为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

植物生理学名次解释

2011-02-28 2页 doc 54KB 22阅读

用户头像

is_920648

暂无简介

举报
植物生理学名次解释束缚水:与细胞组分紧密结合不能自由移动、不易蒸发散失的水 自由水:与细胞组分之间吸附力较弱,可以自由移动的水。 化学势:偏摩尔自由能被称为化学势,以希腊字母μ表示,用来描述体系中各组分发生化学反应的能力及转移的潜在趋势的物理量。组分j的化学势(μj)定义为某组分j的偏摩尔自由能。 溶质势ψs:由于溶质颗粒的存在而引起体系水势降低的数值。溶质势表示溶液中水分潜在的渗透能力的大小,因此,溶质势又可称为渗透势(ψπ)。溶质势可用ψs=RTlnNw/Vw.m公式计算,也可按范特霍夫公式ψπ=-π=-iCRT计算。 衬质势(ψm):由于...
植物生理学名次解释
束缚水:与细胞组分紧密结合不能自由移动、不易蒸发散失的水 自由水:与细胞组分之间吸附力较弱,可以自由移动的水。 化学势:偏摩尔自由能被称为化学势,以希腊字母μ示,用来描述体系中各组分发生化学反应的能力及转移的潜在趋势的物理量。组分j的化学势(μj)定义为某组分j的偏摩尔自由能。 溶质势ψs:由于溶质颗粒的存在而引起体系水势降低的数值。溶质势表示溶液中水分潜在的渗透能力的大小,因此,溶质势又可称为渗透势(ψπ)。溶质势可用ψs=RTlnNw/Vw.m公式计算,也可按范特霍夫公式ψπ=-π=-iCRT计算。 衬质势(ψm):由于衬质(表面能吸附水分的物质,如纤维素、蛋白质、淀粉等)的存在而使体系水势降低的数值。 压力势(ψp):由于压力的存在而使体系水势改变的数值。若加正压力,使体系水势增加,加负压力,使体系水势下降。 重力势(ψg):由于重力的存在而使体系水势增加的数值。 集流 指液体中成群的原子或分子(例如组成水溶液的各种物质的分子)在压力梯度(水势梯度)作用下共同移动的现象。 渗透作用:溶液中的溶剂分子通过半透扩散膜的现象。对于水溶液而言,是指水分子从水势 高处通过半透膜向水势低处扩散的现象。 吸胀吸水:依赖于低的衬质势而引起的吸水。干种子的吸水为典型的吸胀吸水。 吸胀作用:亲水胶体物质吸水膨胀的现象称为吸胀作用。胶体物质吸引水分子的力量称为吸胀力。蛋白质类物质吸胀力最大,淀粉次之,纤维素较小。 根压:由于植物根系生理活动而促使液流从根部上升的压力。它是根系与外液水势差的表现和量度。根系活力强、土壤供水力高、叶的蒸腾量低时,根压较大。伤流和吐水现象是根压存在证据。 伤流:从受伤或折断的植物组织伤口处溢出液体的现象。伤流是由根压引起的,是从伤口的输导组织中溢出的。伤流液的数量和成分可作为根系生理活性高低的指标。 吐水:从未受伤的叶片尖端或边缘的水孔向外溢出液滴的现象。吐水也是由根压引起的。作物生长健壮,根系活动较强,吐水量也较多,所以,吐水现象可以作为根系生理活动的指标,并能用以判断苗长势的好坏。 暂时萎蔫:植物在水分亏缺严重时,细胞失去膨压,茎叶下垂的现象称为萎蔫(wilting)。萎蔫植株如果当蒸腾速率降低后,可恢复正常,则这种萎蔫称为暂时萎蔫。暂时萎蔫是由于蒸腾失水量一时大于根系吸水量而引起的。 永久萎蔫:萎蔫植物若在蒸腾降低以后仍不能使恢复正常,这样的萎蔫就称为永久萎蔫。永久萎蔫是由于土壤缺乏可利用的水分引起的。只有向土壤供水才能消除植株的萎蔫现象。 蒸腾作用:植物体内的水分以气态散失到大气中去的过程。蒸腾作用可以促进水分的吸收和运转,降低植物体的温度,促进盐类的运转和分布。 蒸腾速率:又称蒸腾强度或蒸腾率,指植物在单位时间内、单位叶面积上通过蒸腾作用散失的水量。 蒸腾效率:植物每蒸腾1kg水时所形成的干物质的g数 蒸腾系数:植物每制造1g干物质所消耗水分的g数,它是蒸腾效率的倒数,又称需水量灰分元素 干物质充分燃烧后,剩余下一些不能挥发的灰白色残渣,称为灰分。构成灰分的元素称为灰分元素。灰分元素直接或间接来自土壤矿质,所以又称为矿质元素。 必需元素 植物生长发育中必不可少的元素。国际植物营养学会规定的植物必需元素的三条是:①由于缺乏该元素,植物生长发育受阻,不能完成其生活史;②除去该元素,表现为专一的病症,这种缺素病症可用加入该元素的方法预防或恢复正常;③该元素在植物营养生理上表现直接的效果,不是由于土壤的物理、化学、微生物条件的改善而产生的间接效果。 离子的主动吸收 细胞利用呼吸释放的能量逆电化学势梯度吸收矿质的过程。 离子的被动吸收 细胞不需要由代谢提供能量的顺电化学势梯度吸收矿质的过程。 初级共运转 质膜H+-ATase把细胞质的H+向膜外"泵"出的过程。又称为原初主动运转。原初主动运转在能量形式的转化上是把化学能转为渗透能。 次级共运转 以△μH+作为驱动力的离子运转称为次级共运转。离子的次级运转是使质膜两边的渗透能增减,而这种渗透能是离子或中性分子跨膜运输的动力。 扩散作用 分子或离子沿着化学势或电化学势梯度转移的现象。电化学势梯度包括化学势梯度和电势梯度两方面,细胞内外的离子扩散决定于这两种梯度的大小;而分子的扩散决定于化学势梯度或浓度梯度。 单盐毒害 植物培养在单种盐溶液中所引起的毒害现象。单盐毒害无论是营养元素或非营养元素都可发生,而且在溶液很稀时植物就会受害。 离子颉颃 离子间相互消除毒害的现象,也称离子对抗。 诱导酶 指植物体内本来不含有,但在特定外来物质的诱导下可以生成的酶。如硝酸还原酶。水稻幼苗若培养在含硝酸盐的溶液中就会诱导幼苗产生硝酸还原酶,如用不含硝酸盐的溶液培养,则无此酶出现。 硝酸还原 硝酸在硝酸还原酶和亚硝酸还原酶的相继作用下还原成氨(铵)的过程。 生物固氮 微生物自生或与植物(或动物)共生,通过体内固氮酶的作用,将大气中的游离氮固定转化为含氮化合物的过程。 希尔反应 希尔发现在分离的叶绿体(实际是被膜破裂的叶绿体)悬浮液中加入适当的电子受体(如草酸铁),照光时可使水分解而释放氧气,这个反应称为希尔反应 暗反应 光合作用中的酶促反应,即发生在叶绿体间质中的同化CO2反应。 同化力 ATP和NADPH是光合作用光反应中由光能转化来的活跃的化学能,具有在黑暗中同化CO2为有机物的能力,所以被称为"同化力"。 量子效率 又称量子产额,是指光合作用中吸收一个光量子所能引起的光合产物量的变化,如放出的氧分子数或固定的CO2的分子数。 量子需要量 量子效率的倒数,即释放1个O2和还原1个CO2所需吸收的光量子数。一般认为最低量子需要量为8~10,这个数值相当于0.12~0.08的量子效率。 光合膜 即为类囊体膜,这是因为光合作用的光反应是在叶绿体中的类囊体膜上进行的。 红降现象 光合作用的量子产额在波长大于680nm时急剧下降的现象。 双光增益效应或爱默生增益效应 在用远红光照射时补加一点稍短波长的光(例如650nm的光),则量子产额大增,比用这两种波长的光单独照射时的总和还要高。这种在长波红光之外再加上较短波长的光促进光合效率的现象被称为双光增益效应,因这一现象最初由爱默生发现的,故又叫爱默生增益效应。 原初反应 指光合作用中最初的反应,从光合色素分子受光激发起到引起第一个光化学反应为止的过程,它包括光能的吸收、传递与光化学反应。原初反应的结果使反应中心发生电荷分离。 荧光和磷光 激发态的叶绿素分子回到基态时,可以光子形式释放能量。处在第一单线态的叶绿素分子回至基态时所发出的光称为荧光,而处在三线态的叶绿素分子回至基态时所发出的光称为磷光。 共振传递 在色素系统中,一个色素分子吸收光能被激发后,其中高能电子的振动会引起附近另一个分子中某个电子的振动(共振),当第二个分子的电子振动被诱导起来,就发生了电子激发能的传递,第二个分子又能以同样的方式激发第三、第四个分子,这种依靠电子振动在分子内传递能量的方式称共振传递。 反应中心(reaction center) 发生原初反应的最小单位,它是由反应中心色素分子、原初电子受体、次级电子受体与次级电子供体等电子传递体,以及维持这些电子传递体的微环境所必需的蛋白质等组分组成的。 反应中心色素分子 是处于反应中心中的一种特殊性质的叶绿素a分子,它不仅能捕获光能,还具有光化学活性,能将光能转换成电能 聚(集)光色素 又称天线色素,指在光合作用中起吸收和传递光能作用的色素分子,它们本身没有光化学活性。 原初电子供体 反应中心色素分子是光化学反应中最先向原初电子受体供给电子的,因此反应中心色素分子又称原初电子供体。 原初电子受体 直接接收反应中心色素分子传来电子的电子传递体。PSⅠ的原初电子受体是叶绿素分子(A0),PSⅡ的原初电子受体是去镁叶绿素分子(Pheo)。 光合链 定位在光合膜上的,由多个电子传递体组成的电子传递的总轨道。 "Z" 指光合电子传递途径由两个光系统串联起来的方案。由于此光合电子传递途径中的电子传递体按氧化还原电位高低排列时呈侧写的"Z"字形,故称此方案为"Z"方案。 非环式电子传递 指水中的电子经PSⅡ与PSⅠ一直传到NADP+的电子传递途径。 环式电子传递 一般指PSⅠ中电子由经Fd、PQ、Cytb6/f等电子递体返回到PSⅠ的循环电子传递途经。 假环式电子传递 指水中的电子经PSⅡ与PSⅠ传给Fd后再传给O2的电子传递途径。 光合磷酸化 光下在叶绿体(或载色体)中发生的由ADP与Pi合成ATP的反应。 非环式光合磷酸化 与非环式电子传递偶联产生的磷酸化反应。在反应中,体系除生成ATP外,同时还有NADPH的产生和氧的释放。 环式光合磷酸化 与环式电子传递偶联产生ATP的反应。 环式光合磷酸化是非光合放氧生物光能转换的唯一形式,主要在基质片层内进行。 假环式光合磷酸化 与假环式电子传递偶联产生ATP的反应。此种光合磷酸化既放氧又吸氧,还原的电子受体最后又被氧所氧化。 解偶联剂 能消除类囊体膜或线粒体内膜内外质子梯度,解除磷酸化反应与电子传递之间偶联的试剂。 光能转化效率 光合产物中所贮存的化学能占光合作用所吸收的有效辐射能的百分率。 光呼吸 植物的绿色细胞在光照下吸收氧气释放CO2的过程,由于这种反应仅在光下发生,需叶绿体参与,并与光合作用同时发生,故称作为光呼吸。因为光呼吸的底物乙醇酸和其氧化产物乙醛酸,以及后者经转氨作用形成的甘氨酸皆为C2化合物,因此光呼吸途径又称为C2光呼吸碳氧循环,简称C2循环。 光合速率 亦称光合强度。通常是指单位时间、单位叶面积的CO2吸收量或O2的释放量,也可用单位时间、单位叶面积上的干物质积累量来表示。实际所测到的光合速率称表观光合速率或净光合速率。如把表观光合速率加上光、暗呼吸速率,便得到总光合速率或真光合速率。 光补偿点 随着光强的增高,光合速率相应提高,当到达某一光强时,叶片的光合速率等于呼吸速率,即CO2吸收量等于O2释放量,表观光合速率为零,这时的光强称为光补偿点。 光饱和点 当达到某一光强时,光合速率就不再随光强的增高而增加,这种现象称为光饱和现象。开始达到光合速率最大值时的光强称为光饱和点。 光抑制 当光合机构接受的光能超过它所能利用的量时,光会引起光合效率的降低,这个现象就叫光合作用的光抑制。 光合滞后期 置于暗中的植物材料(叶片或细胞)照光,起初光合速率很低或为负值,要光照一段时间后,光合速率才逐渐上升,并趋于稳态。从照光开始至光合速率达到稳态值这段时间,称为光合滞后期,又称光合诱导期。 CO2补偿点 指光合速率与呼吸速率相等时,也就是净光合速率为零时环境中的CO2浓度。 CO2饱和点 当CO2达到某一浓度时,光合速率达到最大值,开始达到光合最大速率时的CO2浓度称为CO2饱和点。 "午睡现象" 指植物的光合速率在中午前后下降的现象。引起光合"午睡"的主要因素是大气干旱和土壤干旱。另外,中午及午后的强光、高温、低CO2浓度等条件也会使光合速率在中午或午后降低。 光能利用率 植物光合作用积累的有机物中所含的化学能占光能投入量的百分比。 呼吸作用 生活细胞内的有机物,在酶的参与下,逐步氧化分解并释放能量的过程。 有氧呼吸 生活细胞利用分子氧,将某些有机物质彻底氧化分解,形成CO2和H2O,同时释放能量的过程。 无氧呼吸 生活细胞在无氧条件下,把某些有机物分解成为不彻底的氧化产物,同时释放能量的过程。微生物的无氧呼吸通常称为发酵。 糖酵解 己糖在细胞质中分解成丙酮酸的过程。为纪念在研究这途径中有贡献的三位生物化学家,简称EMP途径。 戊糖磷酸途径 葡萄糖在细胞质内直接氧化分解,并以戊糖磷酸为重要中间产物的有氧呼吸途径。又称己糖磷酸途径。 呼吸链 即呼吸电子传递链,指线粒体内膜上由呼吸传递体组成的电子传递的总轨道。 氧化磷酸化 在线粒体内膜上电子经电子传递链传递给分子氧生成水,并偶联ADP和Pi生成ATP的过程。它是需氧生物生物氧化生成ATP的主要方式。 抗氰呼吸 对氰化物不敏感的那一部分呼吸。抗氰呼吸可以在某些条件下与电子传递主路交替运行,因此,这一呼吸支路又称为交替途径。 末端氧化酶 处于生物氧化一系列反应的最末端的氧化酶。除了线粒体内膜上的细胞色素氧化酶和抗氰氧化酶之外,还有存在于细胞质中的酚氧化酶、抗坏血酸氧化酶和乙醇酸氧化酶等。 能荷调节 通过细胞内腺苷酸(ATP、ADP和AMP)之间的转化对呼吸作用的调节称为能荷(energy charge)调节。 呼吸商 植物组织在一定时间内,放出二氧化碳的量与吸收氧气的量的比值叫做呼吸商,又称呼吸系数(respiratory coefficient)。 呼吸作用的氧饱和点 在氧浓度较低的情况下,呼吸速率(有氧呼吸)随氧浓度的增大而增强,但氧浓度增至一定程度时,呼吸速率不再随氧浓度的增大而增强,这时候的氧浓度称为呼吸作用的氧饱和点。 无氧呼吸消失点 无氧呼吸停止进行的最低氧浓度(10%左右)称为无氧呼吸消失点。 生长呼吸 用来合成细胞组成成分以及进行细胞分裂、分化和生长的那部分呼吸。种子萌发到苗期,生长呼吸占总呼吸比例较高,随着营养体的生长,比例逐渐下降,而维持呼吸所占的比例增加。 呼吸跃变 果实成熟过程中,呼吸速率突然增高,然后又迅速下降的现象。呼吸跃变的产生与外界温度和果实内乙烯的释放密切相关。呼吸跃变是果实进入完熟的一种特征,在果实贮藏和运输中,重要的问题是降低温度,抑制果实中乙烯的产生,推迟呼吸跃变的发生,降低其发生的强度,延迟果实的完熟。 源(source) 即代谢源,是产生或提供同化物的器官或组织,如功能叶、萌发种子的子叶或胚乳。 库(sink) 即代谢库,是指消耗或积累同化物的器官或组织,如根、茎、果实、种子等。 共质体运输 物质在共质体中的运输称为共质体运输。 质外体运输 物质在质外体中的运输称为质外体运输。 比集转运速率 单位时间单位韧皮部或筛管横切面积上所运转的干物质的数量。 韧皮部装载 同化物从合成部位通过共质体或质外体胞间运输,进入筛管的过程。 韧皮部卸出 同化物从筛管分子-伴胞复合体进入库细胞的过程。 源库单位 在同化物供求上有对应关系的源与库合称为源-库单位。 源强和库强 源强是指源器官同化物形成和输出的能力;库强 是指库器官接纳和转化同化物的能力。 信号转导 细胞内外的信号,通过细胞的转导系统转换,引起细胞生理反应的过程。 G蛋白 全称为GTP结合调节蛋白,此类蛋白由于其生理活性有赖于三磷酸鸟苷(GTP)的结合以及具有GTP水解酶的活性而得名。在受体接受胞间信号分子到产生胞内信号分子之间往往要进行信号转换,通常认为是通过G蛋白偶联起来,故G蛋白又称为偶联蛋白或信号转换蛋白。 第二信使 能被胞外刺激信号激活或抑制的、具有生理调节活性的细胞内因子。第二信使亦称细胞信号传导过程中的次级信号。 植物激素 在植物体内合成的、能从合成部位运往作用部位、对植物生长发育产生显著调节作用的微量小分子有机物。目前国际上公认的植物激素有五大类:生长素类、赤霉素类、细胞分裂素类、脱落酸、乙烯。另外有人建议将油菜素甾体类、茉莉酸类也列为植物激素。 极性运输 物质只能从植物形态学的一端向另一端运输而不能倒过来运输的现象,如植物体内生长素的向基性运输。 乙烯的"三重反应" 乙烯对植物生长具有的抑制茎的伸长生长、促进茎或根的增粗和使茎横向生长(即使茎失去负向地性生长)的三方面效应。 偏上生长 指器官的上部生长速度快于下部的现象。乙烯对茎和叶柄都有偏上生长的作用,从而造成茎的横向生长和叶片下垂。 生长抑制剂 抑制顶端分生组织生长的生长调节剂,它能干扰顶端细胞分裂,引起茎伸长的停顿和破坏顶端优势,其作用不能被赤霉素所恢复,常见的有脱落酸、青鲜素、水杨酸、整形素等。 激素受体 能与激素特异结合并引起特殊生理效应的物质,一般是属于蛋白质。 生命周期 生物体从发生到死亡所经历的过程称为生命周期。 分化 从一种同质的细胞类型转变成形态结构和功能与原来不相同的异质细胞类型的过程称为分化。它可在细胞、组织、器官的不同水平上表现出来。例如:从受精卵细胞分裂转变成胚;从生长点转变成叶原基、花原基;从形成层转变成输导组织、机械组织、保护组织等。这些转变过程都是分化现象。 极性 细胞、器官和植株内的一端与另一端在形态结构和生理生化存在差异的现象。如扦插的枝条,无论正插还是倒插,通常是形态学的下端长根,形态学的上端长枝叶。 组织培养 植物组织培养是指植物的离体器官、组织或细胞在人工控制的环境下培养发育再生成完整植株的技术。根据外植体的种类,又可将组织培养分为:器官培养、组织培养、胚胎培养、细胞培养以及原生质体培养等。 外植体 用于离体培养进行无性繁殖的各种植物材料。 脱分化 植物已经分化的细胞在切割损伤或在适宜的培养基上诱导形成失去分化状态的、结构均一的愈伤组织或细胞团的过程。 胚状体 在特定条件下,由植物体细胞分化形成的类似于合子胚的结构。胚状体又称体细胞胚(somatic embryo) 或体胚。胚状体由于具有根茎两个极性结构,因此可一次性再生出完整植株。 人工种子 将植物组织培养产生的胚状体、芽体、及小鳞茎等包裹在含有养分的胶囊内,这种具有种子的功能,并可直接播种于大田的颗粒称为人工种子,又称人造种子或超级种子。 生长大周期 植物器官或整株植物的生长速度表现出"慢-快-慢"的基本规律,即开始时生长缓慢,以后逐渐加快,然后又减慢以至停止。这一生长全过程称为生长大周期。 生长曲线 以植物(或器官)体积、干重、高度、表面积、细胞数或蛋白质含量等参数对时间作图得到的曲线。生长曲线表示植物在生长周期中的生长变化趋势,典型的有限生长曲线呈S形。 温周期现象 植株或器官的生长速率随昼夜温度变化而发生有规律变化的现象 生物钟 生命活动中有内源性节奏的周期变化现象。亦称生理钟。由于这种内源性节奏的周期接近24小时,因此又称为近似昼夜节奏。 根冠比(R/T) 植物地下部分与地上部分干重或鲜重的比值,它能反映植物的生长状况以及环境条件对地上部与地下部生长的不同影响。 顶端优势 植物的顶芽生长占优势而抑制侧芽生长的现象。 协调最适温度 能使植株生长最健壮的温度。协调最适温度通常要比生长最适温度低。 光形态建成 由光调节植物生长、分化与发育的过程称为植物的光形态建成,或称光控发育作用。 光敏色素 一种对红光和远红光的吸收有逆转效应、参与光形态建成、调节植物发育的色素蛋白。 向性运动 植物器官对环境因素的单方向刺激所引起的定向运动。根据刺激因素的种类可将其分为向光性、向重性、向触性和向化性等。并规定对着刺激方向运动的为"正"运动,背着刺激方向的为"负"运动。所有的向性运动都是生长运动,都是由于器官不均等生长引起的。 感性运动 无一定方向的外界因素均匀作用于植株或某些器官所引起的运动。感性运动多数属膨压运动,即由细胞膨压变化所导致的。常见的感性运动有感夜性、感震性和感温性。 春化作用 低温诱导促使植物开花的作用叫春化作用。一般冬小麦等冬性禾谷类作物和某些二年植物以及一些多年生草本植物的开花都需要经过春化作用。 春化处理 对萌动的种子或幼苗进行人为的低温处理,使之完成春化作用促进成花的措施称为春化处理。 解除春化 在植物春化过程结束之前,将植物放到较高的生长温度下,低温的效果会被减弱或消除,这种现象称为去春化作用或解除春化. 再春化作用 大多数去春化的植物返回到低温下,又可重新进行春化,而且低温的效应是可以累加的,这种解除春化后,再进行春化的现象称再春化作用。 光周期现象 自然界一昼夜间的光暗交替称为光周期。昼夜的相对长度对植物生长发育的影响叫做光周期现象。植物的开花、休眠和落叶,以及鳞茎、块茎、球茎的形成,都受日照长度调节,即都存在光周期现象。但其中研究得最多的是植物成花的光周期诱导.。 临界日长 引起长日植物成花的最短日照长度或引起短日植物成花的最长日照长度。如长日植物天仙子的临界日长约为11小时,短日植物苍耳的临界日长约为15.5小时。 临界暗期 引起短日植物成花的最短暗期长度或长日植物成花的最长暗期长度。同临界日长相比,临界暗期对诱导成花更为重要。 光周期诱导 植物在达到一定的生理年龄时,经过一定天数的适宜光周期处理,以后即使处于不适宜的光周期下,仍能保持这种刺激的效果而开花,这种诱导效应叫做光周期诱导。 成花决定态 植物经过一定时期的营养生长后,就能感受外界信号(低温和光周期)产生成花刺激物,成花刺激物被运输到茎端分生组织,在那里发生一系列诱导反应,使分生组织进入一个相对稳定的能诱导成花的状态,这种状态被称为成花决定态。同源异型突变和同源异型基因 有时花的某一重要器官位置发生了被另一器官替代的突变,如花瓣部位被雄蕊替代,这种遗传变异现象称为花发育的同源异型突变。控制同源异型化的基因称为同源异型基因。 第11章逆境 对植物生存生长不利的各种环境因素的总称。逆境的种类可分为生物逆境、理化逆境等类型。 抗性植物对逆境的抵抗和忍耐能力。包括避逆性、御逆性和耐逆性。 逆境逃避 植物通过各种方式,设置某种屏障,从而避开或减少逆境对植物组织施加影响的抗性方式,包括避逆性和御逆性,在这种抗性方式下,植物无需在能量或代谢上对逆境产生相应反应的抵抗。 逆境忍耐 植物组织虽经受逆境对它的影响,但它可通过代谢反应阻止、降低或修复由逆境造成的损伤,使其仍保持正常的生理活动的抗性方式。 胁变 植物体受到胁迫后产生的相应变化,这种变化可表现在形态上和生理生化变化两个方面。据胁变的程度大小可分为弹性胁变和塑性胁变,前者指解除胁迫后又能复原,而后者则不能。 渗透调节 通过提高细胞液浓度、降低渗透势表现出的调节作用。 逆境蛋白 由逆境因素如高温、低温、干旱、病原菌、化学物质、缺氧、紫外线等所诱导植物体形成的新的蛋白质(酶)。 冷害 冰点以上低温对植物的危害。冷害主要由低温引起生物膜的膜相变与膜透性改变,造成新陈代谢紊乱引起的。 冻害 冰点以下低温对植物的危害。冻害主要由细胞间或细胞内发生结冰、生物膜和蛋白质结构被破坏引起的。 巯基(-SH)假说 莱维特1962年提出植物细胞结冰引起蛋白质损伤的假说。他认为组织结冰脱水时,蛋白质分子逐渐相互接近,邻近蛋白质分子通过-SH氧化形成-S-S-键,蛋白质分子凝聚失去活性,当解冻再度吸水时,肽链松散,氢键断裂,但-S-S-键还保存,肽链的空间位置发生变化,破坏了蛋白质分子的空间构型,进而引起细胞的伤害和死亡。 大气干旱 空气过度干燥,相对湿度过低,使植物的蒸腾作用过强,根系吸水补偿不了失水,使植物体发生水分亏缺的现象。 土壤干旱 因土壤中没有或只有少量的有效水,影响植物吸水,使植物体内水分亏缺引起永久萎焉的现象。 生理干旱 由于土温过低、土壤溶液浓度过高或积累有毒物质等原因,妨碍根系吸水,造成植物体内水分亏缺的现象。
/
本文档为【植物生理学名次解释】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索