为了正常的体验网站,请在浏览器设置里面开启Javascript功能!
首页 > 磁共振血管造影

磁共振血管造影

2013-01-15 50页 ppt 2MB 56阅读

用户头像

is_006562

暂无简介

举报
磁共振血管造影null磁共振血管造影磁共振血管造影MR AngiographyDSA与MRADSA与MRADSA与MRADSA与MRAMR流动补偿MR流动补偿MR流动效应MR流动效应沿梯度场方向运动的层流的偶数回波是层流独有的现象,湍流无序,自旋相位为“弥散效应”。T=TE,180脉冲相当于G反向MR流动补偿流动补偿显示颈椎间盘突出MR流动补偿MR流动效应MR流动效应 层流的奇数回波自旋相位“弥散效应” 层流的偶数回波自旋相位“聚合效应” 所以层流的偶数回波具有消除磁场的非均匀性引起的相位弥散作用。MR偶数回波意义MR偶数...
磁共振血管造影
null磁共振血管造影磁共振血管造影MR AngiographyDSA与MRADSA与MRADSA与MRADSA与MRAMR流动补偿MR流动补偿MR流动效应MR流动效应沿梯度场方向运动的层流的偶数回波是层流独有的现象,湍流无序,自旋相位为“弥散效应”。T=TE,180脉冲相当于G反向MR流动补偿流动补偿显示颈椎间盘突出MR流动补偿MR流动效应MR流动效应 层流的奇数回波自旋相位“弥散效应” 层流的偶数回波自旋相位“聚合效应” 所以层流的偶数回波具有消除磁场的非均匀性引起的相位弥散作用。MR偶数回波意义MR偶数回波意义 利用层流的奇数回波信号丢失和的偶数回波信号增强作为判据,对以层流形式流血液与静止组织进行鉴别。 静脉、脑窦和因某些原因导致流动缓慢的一般认为是层流。 若流速极慢,则在奇数回波上也呈现高信号。MR偶数回波意义MR偶数回波意义 脑顶叶后方的静脉血管在奇数回波像(左)信号丢失,偶数回波像(右)信号增强。MR偶数回波意义MR偶数回波意义第一回波血流为低信号 肝脏(2000/15)门静脉主干及其分支显示为低信号 偶回波血流为高信号 肝脏(2000/90)门静脉主干及其分支显示为高信号MR偶数回波意义MR偶数回波意义双侧大腿:右侧股静脉出现血流非常缓慢情况下的偶数回波现象。MR偶数回波意义MR偶数回波意义由前图:奇偶数图像的差,得右侧股静脉的高强度影。MR偶数回波应用MR偶数回波应用 某些情况下,长T2的病变(肿瘤、血栓、坏死和梗塞)和层流的偶数回波增强的血管均为高信号,不易分开,则可利用奇、偶数回波的不同影像来区别。 血管若出现该效应,说明含有层流。否则可能有占位性病变或者其他原因引起阻塞,血管无血流通过,出现高信号。MR高速血流截止(流出)效应MR高速血流截止(流出)效应 常规SE序列中,信号产生要受90和180同时作用,否则不产生信号。 垂直于成像平面流动的质子,在层面内仅存在一段时间,若流速快时,则可能不能同时收到两个激励脉冲的作用,导致血液质子信号比小于静止组织。null 流速高(层流)的动脉血管截面在MR影像上往往为低信号的“血液流空”。 血流速度高导致的血液与激励成像层面的RF脉冲在时间上错位而产生的一种流动效应。 MRA 流出效应MRA 流出效应MRA 流出效应 液体信号丢失的程度取决于脉冲序列、流速和层厚。 当流速为 截止速度,称流空或黑血。MRA 流出效应 Vc 随层面厚度增加或TE减小而增高。 层厚 D= l cm,TE=30 ms, 则:Vc= 60 cm/s 相当于动脉最大速度。 MR影像动脉血管将由于截止效应而信号丢失。如果使 D 增加或 TE 缩短,将Vc变得高于动脉血流速度很多,仍然可能采集到从动脉血管发出的信号。MRA 流出效应流入效应流入效应 用快速序列(TR<方法
MRA方法 TOF —— Time of Flight 时间流逝法 PC —— Phase Contrast 相位对比法 MRA成像方法是基于GE梯度回波序列与TOF 信号有关因素 用GE方法,基于血液流入效应进行成像。 饱和效应 (静态组织,低信号) 流入相关增强效应 (激发层面上游血液,强信号) 流出效应 (被激发的流动流体,低信号) 流动去相位效应 (流动自旋在梯度方向产生相位弥散,低信号。可用流动补偿解决,原理同偶数回波)与TOF 信号有关因素2D-TOF 在2D TOF中,每次只激发一个层面,层厚小,通常流入血液处于未饱和,只要流动与层面垂直,快慢流动均可获得较好的信号。 2D-TOF3D-TOF 采用体积成像,慢速流动自旋无法在一个TR时间内流出整个激发范围,被多次激发,产生流入饱和效应,出现流入端为强信号,在流出端呈现信号逐渐下降。3D-TOFTOFTOF增加对比度方法 减小激发角度 2D TOF 采用30-50 3D TOF 采用15-20  减小层厚与3D激发体积范围 采用多容积激发 背景抑制(MTC磁化转移)TOFTOF——应用 2D TOF具有较小的流入饱和效应,对于慢速,如静脉及静脉窦成像很好,对于血流方向一致的血管,显示良好。 3D TOF因层面较厚,空间分辨率差,相位弥散大,层面内流动由于血管弯曲可能产生信号损失。TOF——应用TOF动脉或静脉MRA 在TOF成像周期前,若采用预脉冲将被成像区域的上方或下方饱和,就可使一个方向上流动的血液达饱和,利用此法可显示动脉或静脉。TOF动脉或静脉MRATOF动脉或静脉MRATOF动脉或静脉MRAMCA幅度对比磁共振血管造影 利用流动自旋的相位效应,产生一组血管高信号与另一组血管低信号图,利用减影方法得到血管图像。MCA幅度对比磁共振血管造影MCA方法 1. 利用GE序列的流动补偿,得到液体高信号图。 2. 利用流动敏感的梯度场,加强液体的去相位作用,产生液体的低信号图。 3. 由于静态组织在两组图像中具有相同信号,通过减影法,可获得血管图像。 应用 可显示慢速层流的血流,一般在主要流动方向上采用该技术(四肢血管造影),MCA流动与静止质子相位梯度场强度和作用时间、间隔,会影响流体相位变化。 静态质子在正反向梯度场作用下,相位变化为零。 运动质子在两次梯度间位置发生了移动,导致在两次梯度场中有不同的相位漂移,有一个净相位。 流动与静止质子相位流动质子的相位漂移流动质子的相位漂移流动相位效应流动相位效应PCA相位对比磁共振血管造影 利同一区域获得两组流动自旋相位不同状态的数据,定量比较二者相位差异并转换成图像对比。与MCA相比,PCA表现涡流更佳,无体素内去相位效应。PCA相位对比磁共振血管造影PCA——方法 1. 利用GE序列的流动补偿,使所有流速的流体的自旋的横向磁化S1在回波形成时位于X轴方向。 2. 利用流动敏感的梯度场,使流动自旋横向磁化S2的相位产生一个  角 (0,)。 3. 参于静态自旋,S1,S2的大小,方向相同;对于流动自旋  流动漂移与流速成正比。 s1- s2=PC信号 (矢量差) |S2-S1|=MC信号 (强度差, 任意)。 PCA——方法PCANormal image of hand(rephase-dephase subtraction)PCAPCA应用 MCA图像的强度对应于流速的快慢,无方向性。 PCA图像的强度对应于流速的快慢及方向,下向流,为白的高信号。反向流动为低信号。静态组织为中等灰度信号。若与ECG同步可用于液体的流速与流量评估。PCA应用PCA 2D-PCA 仅流动血液产生MR信号,所以成像时层厚可达100mm,得整个范围血管的MIP。 2D-PCA空间分辨率差,常用于3D-PCA的流速预测成像。 2D-PCA反应流动自旋的流速及方向,结合ECG,在一周期内不同心动时相,分别采集流动信号,重建不同时相的相关血流图,并连续显示,形成2D-PCA电影,判断流动方向和变化规律。PCAPCA应用PCA应用 MCA图像的强度对应于流速的快慢,无方向性。 PCA图像的强度对应于流速的快慢及方向,下向流,为白的高信号。反向流动为低信号。静态组织为中等灰度信号。若与ECG同步可用于液体的流速与流量评估。PCA 的流动敏感性PCA 的流动敏感性序列的流动敏感度 PCA中 角不能大于。  角的大小取决于流动序列的梯度选择,若适当,则 =180度,信号最大。 当目标血管流速超过序列的流动敏感度,  角会大于180度,出现回卷,则高速流动的自旋表现为低信号。 若序列流动敏感度选得太高,则血管信号强度不足。 序列的流动敏感度通常稍大于靶血管的最大流速。PCA 的流动敏感性PCA 的流动敏感性流动显示方向 MCA与PCA对流动显示依赖于流动敏感度梯度方向,所以要合理选择X、Y和Z三处方向的流动敏感采集梯度,才能获得完整的空间方向的流动信号。MIPMIP 3D-PCA 每像素的亮度对应于流速,3D图像需经MIP重建以显示血管影像。MIPMIPAVM in right fronto-basal regionPCA 与 TOFPCA 与 TOF背景抑制 PCA信号仅取决于局部血液流速,静态组织不产生信号。所以血管更能显示。 TOF静态组织仍有信号,需要用脂肪抑制与MTC方法来提高血管显示质量。PCA 与 TOFPCA 与 TOF慢流显示 PCA可根据流速设定流动敏感度,即使慢速流动血液也能较好显示。 3D-TOF的血流信号强度取决于激发容积厚度,厚度宽时,慢流血液不能显示。PCA 与 TOFPCA 与 TOF信号强度 PCA的信号强度只取决于流速;而TOF的信号强度与组织T1有关。亚急性出血在TOF图像上为强信号,会掩盖血流信号。MRA临床应用MRA临床应用 颅内血管MRA 3D-TOF 3D-PC用于动、静脉及复杂血流显示,时间长 2D-TOF矢状窦等慢流显示 2D-PC也可用于矢状窦成像及流速预测 3D-CE-MRA用于动、静脉显示 颈部血管MRA 多块重叠3D-TOF及3D-CE-MRA对颈部动脉显 示最佳 多层2D-TOF,2D,3D-PC用于动、静脉显示MRA临床应用MRA临床应用 胸部血管MRA 主动脉及分支、肺动、静脉系用CE-MRA 2D、3D-TOF用于主动脉显示 2D-PC加心电同步技术常用于主动脉流量分析 腹部血管MRA 首选CE-MRA 3D-TOF与PC可用于肾动脉 四肢血管MRA 3D-CE-MRA对四肢血管的动脉、静脉期显示好 MCA较好显示四肢血管(需心电同步) 2D-TOF也可用于四肢血管显示CE-MRA 对比度增强MRACE-MRA 对比度增强MRA方法 使用极短TR(<5ms)与极短TE(<2ms)的梯度回波法,由于组织的纵向恢复小,所即使是脂肪(短T1),其信号也很小。 在血管内注入造影剂(比常规多2-3倍),使血液的T1很短,呈现高信号,而周围其他静态组织为低信号。CE-MRA 对比度增强MRACE-MRA 对比度增强MRA应用范围 心脏、大血管 肺动脉、静脉 腹腔动脉、肝肾动脉、肠系膜动脉、腹主动脉 门静脉系统 盆腔及四肢 头颈部垂直相位编码(Rosagital)垂直相位编码(Rosagital) 在对脊柱或颈椎成像时,一般相位编码常取在水平方向,大致CSF的流动方向垂直,这种流动伪影为与流动方向平行的线条。若将相位与频率编码方向互换,血液和CSF基本沿相位编码方向运动,由于相位编码作用时间短及次数少,所以移动质子引起的附加相移小,伪影也小。黑血法(BBMRA)黑血法(BBMRA)将血流以(SE序列流入效应)低信号突出显示的成像方式,采用空间预饱和技术抑制双侧血液信号,则流入成像区后,血液已饱和,消除了血液信号,使血管与静止组织产生明显对比。BBMRA不能区分动静脉和固有空洞(鼻窦),但对于确定严重血管狭窄好。黑血法黑血法
/
本文档为【磁共振血管造影】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索