为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

CCD摄像机的分类、监控摄像机分类

2017-09-29 20页 doc 44KB 24阅读

用户头像

is_180829

暂无简介

举报
CCD摄像机的分类、监控摄像机分类CCD摄像机的分类、监控摄像机分类 CCD是电荷耦合器件(charge coupled deice)的简称。CCD摄像机可以依成像色彩划分、分辨率划分、灵敏度划分、按CCD靶面大小划分为彩色摄像机、黑白摄像机等 关键字:安防监控 摄像机 监控摄像机 CCD摄像机 ,CCD是电荷耦合器 安全防范系统中,图像的生成当前主要是来自CCD摄像机 件(charge coupled deice)的简称,它能够将光线变为电荷并将电荷存储及转移,也可将存储之电荷取出使电压发生变化,因此是理想的摄像机元件,以其构成的CCD摄像机具有体积小...
CCD摄像机的分类、监控摄像机分类
CCD摄像机的分类、监控摄像机分类 CCD是电荷耦合器件(charge coupled deice)的简称。CCD摄像机可以依成像色彩划分、分辨率划分、灵敏度划分、按CCD靶面大小划分为彩色摄像机、黑白摄像机等 关键字:安防监控 摄像机 监控摄像机 CCD摄像机 ,CCD是电荷耦合器 安全防范系统中,图像的生成当前主要是来自CCD摄像机 件(charge coupled deice)的简称,它能够将光线变为电荷并将电荷存储及转移,也可将存储之电荷取出使电压发生变化,因此是理想的摄像机元件,以其构成的CCD摄像机具有体积小、重量轻、部受磁场影响、具有抗震东和撞击之特性而被广泛应用。 CCD摄像机大致可分为下列几大类: 依成像色彩划分 (1)彩色摄像机:适用于景物细部辨别,如辨别衣着或景物的颜色。因有颜色而使信息量增大,信息量一般认为是黑白摄像机的10倍。 (2)黑白摄像机:是用于光线不足地区及夜间无法安装照明设备的地区,在仅监视景物的位置或移动时,可选用分辨率通常高于彩色摄像机的黑白摄像机。 依摄像机分辨率划分 (1)影像像素在25万像素(pixel)左右、彩色分辨率为330线、黑白分辨率420线左右的低档型。 (2)影像像素在25万~38万之间、彩色分辨率为420线、黑白分辨率在500线上下的中档型 (3)影像在38万点以上、彩色分辨率大于或等于480线、黑白分辨率,570线以上的高分辨率。 依摄像机灵敏度划分 (1)普通型:正常工作所需照度为1~3Lux (2)月光型:正常工作所需照度为0.1 Lux左右 (3)星光型:正常工作所需照度为0.01 Lux以下 (4)红外照明型:原则上可以为零照度,采用红外光源成像。 按摄像元件的CCD靶面的大小划分 (1)l inch 靶面尺寸为宽12.7mmX高9.6mm,对角线16mm (2)2/3inch靶面尺寸为宽8.8mmX高6.6mm,对角线11mm (3)1/2inch靶面尺寸为宽6.4mmX高4.8mm,对角线8mm (4)1/3inch靶面尺寸为宽4.8mmX高3.6mm,对角线6mm (5)1/4inch靶面尺寸为宽3.2mmX高2.4mm,对角线4mm (6)1/5inch正在开发之中,尚未推出正式产品 此外CCD摄像机有PAL制和NTSC制之分,还可以按图像信号处理方式划分或按摄像机结构区分。 安防监控摄像机设计选型及采购指南 该监控摄像机设计选型及采购指南,可以帮助实施监控工程的监控工程商,根据监控摄像机的参数,应用环境及场所在适当的安防监控系统中选用最佳的安防监控摄像机,来满足不同安防监控工程方案的需求, 关键词:监控 监控摄像机 监控系统 安防监控摄像机 随着监控系统在社会上应用越来越广泛,可供监控摄像机的种类(品牌、型式 和型号)日益繁多。作为监控工程设计安装工程商,如此众多种类的摄像机,对其系统设计师和采购经理,是一个考验。如何才能正确选用摄像机,确保系统的效果最佳、系统的成本最低呢,这几个问困扰着不少设计工程师和采购经理。 或许,这篇文章,对于面临难题的工程师们有所帮助和启发。为了很好地阐述这个问题,让我们先从CCD摄像机一些基本知识谈起吧: 一、CCD监控摄像机分类 ,、依成像色彩划分 彩色监控摄像机:适用于景物细部辨别,如辨别衣着或景物的颜色。 黑白监控摄像机:适用于光线不充足地区及夜间无法安装照明设备的地区,在仅监视景物的位置或移动时,可选用黑白监控摄像机。 ,、依分辨率灵敏度等划分 影像像素在38万以下的为一般型,其中尤以25万像素(512*492)、分辨率为400线的产品最普遍。 影像像素在38万以上的高分辨率型。 3、按监控摄像机形状划分 监控摄像机按外形划分主要有:枪式监控摄像机、针孔型监控摄像机、半球型监控摄像机。 4、按CCD靶面大小划分 1英寸——靶面尺寸为宽12.7mm*高9.6mm,对角线16mm。 2/3英寸——靶面尺寸为宽8.8mm*高6.6mm,对角线11mm。 1/2英寸——靶面尺寸为宽6.4mm*高4.8mm,对角线8mm。 ——靶面尺寸为宽4.8mm*高3.6mm,对角线6mm。 1/3英寸 1/4英寸——靶面尺寸为宽3.2mm*高2.4mm,对角线4mm。 5、按扫描制式划分 PAL制。 NTSC制。 6、依供电电源划分 220VAC,PAL系统。 24VAC。 12VDC,国内摄像机多属此类。 ,、按同步方式划分 内同步:用摄像机内同步信号发生电路产生的同步信号来完成操作。 外同步:使用一个外同步信号发生器,将同步信号送入摄像机的外同步输入端。 功率同步(线性锁定,line lock):用摄像机AC电源完成垂直推动同步。 外VD同步:将摄像机信号电缆上的VD同步脉冲输入完成外VD同步。 多台摄像机外同步:对多台摄像机固定外同步,使每一台监控摄像机可以在同样的条件下作业,因各摄像机同步,这样即使其中一台摄像机转换到其他景物,同步摄像机的画面亦不会失真。 二、CCD彩色监控摄像机基本知识 ,、CCD彩色监控摄像机的主要技术指标 (,)CCD尺寸,亦即摄像机靶面。现在1/3英寸的已普及化,1/4英寸也已商品化。 (,)CCD像素,像素越多,则图像分辨率越高、越清晰,现多以25万和38 万像素为划界,38万像素以上者为高清晰度摄像机。 (,)水平分辨率。彩色摄像机的典型分辨率是在320到500电视线之间,目前市面上以420TVL和480TVL两种分辨率占主导地位。 (,)最小照度,也称为灵敏度。月光级和星光级等高增感度摄像机可工作在很暗条件,对一般摄像机而言,2~3lux属最低照度,现在1lux的普通摄像机比较普及,最为常用。 之分。 (,)扫描制式。有PAL制和NTSC制 (,)摄像机电源。交流有220V、110V、24V,直流为12V 或9V。 (,)信噪比。典型值为46db,若为50db,则图像有少量噪声,但图像质量良好;若为60db,则图像质量优良,不出现噪声。 (,)视频输出。多为1Vp-p、75Ω,均采用BNC接头。 (,)镜头安装方式。有C和CS方式,二者间不同之处在于感光距离不同。 三、监控摄像机选用经验谈 在监控系统应用中,监控摄像机选用十分关键,它直接决定了整个监控系统的图像效果。下面,我们各种场合的摄像机选用谈谈看法,以供大家参考。 摄像机选用主要依据两个要素进行:一是摄像机使用环境(应用场合);一是摄像机的相关主要参数。 一)监控摄像机应用场合---监控摄像机型式的选用 目前摄像机种类繁多,应用场合也各不相同。应用场合决定摄像机型式的选用,要正确选用摄像机,我们必须了解该摄像机的安装场合,确定安装型式。目前,摄像机安装应用场合主要有:写字楼、酒店、工厂、银行、监狱等。一般还分为室我们还是酒店监控为例,进行摄像机参数选用分析: 三)各种类型监控摄像机适宜的应用场合 下面列举一些监控摄像机类型最适宜的应用场合,以供工程师进行监控系统设计参考: (一)摄像机清晰度 清晰度数是衡量摄像机优劣的一个重要参数,它指的是当摄像机摄取等间隔排列的黑白相间条纹时,在监视器(应比摄像机的分辨率高)上能够看到的最多线数。当超过这一线数时,屏幕上就只能看到灰蒙蒙的一片而不能再辨出黑白相间的线条。 工业监视用摄像机的分辨率通常在380~460线之间,广播级摄像机的分辨率则可达到700线左右。清晰度是由摄像器件像素多少决定的,显然摄像器件的像素越多,得到的图像越清晰,反之也然。清晰度越高,说明摄像机档次越高,反之越低。 (二)摄像机最低照度 最低照度是最低照度是当被摄景物的光亮度低到一定程度而使摄像机输出的视频信号电平低到某一规定值时的景物光亮度值。一般彩色摄像机的最低照度为 照度的测定是以在一定的镜头光圈系数为前提,因此,不能只看摄2,3LUX, 像机中标明的最低照度,应按摄像机在同一光圈系数下其照度值的大小。最低照度越小,摄像机档次越高。相对于彩色摄像机而言,黑白摄像机由于没有色度处理而只对光线的强弱(亮度)信号敏感,所以黑白摄像机的照度比彩色摄像机照度要低,一般可做到0.1LUX在F1.4时,至于微光摄像机则更低。有关光圈系数的知识请参阅镜头一节。 视频信号的标称值为1Vp-p,值为0.7Vp-p,最低照度时的视频信号值为1/3到1/2的标准植。所以摄像机在最低照度时的图像,决不会“如同白昼一样”。另外,摄像机在最低照度时产生的图像清晰度,是用电视信号测试卡进行测式的,其黑白相间的条纹,要求黑色反射率近于0%,白色反射率大于89.9%。而我们在现场观察时有时不具备这样的条件,比如:树叶和草地的反射率很低,反差很小,就不易获得清晰图像。因此实际使用当中不能以摄像机标称的最低照度作为衡量现场环境照度的标准。 (三)摄像机信噪比 信噪比也是摄像机的一个重要的性能指标。当摄像机摄取较亮场景时,监视器显示的画面通常比较明快,观察者不易看出画面中的干扰噪点;而当摄像机摄取较暗的场景时,监视器显示的画面就比较昏暗,观察者此时很容易看到画面中雪花状的干扰噪点。干扰噪点的强弱(也即干扰噪点对画面的影响程度)与摄像机信噪比指标的好坏有直接关系,即摄像机的信噪比越高,干扰噪点对画面的影响就越小。 所谓“信噪比”指的是信号电压对于噪声电压的比值,通常用符号S/N来表示。由于在一般情况下,信号电压远高于噪声电压,比值非常大,因此,实际计算摄像机信噪比的大小通常都是对均方信号电压与均方噪声电压的比值取以10为底的对数再乘以系数20,单位用dB表示。 一般摄像机给出的信噪比值均是在AGC(自动增益控制)关闭时的值,因为当AGC接通时,会对小信号进行提升,使得噪声电平也相应提高。CCD摄像机信噪比的典型值一般为45dB~55dB。测量信噪比参数时,应使用视频杂波测量仪直接连接于摄像机的视频输出端子上。 (四)摄像机自动增益控制(AGC) AGC——Automatic Gain Control的缩写。所有摄象机都有一个将来自 CCD的信号放大到可以使用水准的视频放大器,其放大量即增益,等效于有较高的灵敏度,可使其在微光下灵敏,然而在亮光照的环境中放大器将过载,使视频信号畸变。为此,需利用摄象机的自动增益控制(AGC)电路去探测视频信号的电平,适时地开关AGC,从而使摄象机能够在较大的光照范围内工作,此即动态范围,即在低照度时自动增加摄象机的灵敏度,从而提高图像信号的强度来获得清晰的图像。具有AGC功能的摄像机,在低照度时的灵敏度会有所提高,但此时的噪 点也会比较明显。这是由于信号和噪声被同时放大的缘故。 (五)摄像机背景光补偿(BLC) BLC——BackLight Compesation的缩写,也称作逆光补偿或逆光补正,它可以有效补偿摄像机在逆光环境下拍摄时画面主体黑暗的缺陷。 通常,摄象机的AGC工作点是通过对整个视场的内容作平均来确定的,但如果视场中包含一个很亮的背景区域和一个很暗的前景目标,则此时确定的AGC工作点有可能对于前景目标是不够合适的,背景光补偿有可能改善前景目标显示状况。 当引入背光补偿功能时,摄像机仅对整个视场的一个子区域(如从第80行 ~ 200行的中心区域)进行检测,通过求此区域的平均信号电平来确定AGC电路的工作点。由于子区域的平均电平很低,AGC放大器会有较高的增益,使输出视频信号的幅值提高,从而使监视器上的主体画面明朗。此时的背景画面会更加明亮,但其与主体画面的主观亮度差会大大降低,整个视场的可视性得到改善。 当背景光补偿为开启时,摄象机仅对整个视场的一个子区域求平均来确定其AGC工作点,此时如果前景目标位于该子区域内时,则前景目标的可视性有望改善。 (六)摄像机电子快门(ES) 电子快门的英文全称为Electronic Shutter,是对比照相机的机械快门功能提出一个术语,它相当于控制CCD图像传感器的感光时间。由于CCD感光的实质是信号电荷的积累,则感光时间越长,信号电荷的积累时间就越长,输出信号电流的幅值也就越大。通过调整光生信号电荷的积累时间(即调整时钟脉冲的宽度),即可实现控制CCD感光时间的功能。 (七)摄像机白平衡(WB) 白平衡(White Balance),只用于彩色摄象机,其用途是实现摄象机图像能精确反映景物状况,有手动白平衡和自动白平衡两种方式。 自动白平衡(AWB,Automatic White Balance)有分为连续白平衡和自动控制白平衡。连续白平衡也称为自动跟踪白平衡(Automatic Tracking White balance,ATW),是随着景物色彩温度的改变而连续地调整,范围为2800~6000K。这种方式对于景物的色彩温度在拍摄期间不断改变的场合是最适宜的,使色彩表现自然,但对于景物中很少甚至没有白色时,如场景大部分是蓝天白云或夕阳等高色温物体及场景比较昏暗的场合下,连续的白平衡不能产生最佳的彩色效果。自动控制白平衡(Automatic White balance Control,AWC),需要先将摄象机对准诸如白墙、白纸等白色参考目标,然后将通过菜单或开关设置从手动改变为自动方式,保留在该位置几秒钟或者至图像呈现白色为止,在白平衡被执行后,将自动方式开关拨回手动位置以锁定该白平衡的设置,此时白平衡设置将保持在摄象机的存储器中,直至再次执行被改变 为止,其范围为2300~10000K,在此期间,即使摄象机断电也不会丢失该设置。以按钮方式设置白平衡最为精确和可靠,适用于大部分应用场合。 手动白平衡关闭自动白平衡,通过手动调节红色或蓝色调整装置,以改变红色或蓝色状况,一般可调等级多达107个,如增加或减少红色各一个等级、增加或减少兰色各一个等级。除次之外,有的摄象机还有将白平衡固定在3200K(白炽灯水平)和5500K(日光水平)等档次命令。 (八)摄像机同步方式 摄像机的同步方式一般有 AGC ON/OFF(自动增益控制):摄像头内有一个将来自CCD的信号放大到可以使用水准的视频放大器,其放大即增益,等效于有较高的灵敏度,然而在亮光照的环境下放大器将过载,使视频信号畸变。当开关在ON时,在低亮度条件下完全打开镜 头光圈,自动增加增益以获得清晰的图象。开关在OFF时,在低亮度下可获得自然而低噪声的图像。 ATW ON/OFF(自动白平衡):开关拨到ON时,通过镜头来检测光源的特性/色温,从而自动连续设定白电平,即使特性/色温改变也能控制红色和蓝色信号的增益。 ALC/ELC(自动亮度控制/电子亮度控制):当选择ELC时,电子快门根据射入的光线亮度而连续自动改变CCD图像传感器的曝光时间(一般从1/50到1/10000秒连续调节)。选择这种方式时,可以用固定或手动光圈镜头替代ALC自动光圈镜头。需要注意的是:在室外或明亮的环境下,由于ELC控制范围有限,还是应该选择ALC式镜头;在某些独特的照明条件下,可能出现下列情况: ? 在聚光灯或窗户等高亮度物体上有强烈的拖尾或模糊现象。 ? 图象显著地闪烁和色彩重现性不稳定。 ? 白平衡有周期性变化,如果发生这些现象,应使用ALC镜头。 以固定光圈镜头采用ELC方式时,图象的景深可能小于使用ALC式镜头所获得的景深。因此,摄像头在完全打开固定光圈镜头而采用ELC方式时。景深会比使用ALC式镜头时小,而且图象上远处的物体可能不在焦点上。 当镜头是自动光圈镜头时,需要将开关拨到ALC方式。 BLC ON/OFF(背光补偿开关):当强大而无用的背景照明影响到中部重要物体的清晰度时,应该把开关拨到ON位置。注意: ? 当与云台配用或照明迅速改变时,建议把该开关放在OFF位置,因为在ON位置时,镜头光圈速度变慢;? 如果所需物体不在图像中间时,背光补偿可能不会充分发挥作用。 LL/INT(同步选择开关):此开关用以选择摄像头同步方式,INT为内同步2,1隔行同步;LL为电源同步。有些摄像头还有一个LL PHASE电源同步相位控制器。当摄像头使用于电源同步状态时,此装置可调整视频输出信号的相位,调整范围大概是一帧。(调整需要专业人员进行) VIDEO/DC(镜头控制信号选择开关):ALC自动光圈镜头的控制信号有两种,当需要将直流控制信号的自动光圈镜头安装在摄像头上时,应该选择DC位置,需要安装视频控制信号的自动光圈镜头时,应该选择VIDEO位置。 当选择ALC自动光圈视频驱动镜头时,还会有一个视频电平控制(VIDEO LEVEL L/H)可能需要调整,该控制器调节输出给自动光圈镜头的控制电平,用以控制镜头光圈的开大和缩小(凹进光亮)。 在摄像头的配件中,有一个黑色的小插头,插头有四个针,联接摄像头上的黑色插座。如果用DC驱动的自动光圈镜头,镜头上已经做好了插头,只要插在插座上,把选择开关拨到DC即可;如果用视频驱动的自动光圈镜头,需要用户根据说明书上的标注,用烙铁焊好。由于厂家定义不同,所以焊法也有区别,请安装时留意。 SOFT/SHARP(细节电平选择开关):该开关用以调节输出图像是清晰(SHARP)还是平滑(SOFT),通常出厂设定在SHARP位置。 FLICKERLESS(无闪动方式):在电源频率为50Hz的地区,CCD积累时间为 1/50秒,如果使用NISC制式摄像机,其垂直同步频率为60Hz,这样将造成视觉影像不同步,在监视器上出现闪动;反之,在电源为60Hz的地区用PAL制式摄像机也会有此现像。为克服此现像,在电子快门设置了无闪动方式档,对NISC制式摄像机提供1/100秒,对PAL制式摄像机提供1/120秒的固定快门速度,可以防止监视器上图像出现闪烁。手动电子快门:有些用户使用CCD摄取运动速度比较快的物体,如果尾1/50秒速度拍摄,会产生拖尾现象,严重影响图像质量。有些摄像头给出了手动电子快门,使CCD的电荷偶合速度固定在某一值,例如1/500、1/1000、1/2000秒等等,此时CCD的电荷偶合速度提高,这样采集下来的图像相对来说会减少拖尾现象,而且对于观测高速运动或电火花一类物体,必须使用此设置。所以,某些专用摄像头给出了手动电子快门,提供给特殊用途的用户。手动电子快门的调整需要参看随机说明书,在此就不在赘述了。 补充说明:有很多用户要求在晚间没有光线的环境下监控,请注意:由于CCD摄像头同样是靠光线反射来成像,如果没有光,它的图像只会是一片漆黑再加上很多雪花。如何得到图像呢,一种是加可见光照明,如路灯、探照灯;一种是加红外灯(特别是要求不能安装可见光源的场合),对于彩色CCD摄像头,对红外灯响应不够,有一些日夜两用彩色摄像头在夜间会自动转换成黑白模式。所以,你的监控系统要求夜间使用,一定要采用黑白CCD摄像头。 -20米范围的红 红外灯有室内、室外,短距离和长距离之分,一般常用室内10外灯,由于墙壁的反射,图像效果还不错;用在室外长距离的红外灯效果就不会很理想,而且价格昂贵,不到必要时一般不采用。 区分CCD与CMOS 区分CCD与CMOS 1970年是影像处理行业具有里程碑意义的一年,美国贝尔实验室发明了CCD。二十年后,人们利用这一技术制造了数字相机,将影像处理行业推进到一个全新领域。数字相机无需胶卷和冲洗、可重复拍摄和即时调整;影像可无限次复制且不会降低质量,方便永久保存,并可用于电子传送和处理。它的诞生给影像处理业带来了一场革命。 而后,有人发现,将计算机系统里的一种芯片进行加工也可以作为数字相机中的感光传感器,即CMOS,其便于大规模生产和成本低廉的特性是商家们梦寐以求的。业内人士分析,它在不久的将来可能取代CCD,如今两者依然共存。许多人认为:“感光传感器,尤其是CCD,是摄像头最最核心的部件,是数字相机的心脏。”而事实并非如此:感光传感器,尤其是CCD,在摄像头中的功能是将透过镜头的光线捕获并转换 为电子信号,与其说是数字相机的心脏,不如说是数字相机的眼睛。在研究级摄像头中,CCD或CMOS感光传感器虽然是十分重要的元部件,在很大程度上决定了摄像头的像素,但CCD/CMOS芯片在摄像头的成本中并不占主导位置,尤其是在越高端的领域这一特性表现越为突出。 从技术的角度比较,CCD与CMOS有如下四个方面的不同: 1.信息读取方式 CCD电荷耦合器存储的电荷信息,需在同步信号控制下一位一位地实施转移后读取,电荷信息转移和读取输出需要有时钟控制电路和三组不同的电源相配合,整个电路较为复杂。CMOS光电传感器经光电转换后直接产生电流(或电压)信 号,信号读取十分简单。 2.速度 CCD电荷耦合器需在同步时钟的控制下,以行为单位一位一位地输出信息,速度较慢;而CMOS光电传感器采集光信号的同时就可以取出电信号,还能同时处理各单元的图像信息,速度比CCD电荷耦合器快很多。 3.电源及耗电量 CCD电荷耦合器大多需要三组电源供电,耗电量较大;CMOS光电传感器只 CMOS需使用一个电源,耗电量非常小,仅为CCD电荷耦合器的1/8到1/10,光电传感器在节能方面具有很大优势。 4.成像质量 CCD电荷耦合器制作技术起步早,技术成熟,采用PN结或二氧化硅(SiO2)隔离层隔离噪声,成像质量相对CMOS光电传感器有一定优势。由于CMOS光电传感器集成度高,各光电传感元件、电路之间距离很近,相互之间的光、电、磁干扰较严重,噪声对图像质量影响很大,使CMOS光电传感器很长一段时间无法进入实用。近年,随着CMOS电路消噪技术的不断发展,为生产高密度优质的CMOS图像传感器提供了良好的条件。 此外,CCD与CMOS两种传感器在“内部结构”和“外部结构”上都是不同的: 1.内部结构(传感器本身的结构) CCD的成像点为X,Y纵横矩阵排列,每个成像点由一个光电二极管和其控制的一个邻近电荷存储区组成。光电二极管将光线(光量子)转换为电荷(电子),聚集的电子数量与光线的强度成正比。在读取这些电荷时,各行数据被移动到垂直电荷传输方向的缓存器中。每行的电荷信息被连续读出,再通过电荷/电压转换器和放大器传感。这种构造产生的图像具有低噪音、高性能的特点。但是生产CCD需采用时钟信号、偏压技术,因此整个构造复杂,增大了耗电量,也增加了成本。 CMOS传感器周围的电子器件,如数字逻辑电路、时钟驱动器以及模/数转换器等,可在同一加工程序中得以集成。CMOS传感器的构造如同一个存储器,每个成像点包含一个光电二极管、一个电荷/电压转换 单元、一个重新设置和选择晶体管,以及一个放大器,覆盖在整个传感器上的是金属互连器(计时应用和读取信号)以及纵向排列的输出信号互连器,它可以通过简单的X,Y寻址技术读取信号。 2.外部结构(传感器在产品上的应用结构) CCD电荷耦合器需在同步时钟的控制下,以行为单位一位一位地输出信息,速度较慢;而CMOS光电传感器采集光信号的同时就可以取出电信号,还能同时处理各单元的图像信息,速度比CCD电荷耦合器快很多。 CMOS光电传感器的加工采用半导体厂家生产集成电路的流程,可以将数字相机的所有部件集成到一块芯片上,如光敏元件、图像信号放大器、信号读取电路、模数转换器、图像信号处理器及控制器等,都可集成到一块芯片上,还具有附加DRAM的优点。只需要一个芯片就可以实现很多功能,因此采用CMOS芯片的光电图像转换系统的整体成本很低。 CCD和CMOS摄像头的区别 首先说一下在闭路电视监控中摄像机的CCD 和CMOS 的结构,ADC的位置 和数量是最大的不同。简单的说,CCD每曝光一次,在快门关闭后进行像素转移处理,将每一行中每一个像素(pixel)的电荷信号依序传入“缓冲器”中,由底端的线路引导输出至 CCD 旁的放大器进行放大,再串联 ADC 输出;相对地,CMOS 的设计中每个像素旁就直接连着 ADC(放大兼类比数字信号转换器),讯号直接放大并转换成数字信 号。 两者优缺点的比较 CCD CMOS 单一感光器 感光器连接放大器 设 计 灵敏度 同样面积下高 感光开口小,灵敏度低 成 本 线路品质影响程度高, 成本高 CMOS整合集成,成本低 解析度 连接复杂度低,解析度高 低,新技术高 噪点比 单一放大,噪点低 百万放大,噪点高 功耗比 需外加电压,功耗高 直接放大,功耗低 由于构造上的基本差异,我们可以表列出两者在性能上的表现之不同。CCD的特色在于充分保持信号在传输时不失真(专属通道设计),透过每一个像素集合至单一放大器上再做统一处理,可以保持资料的完整性;CMOS的制程较简单,没有专属通道的设计,因此必须先行放大再整合各个像素的资料。 整体来说,CCD与CMOS 两种设计的应用,反应在成像效果上,形成包括 ISO 感光度、制造成本、解析度、噪点与耗电量等,不同类型的差异: ISO 感光度差异:由于CMOS 每个像素包含了放大器与A/D转换电路,过多的额外设备压缩单一像素的感光区域的表面积,因此相同像素下,同样大小之感光器尺寸,CMOS的感光度会低于CCD。 成本差异:CMOS 应用半导体工业常用的MOS制程,可以一次整合全部周边设施于单晶片中,节省加工 晶片所需负担的成本和良率的损失;相对地 CCD 采用电荷传递的方式输出资讯,必须另辟传输通道,如果通道中有一个像素故障(Fail),就会导致一整排的讯号壅塞,无法传递,因此CCD的良率比CMOS低,加上另辟传输通道和外加 ADC 等周边,CCD的制造成本相对高于CMOS。 解析度差异:在第一点“感光度差异”中,由于 CMOS 每个像素的结构比 CCD 复杂,其感光开口不及CCD大, 相对比较相同尺寸的CCD与CMOS感光器时,CCD感光器的解析度通常会优于CMOS。不过,如果跳脱尺寸限制,目前业界的CMOS 感光原件已经可达到1400万像素 / 全片幅的设计,CMOS 技术在量率上的优势可以克服大尺寸感光原件制造上的困难,特别是全片幅 24mm-by-36mm 这样的大小。 噪点差异:由于CMOS每个感光二极体旁都搭配一个 ADC 放大器,如果以百万像素计,那么就需要百万个以上的ADC 放大器,虽然是统一制造下的产品, 但是每个放大器或多或少都有些微的差异存在,很难达到放大同步的效果,对比单一个放大器的CCD,CMOS最终计算出的噪点就比较多。 耗电量差异:CMOS的影像电荷驱动方式为主动式,感光二极体所产生的电荷会直接由旁边的电晶体做放大输出;但CCD却为被动式, 必须外加电压让每个像素中的电荷移动至传输通道。而这外加电压通常需要12伏特(V)以上的水平,因此 CCD 还必须要有更精密的电源线路设计和耐压强度,高驱动电压使 CCD 的电量远高于CMOS。 光端机 电信非压缩光端机,就是将多个E1(一种中继线路的数据传输标准,通 常速率为2.048Mbps,此标准为中国和欧洲采用)信号变成光信号并传 输的设备。光端机根据传输E1口数量的多少,价格也不同。一般最小 的光端机可以传输4个E1,目前最大的光端机可以传输4032个E1。 光端机的种类 光端机分3类:PDH,SPDH,SDH。 PDH(Plesiochronous Digital Hierarchy,准同步数字系列)光端机是小容量光端机,一般是成对应用,也叫点到点应用,容量一般为4E1,8E1,16E1。 SDH(Synchronous Digital Hierarchy,同步数字系列)光端机容量较大,一般是16E1到4032E1。 SPDH(Synchronous Plesiochronous Digital Hierarchy)光端机,介于PDH和SDH之间。SPDH是带有SDH(同步数字系列)特点的PDH传输体制(基于PDH的码速调整原理,同时又尽可能采用SDH中一部分组网技术)。 监控术语的话,那就是 视频光端机,传输视频为主及其他数据,音频,开关量,以太网电话等信号的光电转换传输设备,他的本质是:光电转换传输设备;放在光缆的两端,一收一发,顾名思义光端机;所以广义上讲,基于光纤网络用于传输信号的光电转换设备都可以称为光端机. 以此分类用于电信上传输信号(也有压缩的视频)的压缩光端机与用于监控和广播电视行业的非压缩的视频光端机. 通常所说的光端机是传输视频的非压缩光端机. 视频光端机在中国的发展是伴随着监控发展开始的. 1)、光端机从模拟走向数字 从上个世纪80年代末模拟光端机开始进入中国应用,到2001年开始数字光端机的出现;演绎了经济发展带动科学技术进步,科学技术推动经济发展的过程。 最早出现的模拟光端机主要是采用模拟调频、调幅、调相的方式将基带的视频、音频、数据等传输信号调制到某一载项,通过另一端的接收光端机进行解调,恢复成相应的基带视频、音频、数据信号。 把信号调制到光上,通过光纤进行视频传输,通常使用以下几种调制方式: 调幅或强调制系统(AM):全模拟系统,光学发射单元内发光二极管(LED)的亮度或强度随输入视频幅度线性变化。调幅的光信号通过光纤发送给光接收单元,由其将信号转换为模拟基带视频。调频或脉冲频率调制(FM):也是一个模拟系统,射频载波通过输入的视频信号线性调节频率,经过调制的载波又用于光发射单元的LED或激光发射器,经过频率调制的信号通过光纤发送给光接收单元,由其将信号转换为模拟基带视频。AM视频传输被广泛用于工业安全市场上从低端到中端CCTV监视及安全应用场合。适用于 5.5公里(3.5英里)或更短距离的传输,这样一个系统能够提供的定性视频性能是相当不错的,并且总是能够达到RS-250C长距离传输的品质要求。但是,AM视频传输设备仅适合850nm。多模工作波长这就限制了最大可用传输距离。更显著的是,对于每1dB的光学路径损耗而言,基于调幅系统的信噪比的线性相关衰减为2dB,因此,可接受的视频传输质量仅能在相对较短的光缆距离下获得。一些生产商的设备可能在初始安装阶段需要接收机增益调节,从而使安装过程复杂化。最后一点,AM产品达不到今天ITS及高端工业安全应用中所需达到的RS-250C中短距离视频传输技术要求。FM视频传输是曾广泛应用于ITS及高端工业安全市场的传输方式。能够提供极高质量的视频传输性能,通常能达到RS-250C中距离传输的 质量要求并且成本合理。不象AM设备,FM产品适用于1330nm。多模或单模操作,以及1550nm。单模操作,其典型应用的传输距离可达66公里(42英里)。无需为了方便安装而要求用户进行调节。尽管FM方式能够提供高质量传输,但是其信噪比在更高水平的光衰减,或者更长的传输距离的光缆传输过程中会衰减,并且信噪比与光衰减之间不再是线性关系,因此其性能并不是可以完全预测或保持不变的。另外,基于调频的系统很难达到RS-250C短距离传输的技术要求,而且调频视频发射与接收单元也容易受到外界电磁源以及来自蜂窝电话和手机等的无线电波的干扰(EMI/RFI),通常出现在野外或路边环境中。 受技术限制,光端机主要有单路、双路、四路、八路视频及带PTZ控制数据的光端机,在一芯上传输实现点对点,传输容量严重不足对于具有足够传输容量的光纤造成了浪费,复杂的、大容量、高路数的设备则需要多芯传输;加上模拟视频技术的缺陷带来的易受干扰、易衰减的特点,实现多级中继、级联比较困难,传输业务的单一化(一般只有视频及数据信号),模拟视频传输在应用了粗波分复用也同样受技术条件和波分复用设备价格昂贵的限制,在光纤及光传输设备昂贵的年代许多行业即使有明确的需求也望而却步其应用了。多路信号同传引起的交调失真。 在现场监控应用中,用户可能有许多各种信号,如视频图像、音频、数据、以太网、电话或其它用户自定义的信号,为了提高光纤的利用效率,降低成本,必须将各种信号在光端机进行复用,以便在一对或一根光纤上传输。对调频、调幅、调相光端机来讲,将多路视频、音频或数据信号混合调频、调幅、调相在某一载波上必然会引起各种镜像、交调干扰。所以目前市场上不乏很多著名国外品牌的调频、调幅、调相光端机多路视频、音频、数据同传时出现相互干扰 的现象,这些不稳定的现象都是模拟调制技术长期以来一直所固有的缺点。 数字光端机传输的是数字信号,很容易进行大容量复用并且不会出现相互干扰。对于日益发展的市场需求,模拟光端机已经不能适应大容量、多业务(视频、数据、音频、开关量、以太网、对讲、电话等)传输的要求,多路串扰、易衰减、易老化的、售后服务麻烦等问题使得模拟光端机逐渐随着新技术的出现,市场和应用走向了下坡路。 数字光端机的出现解决了模拟光端机所出现的问题。2000年开始通讯技术的发展使得光传输器件技术和数字视频技术的发展,数字光端机开始走向了市场及行业的应用。随着数字光端机和模拟光端机的的对比发展,慢慢数字光端机开始逐渐代替模拟光端机,到目前为止已经形成了模拟光端机和数字光端机二八分天下的局面。相信不久的将来模拟光端机只能成为监控史上的一个名词。如果说早期模拟光端机是国外光端机厂商带来的最早的传输市场,那么数字光端机可就是国内和国外竞力,国内厂商优势与国外厂商的一个过程。 最新一代光纤视频传输设备借助于光学传输单元内部的一个模-数转换器或数字信号编码器(编码/解码器),对于输入的模拟基带视频信号(来自CCTV摄像机视频、音频、数据、开关量、以太网等)采用数字解码技术进行处理。然后数字信号又调制到LED或激光发射器上,通过光纤传输到光接收单元,在这里先前的数字信号被一个内部的数-模转换器重新转化为模拟基带视频信号。这样,系统在电气上完全透明地将光发射器的视频输入通过光纤发送到了光接收单元的视频输出,并且能够直接匹配目前使用的NTSC、PAL或SECAM制式CCTV摄像机。 可以说,将模拟信号进行数字化处理后再进行传输是光端机技术质的飞跃发展。数字光端机解决了模拟光端机的传输容量少、业务能力少、信号易衰减、易串扰等缺点,优势突显:传输容量大、业务种类多,单纤传输容量可达几十路上百路非压缩视频,传输的业务也多样化的传输视频、音频、数据、以太网、电话信号、开关量等各种信号。这样节省了光纤,也提高了光纤带宽的利用率,提高了性价比;信号质量的提升到更高的层次,视频图象的信噪比在10bit编码量化下可达到67~70db,远远超出了远距离下模拟信号 的50~60db的参数指标。在级联技术应用了更是得心应手于模拟光端机。 当我们讨论数字解码视频传输设备时,评价产品与产品之间的性能时所需考虑的性能参数是系统所使用的数字位数。数字位数从根本上定义了系统的电气动态范围以及端到端的信噪比,并且是视频传输性能的主要影响因素。现在任何一个分辨率为6位的系统从技术上讲都是落后的,不能代表目前的最高技术水准,这样的系统肯定会产生图像上可见的非自然信号以及视频衰减。有鉴于此,在一个数字解码视频传输系统中所采用的比特数最少应为8位。8位的分辨率或解码能力能够使视频传输品质满足或超过RS-250C短距离传输或真正的视频传播质量要求。 采用数字非压缩技术、10位数字式视频编码技术(10bit)和15Mhz采样频率 技术使得视频数字化过程时的数字采样点的表示更为精确,得到的图像效果更逼 真,更加完美。
/
本文档为【CCD摄像机的分类、监控摄像机分类】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索