合,应测KM线圈电阻,说明自保线路无误。如测得结果为断路,应检查KM自保接点是否正常,检查上下端子联接线是否正确、有无虚接及脱落,如上述测量中测得结果为短路,则重点检查③号、⑤号线是否错按到一端子上了。     例如:起动按钮SB2下端引出的④号线应接到接触器KM线圈端子,如错接到KM线圈下端的⑤号端子上,则辅助电路的两相电源不经负载(KM线圈)直接相通,只要按SB2就会造成两相相间短路。再如:停止按钮SB1下线端子引出的③号线如接错接到接触器自保触点端子下端的④号线上,则起动按钮SB2不起控制作,此时只要合上电源开关QF(未按下SB2)线路就会自动起动而造成危险。     3、检查停车控制,将表笔接在 ② ⑤之间按下接触器KM触点架,按下按钮SB2,应测接触器线圈的直流电阻,再按下SB1则应测出辅助电路由通而断。否则应检查按钮盒内接线,并排除错接线。 三、试车。     完成上述各项检查后,清理好工具和材料,检查三相电源,将热继电器电流整定值按1倍电动机额定电流整定好后,在有专人监护下执行安全规程中的有关规定试车。     1、空载试验:拆下电动机定子绕组线的联接线,合上开关QF,按下起动按钮SB2后松开,接触器KM应通电动作,并能保持吸合状态,按下停止按钮SB1,KM应立即释放反复操作几次,以后检查线路动作的可靠性。     2、带负荷试车:切断电源后接好电动机定子接线,合上电源开关QF,按下起动按钮SB2,电动机通电运行,按下SB1电动机断电停上运行。 四、试车中常见的事故事例如下:     故障1.合上电源开关QF(未按下SB2)接触器KM立即得电动作,按下SB1则KM释放,松开SB1时接触器KM又得电动作。     分析:故障现象说明SB1(常闭停止按钮),的停车控制功能正常,而SB2(常开起动按钮)不起作用,SB2上端并联的自保触点,从原理图分析可知,故障是由于SB1下端联线直接接到KM线圈上端引起的,怀疑③号线和④号有错接处,造成线路控制失控。      检查、按钮盒内③号、④号接线及接触器KM自保触点下接线端子④号线和KM线圈上端于④号线。     故障2.试车时合上QF接触器剧烈振动,(振动频率低,约10~20HZ),主触点严重起弧,电动机轴时转时停,按下SB1则KM立即释放。     分析:故障现象表明起动控钮SB2不起作用,而停止按钮SB1有停车控制作用,说明接线错误,而且与例1的错误相似。接触器剧烈振动频率低,不像是电源电压低(噪声约$0HZ)和短路环损坏(噪声约100HZ)怀疑自保线接错。     检查:核对接线时发现将接触器的常闭辅助接点错当自保触点使用,造成控制线路失控。合上电源开关QF时,接触器KM常闭辅助触点将按钮SB2常开接点短接,使KM线圈立即通电动作,当KM衔铁吸合时,带动其常闭辅助接点分断,使KM线圈失压;而衔铁复位时,其常闭辅助触点随之复位,使KM线圈又通电如此往复循环动作引起接触器KM剧烈振动。因为衔铁基本是在全行程内往复运动,因此振动频率较低。     处理:将自保线改接在KM常开辅助接点端子,经检查核对后重新试车,故障排除。     故障3.试车时按下起动按钮SB2后,交流接触器KM不动作,检查接线无误,三相电源电压正常,线路无接触不良处。     分析:故障现象表明,问题出在电器元件上,怀疑按钮的触头、接触器线圈、热继电器控制触点有断路点。     检查:分别用万用表R×1挡测量上述元件。表笔跨接在辅助电路SB1上端子和SB2下端子(2号和4号端子),按下SB2时测得R=0,按钮完好。测量KM线圈阻值正常;测量热继电器常闭触点,测量结果为断路。说明在检查FR过载保护动作后,常闭辅助触点未复位,为此KM不能起动。     处理:按下FR复位按钮、重新试车正常。     故障4.试车时按起动按钮SB2时接触器不动作,而同时按下停止按钮SB1时,KM动作正常,松开SB1则KM释放。     分析:SB1为停止按钮,不操作时触点应接通,起动时SB1应无控制作用:故障现象表明SB1似接成了“常开”型式。     检查:打开按钮盒校对接线,发现错将②号、③号线接到停止钮常开触点端子上。     处理:改正接线重新试车,故障排除。 三相异步电动机正、反向点动控制电路 三相异步电动机正、反向点动控制电路     点动控制电路是在需要设备动作时按下控制按钮SB,接触器KM线圈得电主触点闭合设备开始工作,松开按钮后接触器线圈断电,主触头断开设备停止。此种控制方法多用于小型起吊设备的电动机控制 三相异步电动机点动控制电路的检查和试车     常规检查有      1、对照原理图,接线图逐线检查,核对线号。防止导线错接和漏接。      2、检查所有端子接线接触情况,排除虚接处。      3、用万用表检查不带电进行。     摘下接触器的灭弧罩,以便用手操作来模拟触点分合动作,用万用表测量时,将万用表挡位开关置于R×1挡。     (1)检查主电路;取下辅助电路熔体FU,用万用表表笔分别测量开关下端子U~V、U~W、U、一W:之间的电阻,结果均应为断路,电阻应无穷大(R=∞)。若某次测量的结果的电阻较小或为零,则说明所测两相之间的接线有短路点,应仔细逐相检查排除短路点。 方法是用手按压接触器触头架,使接触器三极主触点闭合,重复上述测量,可分别测得电动机各相绕的阻值。若某测量结果为断路(R=∞)则应仔细检查所测两相之间的各段接线。例如测量V~W之间电阻值R=∞则说明主电路B、C两相之间的接线有断路处。可将—支表笔接与空气开关QF的V处,另一只表笔依次测V相各段导线两端端子,均应测得R=0,再将表笔移到 W相各段导线两端测量,则分别测得电动机—相绕组的阻值,这样即可准确地查出断路点,并予以排除。     (2)检查辅助电路,装好辅助电路的熔体FU,用万用表表笔接开关端子V、W(辅助电路电源线)处,应测得为断路;按下SB1、SB2,应分测得接触器KM1和KM2线圈电阻。若侧的为断路,应在互锁接点的两端测量,用以判断互锁接点是否接触良好。     4、通电试车     完成上述检查后,清点工具材料,清理安装板上的线头杂物,检查三相电源,在有人监护下执行安全规程的有关规定通电试车,拆除与电动机定子绕组的接线。 (1)空载试验: 接通电源开关QF,按下SB1按钮,接触器KM1立即动作,松开SB1则KM1应立即断电复位,按下SB2按钮,接触器KM2立即动作,松开SB1或SB2,KM1或KM2应立即断电复位,此时应认真观察KM主触头动作是否正常,细听接触器线圈通电运行声音是否正常。反复做几次试验,检查线路动作是否可靠。 (2)互锁检查: 接通电源开关QF,按下SB1按钮,接触器KM1立即动作,此时再按下SB2按钮,KM2不应动作,同样按下SB2按钮,接触器KM2立即动作,再按下SB1按钮,KM1不应动作。有动作则表明互锁接点接线有错,应检查改正后再试验。 (3)带负荷试车:切断电源接上电动机定子绕组引线,装好灭弧罩,重新通电试车,按下点动控制按钮,接触器KM动作,观察电动机起动和运行情况,松开按钮SB观察,电动机能否停车。 试车中如发现接触器振动,发出噪声,接触器主触点燃弧严重,以及电动机嗡嗡响,转不起来,应立即停车进行检查,重新检查电源电压,导线,各连接点开关接触是否有虚接,停电检查电动机绕组有无断线,必要时拆开接触器检查电磁机构,排除故障后重新试车。
/
本文档为【电动机启动控制】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索