为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

电力电子技术名词解释

2021-01-16 2页 doc 140KB 29阅读

用户头像 个人认证

洛衣含

暂无简介

举报
电力电子技术名词解释柔性交流输电系统柔性交流输电系统是Flexible AC TransmissionSystems)中文翻译,英文简称FACTS,指应用于交流输电系统的电力电子装置,其中“柔性”是指对电压电流的可控性;如装置与系统并联可以对系统电压和无功功率进行控制,装置与系统串联可以对电流和潮流进行控制;FACTS通过增加输电网络的传输容量,从而提高输电网络的价值,FACTS控制装置动作速度快,因而能够扩大输电网络的安全运行区域;在电力电子装置最早用于直流输电系统中并实现了对输送功率的快速控制,由此人们想在交流系统中加装电力电子装置,寻求对潮...
电力电子技术名词解释
柔性交流输电系统柔性交流输电系统是Flexible AC TransmissionSystems)中文,英文简称FACTS,指应用于交流输电系统的电力电子装置,其中“柔性”是指对电压电流的可控性;如装置与系统并联可以对系统电压和无功功率进行控制,装置与系统串联可以对电流和潮流进行控制;FACTS通过增加输电网络的传输容量,从而提高输电网络的价值,FACTS控制装置动作速度快,因而能够扩大输电网络的安全运行区域;在电力电子装置最早用于直流输电系统中并实现了对输送功率的快速控制,由此人们想在交流系统中加装电力电子装置,寻求对潮流的可控,以获得最大的安全裕度和最小的输电成本,FACTS技术应运而生,静止无功补偿器(SVC),静止同步补偿器(STATCON),晶闸管投切串联电容器(TCSC),统一潮流控制器(UPFC)就是基于FACTS技术的产品。节能灯节能灯又叫紧凑型荧光灯(国外简称CFL灯)它是1978年由国外厂家首先发明的,由于它具有光效高(是普通灯泡的5倍),节能效果明显,寿命长(是普通灯泡的8倍),体积小,使用方便等优点,受到各国人民和国家的重视和欢迎,我国于1982年,首先在复旦大学电光源研究所成功研制SL型紧凑型荧光灯,二十年来,产量迅速增长,质量稳步提高,国家已经把它作为国家重点发展的节能产品(绿色照明产品)作为推广和使用。现如今我们所讲的节能产品主要都是针对白炽灯来讲。普通的白炽灯光效大约在每瓦10流明左右,寿命大约在1000小时左右,它的工作原理是:当灯接入电路中,电流流过灯丝,电流的热效应,使白炽灯发出连续的可见光和红外线,此现象在灯丝温度升到700K即可觉察,由于工作时的灯丝温度很高,大部分的能量以红外辐射的形式浪费掉了,由于灯丝温度很高,蒸发也很快,所以寿命也大缩短了,大约在1000小时左右。节能灯主要是通过镇流器给灯管灯丝加热,大约在1160K温度时,灯丝就开始发射电子(因为在灯丝上涂了一些电子粉),电子碰撞氩原子产生非弹性碰撞,氩原子碰撞后获得了能量又撞击汞原子,汞原子在吸收能量后跃迁产生电离,发出253.7nm的紫外线,紫外线激发荧光粉发光,由于荧光灯工作时灯丝的温度在1160K左右,比白炽灯工作的温度2200K-2700K低很多,所以它的寿命也大提高,达到5000小时以上,由于它不存在白炽灯那样的电流热效应,荧光粉的能量转换效率也很高,达到每瓦50流明以上。齐纳击穿当PN结两边的掺杂浓度很高时,阻挡层将变很薄,在这种阻挡层中,载流子与中性原子相碰撞的机会极小,因而不容易发生碰撞...显然,场致激发能够产出大量的载流子,使PN结的反向电流剧增,呈现反向击穿现象,这种击穿称为齐纳击穿(因齐纳研究而得名)。齐纳击穿一般发生在低反压、高掺杂的情况下。   利用齐纳击穿可做成稳压二极管,又叫齐纳二极管.该二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性见图1,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压.     稳压二极管的正向特性与一般二极管相同,而反向击穿特性很陡峭。雪崩击穿在材料掺杂浓度较低的PN结中,当PN结反向电压增加时,空间电荷区中的电场随着增强。这样,通过空间电荷区的电子和空穴,就会在电场作用下获得的能量增大,在晶体中运动的电子和空穴将不断地与晶体原子又发生碰撞,当电子和空穴的能量足够大时,通过这样的碰撞的可使共价键中的电子激发形成自由电子–空穴对。新产生的电子和空穴也向相反的方向运动,重新获得能量,又可通过碰撞,再产生电子–空穴对,这就是载流子的倍增效应。当反向电压增大到某一数值后,载流子的倍增情况就像在陡峻的积雪山坡上发生雪崩一样,载流子增加得多而快,这样,反向电流剧增,PN结就发生雪崩击穿。利用该特点可制作高反压二极管。下图是雪崩击穿的示意图.     雪崩二极管是一种负阻器件,特点是输出功率大,但噪声也很大。主要噪声来自于雪崩噪声,是由于雪崩倍增过程中产生电子和空穴和无性所引起的,其性质和散弹噪声类似。雪崩噪声是雪崩二极管振荡器的噪声远高于其它振荡器的主要原因。电路的噪声对于电子线路中所标称的噪声,可以概括地认为,它是对目的信号以外的所有信号的一个总称。最初人们把造成收音机这类音响设备所发出噪声的那些电子信号,称为噪声。但是,一些非目的的电子信号对电子线路造成的后果并非都和声音有关,因而,后来人们逐步扩大了噪声概念。例如,把造成视屏幕有白班呀条纹的那些电子信号也称为噪声。可能以说,电路中除目的的信号以外的一切信号,不管它对电路是否造成影响,都可称为噪声。例如,电源电压中的纹波或自激振荡,可对电路造成不良影响,使音响装置发出交流声或导致电路误动作,但有时也许并不导致上述后果。对于这种纹波或振荡,都应称为电路的一种噪声。又有某一频率的无线电波信号,对需要接收这种信号的接收机来讲,它是正常的目的信号,而对另一接收机它就是一种非目的信号,即是噪声。在电子学中常使用干扰这个术语,有时会与噪声的概念相混淆,其实,是有区别的。噪声是一种电子信号,而干扰是指的某种效应,是由于噪声原因对电路造成的一种不良反应。而电路中存在着噪声,却不一定就有干扰。在数字电路中。往往可以用示波器观察到在正常的脉冲信号上混有一些小的尖峰脉冲是所不期望的,而是一种噪声。但由于电路特性关系,这些小尖峰脉冲还不致于使数字电路的逻辑受到影响而发生混乱,所以可以认为是没有干扰。当一个噪声电压大到足以使电路受到干扰时,该噪声电压就称为干扰电压。而一个电路或一个器件,当它还能保持正常工作时所加的最大噪声电压,称为该电路或器件的抗干扰容限或抗扰度。一般说来,噪声很难消除,但可以设法降低噪声的强度或提高电路的抗扰度,以使噪声不致于形成干扰。 软启动技术      软起动器实际上是一个晶闸管交流调压器。改变晶闸管的触发角,就可调节晶闸管调压电路的输出电压。在整个起动过程中,软起动器的输出是一个平滑的升压过程(且可具有限流功能),直到晶闸管全导通,电机在额定电压下工作。“软启动”不仅能够大幅度减轻传动系统本身所受到的启动冲击,延长关键零部件的使用寿命,同时还能大大缩短电动机启动电流的冲击时间,减小对电动机的热冲击负荷及对电网的影响,从而节约电能并延长电动机的工作寿命。此外,通过使用“软启动”技术,在电动机的选型上将可以选用容量较小的电动机,因而也能够减少不必要的设备投资。变频器、软启动在大中型供水设备中的应用摘要:由变频器、 软启动及可编程控制器为主组成的高性能控制系统具有运行稳定 、高效节能、自动化程度高易于操作等优点。由于采用了软启动,设备启、停过程平稳,避免了“水垂”效应,此控制系统只需增加较少的投资,就能较大幅度的提高设备性能,此项技术在大中型水泵站中很有推广应用价值。关键词:恒压供水,变频调速,软启动,供水泵站,节能,水垂效应。ﻭ通常供水设备的控制系统是由变频器、控制器、低压电器及压力传感器组成,可完成对供水压力闭环控制,当供水管网流量变化时,通过调整变频泵的转速和改变投入运行的水泵台数,可达到稳定供水管网出口压力的目的。图1所示是一个典型的恒压变频供水系统框图,此控制系统的控制对象是供水管网出口压力,由压力传感器采集供水管网出口压力信号,将此压力信号与设图 1自动恒压供水系统原理图定压力信号进行比较,其差值进入CPU进行PID运算,运算结果控制变频器的输出频率及输出电压,使水泵转速能随着供水管网压力的波动而不断的变化 , 从而使管网出口压力稳定。如果管网流量变化大,当只调整变频泵的转速不能满足管网出口压力稳定要求时,则由控制器发出指令,通过改变投入运行的水泵台数来满足稳定管网出口压力要求。在上述过程中,当变频泵达到最高设定转速时,说明管网用水量大,只靠调整变频泵的转速已不能使管网出口压力稳定,在经过一定延时后,如果此泵仍然在最高设定转速运行,控制系统就要启动一台水泵,在水泵容量较大的供水系统中,往往采用一项叫作“循环软启动”的技术,即将变频器带动的正在全速运转的电机交给电网,变频器再带动下一台电机变频启动,目的是减少启动过程中的机械和电气冲击。这项被称为“循环软启动”的技术存在着一个致命弱点,因为在此过程中刚脱离变频器的水泵在惯性作用下高速旋转,电机转子中还有较大的电流,由此电流形成的磁场在电机定子中感应出较高的电压,此电压与电网电压不同频率、不同相位,因而此时不能立即将此电机合到电网上,一般方法是根据电机容量大小,确定一个延时,要等转子电流衰减到一定值以后,才能将此电机合到电网上,然后变频器带动下一台电机运行。如在上述,从变频器脱开的电机要经过一定延时后才能并入电网,对于中型电机此延时大约是1-2 秒钟,在此期间,水泵失去了动力,并且水的位能阻止水泵继续旋转,水泵转速下降很快,当此水泵电机并入电网时,电机转速已降的很低,当将此电机并入电网时将产生较大的电气和机械冲击。如果电机从变频到工频切换过程处理不当,会给电网及供水管网造成重大事故,所以许多专家在大中型供水设备中不主张采用这项“循环软启动”技术。变频与工频平稳切换,已成为大中型供水设备中迫切需要解决的问。 为解决以上问题,现采用另一项电力电子产品“软启动”器,它基本原理是改变晶闸管的导通角改变输出电压,使电机在启动和停机过程中,端电压可以按照预先设定的方式逐渐变化,从而使启动和停机过程平稳。如果是启动一台电机,软启动将逐渐增大晶闸管的导通角,使电动机端电压逐渐升高,水泵平稳升速完成启动过程。如果是关闭一台电机,软启动内的晶闸管的导通角将由大逐渐减小,逐渐降低输出电压,使正在运转的电机平稳停机。ﻭ高性能的软启动及控制系统允许用一台软启动顺序带动多台电机完成软启、软停操作(图2 )。比如启动1#电机 ,软启动晶闸管的起始导通角为零,将KM11闭合,然后软启动晶闸管的导通角由小变大,电机端电压逐渐升高到电网电压,图 2一台软启动实现多台电机软启、软停控制主电路图电机可较平稳升速完成启动过程。此时电机的端电压与电网电压同频率,同相位 ,软启动器的晶闸管完全导通,其输出电压接近电网电压 , 这样,可将KM21闭合,使软启器旁路,然后KM11断开,软启动退出运行。此过程中电机端子上始终保持着较稳定的电压,所以整个启动过程平稳,无冲击。软启动退出运行以后准备接受下一次启动或停机操作指令。如果下一次操作指令是再启动一台电机,软启动将关闭软启动器上晶闸管,然后使相应的接触器闭合,再重复上述过程。如果下一次操作是关闭一台电机,比如1# 电机停机,软启动先使晶闸管全导通,输出电压接近电网电压,然后KM11闭合将软启动并入正在运行的1# 电机上,再断开1#电机直接和电网相联接的接触器 KM21,这时就由软启动单独带动1# 电机运行,软启动逐步降低输出电压,电机速度逐渐下降,直到停机,完成软停操作后,KM11断开。在上述过程中,控制系统适时的将软启动接入或退出运行电路。使用一台软启动顺序带动多台电机完成软启、软停操作的软启动器应具有“级联”功能,“级联”功能的主要作用是,在每一次操作前,软启动都要进行状态准备,在完成操作之后发出信号使软启动及时退出运行。比如启动电机,软启动晶闸管必须是关闭状态,输出电压为零,然后进入启动操作,如果是执行停机操作,软启动晶闸管必须是导通状态,逐渐降低输出电压,完成停机操作,每一次操作之后软启动都要退出运行线路。软启动本身保护功能齐全,但是当一台软启动带多台电机时,软启动完成启停操作后要退出运行,所以电机保护要另外设置,软启动只在启停过程中起保护。 一个由变频器、软启动器、可编程序控制器及低压电器组成的供水控制具有良好的运行性能如图 3,图3变频器、软启动组成的自动恒压供水系统原理图 它由变频器带动一台泵变速运行,由一台软启动器完成其余各泵开、停泵操作,变频泵可定时轮换使各泵运行时间均衡。此控制系统除能根据管网出口压力调整变频泵转速外,还能适时的将软启动接入或退出运行电路,完成开停泵操作。此系统克服了变频器控制系统中,变频泵由变频向工频切换过程中所产生的电气和机械冲击,此控制系统具有软启软停功能,可以避免开停机时水泵突然变化而产生的“水垂”效应,保证了设备和管网的安全,此性能对大中型供水泵站尤为重要。综上所述,在大中型泵站采用由变频器,软启动及可编程控制器为主组成的控制系统,集现代电力电子技术,微电子技术及控制技术为一体,组成了适应大中型供水泵站需求的高性能控制系统。此系统具有运行稳定,高效节能,自动化程度高易于操作等优点。由于采用了软启动,设备启停过程平稳,避免了“水垂”效应。与普通变频控制系统相比,此控制系统增加了软启动,软启动成本相对较低,此控制系统只增加了较少的投资,就能较大幅度的提高设备性能,此项技术在大中型水泵站中很有推广应用价值。 参考文献• 符锡理. 变频恒压给水设备变频固定运行方式与循环运行方式的对比分析 . 变频器世界, 2000,(12 )• 艾建维 .软启动功能及应用.变频器世界.2001,(12)•  张燕宾 . 低压供水系统变频与工频的切换问题.变频器世界.2003 ,(8)晶闸管移相式软启动原理质疑        克拉玛依技师学院    刘志斌ﻭ摘要:晶闸管移相式交流调压电路不能应用于异步电动机的启动和运行,所谓的软启动原理在理论上是不成立的。 ﻭ关键词:园旋转磁场、平滑转矩;幅值高次振动的旋转磁场、非平滑冲动式转矩;低功率因数、高无功损耗;高次谐波污染 … 。 ﻭﻭﻭ三相异步电动机启动电流大,对供电电网、同网设备、电动机本身的危害不言而谕。多少年来人们在解决异步电动机启动课题上,不断研究、实践,取得了很多科学的、实用的、巧妙有效的方法和设备。ﻭ近年来,由于电力电子技术的发展,人们早就期盼的科学、简单、有效、实用的变频设备成为现实,随心所欲地异步电动机变频调速、变频软启动技术在自动化、智能化控制及自动化设备上得到广泛应用。“软启动”成为现代工控技术最时髦的代名词。晶闸管移相式直流调压、交流调压技术多年来广泛应用于直流电机调速,交、直流电焊等诸多方面。过去谁也没想着把它用到异步电机的启动上,因为大家都明白异步电机用的是正弦交流电。ﻭ可是现在工控市场上有了晶闸管移相式软启动设备和相关生产厂家,它们把晶闸管移相式交流调压技术用到异步电机的启动上,并冠以软启动这样最时髦的代名词。更叫人不惑的是广告、说明书上那些做宣传的忽悠之词,黑白不分、利弊颠倒叫人上当。从三相异步电动机的工作原理看:只有三相对称正弦交流电产生的是园旋转磁场;产生的电磁转矩是连续、平滑的;影响异步电动机电流大小的主要因素是:① 转差率S;②电源电压Um;③阻抗Z; ④功率因数COSφ。ﻭ采用最新最先进电力电子技术的变频器,在对异步电动机软启动过程中电机电流可以控制的很小    IQ ≤ IN,ﻭ原因是它实现了平滑地、随意地改变、控制三相对称正弦交流电源的频率f,从而平滑地改变定子园旋转磁场的转速n1,使其跟随转子的转速n2,始终保持其有一个非常小的转差率S ≤ SN, 常用的传统降压启动设备是把电源电压 Um降低,使电动机在低电压下启动,减小电机启动电流,启动电流降为ﻭIQ =(3-4)IN高压鼠笼异步电动机启动方式中定子回路串电抗器、定子回路串液态电阻、转子回路串电阻 ,都是通过改变电动机阻抗Z、提高功率因数COSφ的方式减小启动电流。ﻭ总之,传统降压启动方法,不改变单一正弦交流电的基本性质(既频率不变),保证了园旋转磁场、连续平滑的电磁转矩的异步电机的根本属性不变,启动过程异步电机的原有机械特性不改变。而晶闸管移相式软启动是改变正弦交流电压的波形,使之变为非正弦脉冲式交流电,通过调节其占空比(如图所示),来改变交流电的平均电压。其平均电压是可控的、平滑变化的。它加在异步电动机绕组上产生的磁场是一个旋转的幅值高次振动的磁场;其转子电磁转矩是一个大小高次振动的非平滑变化的冲动式的破坏性转矩。在机械方面产生(转子高频机械冲动,其冲动频率f机械 = 2f电源)震动,对电机和生产机械形成机械损害;在定子电磁转换中产生过电压,直接损害电机绝缘,减少电机使用寿命;从电能利用效率看,启动过程中电机处于低功率因数、高无功损耗、高有功损耗(转子高频机械震动)的状态。特别是平均电压越低(既控制角α越大,导通角β越小)存在的上述问题就愈加严重。ﻭﻭﻭ ﻭ    有的生产厂家声称自己生产的软启动箱具有节电、节能功能。实际上,这种占空比不断变化的非正弦脉冲式交流电作用在异步电动机上,与传统启动设备相比,功率因数COSφ更低,无功损耗更大。而且在负载率低时,晶闸管移相交流调压输出波形的占空比更小,高次谐波幅值比例增大,上述情况表现得更分明,不但不能节电,而是损耗更厉害。ﻭ异步电动机降低启动电流的一个主要目的就是减小大电流对电网的冲击,减小对同网设备的影响。而晶闸管移相交流调压电路输出的占空比变化的非正弦脉冲式交流电中,高次谐波对电网存在有害污染;对同网电气设备和通信、电视等系统的正常工作存在影响。不但不起好作用,而是起坏作用。克拉玛依油田企业,有很多单位高价进了这种所谓软启动箱,没用几天,很快就被淘汰出局,统统换上了真正的软启动设备—变频器。晶闸管移相式软启动这种未经过国家权威机构科学论证、实际检验的不成熟产品,违反了国家机电产品生产、销售的基本法规。它的流行将给企业正常生产造成不良影响,将造成社会财富的巨大浪费。 异步电动机软启动及节能智能控制技术综述  刘建业 河北科技大学电气信息学院ﻭ   1、引言ﻭ  异步电动机是工农业生产中最为广泛的电力拖动设备,其使用过程存在三个问题。首先是启动问题:特别是几十、几百千瓦以上的中大容量电动机,额定电流就有几百安培,启动电流达近千安培,甚至几千安培,电动机启动时冲击电流流过供电变压器、供电线路,会造成供电母线很大的电压降落。严重时启动的电动机本身不仅转不起来,在同一条供电母线的其他设备也受影响,电灯变暗、数控设备失常、带重载电动机甚至会停车、变电所的欠电压保护会跳闸造成停电事故。其次是节能问题:异步电动机在运行期间有很大的节能空间,特别在轻载时功率因数低、效率低,电机发热严重。第三是电动机运行安全问题:断相、短路、严重过载等故障会给运行中的电动机带来极大的危害。   智能化软启动器是集电机软启动、软停车、轻载节能和综合保护于一体的新颖电机控制设备。近些年来,随着电力电子技术、计算机控制技术的飞跃发展,国内外都十分重视各种智能化软启动器的研究和开发,且发展很快,目前市场有多种型号的软启动器可供用户选择,不同的产品所具功能不尽相同,控制方法不尽相同。结合自己几年来从事智能化启动器产品的研究工作和对市场同类产品的认识,本文旨在从软启动控制方式、节能方法对智能化软启动器作一技术综述。  2、软启动控制方式ﻭ  电动机软启动控制旨在限制启动电流,减小冲击电流对电网的影响。对照过去的启动方法:定子串电阻启动、定子串饱和电抗器启动、Y-Δ变换启动和现在的软启动方法:液阻软启动、磁控软启动、晶闸管软启动,限流的实质没有太大的改变。只是从有级控制过渡到无级控制、从硬件调节到软件调节、从机械自动化过渡到智能自动化。   2.1、液阻软启动ﻭ  液阻软启动,相当于过去的定子串电阻启动。液阻是一种由电解液形成的电阻,它的阻值正比于相对的二块极板间的距离,反比于电解液的电导率。在启动过程通过控制极板距离或调节电导率都可实现电动机的软启动控制。由于液阻热容量大、阻值可无级调节,通过选择计算机预置的某种软启动算法控制一套伺服机构来调整极板距离,无级调节串入定子绕组的等效电阻,达到限流软启动的目的。所以液阻软启动较传统的定子串电阻启动,具有启动方式多样化(预置多种软启动算法)、控制智能化、调节无级化等优点。特别适用于高压大容量电动机的软启动。但液阻软启动同样存在一些缺点:软启动重复性差(受温升和热容量限制)、启动能耗大、体积大、维护性差。    2.2、磁控软启动ﻭ  磁控软启动,相当于过去的定子串饱和电抗器启动。磁控磁饱和电抗器有三相交流绕组和一个直流励磁绕组。三相交流绕组串接在电动机三相定子绕组上,限流作用的强弱变化通过控制支流励磁电流改变铁心的磁饱和度实现的,所以叫磁控软启动。与传统的定子串电抗器启动相比,磁控软启动对限流作用的调节是静止的、无接触的、非机械式的,应用电力电子技术和计算机技术实现磁控软启动,容易做到启动方式多样化、控制方法智能化。磁控软启动存在的缺点有:启动能耗大、运行噪声大、设备体积大。磁控软启动器适用于大容量高压电机软启动场合。ﻭ2.3、晶闸管软启动ﻭ  从降压限流的角度看,晶闸管软启动相当于过去的Y-Δ变换启动方式。启动过程启动器没有功率损耗(忽略晶闸管开关损耗)。通过计算机控制串接于电源与电动机定子绕组间的晶闸管导通角,使电动机按预设的函数关系U= ,在预定的时间内完成软启动。由于U=关系简单,很容易实现斜波电压启动和脉冲电流加斜波电压启动。系统如果有电流负反馈及电压负反馈,还可以按电流控制启动、电压控制启动、转矩控制启动、转矩加突跳控制启动编程。在上述启动方式中,最适用最先进的启动方式应是转矩控制启动、电压控制启动、和转矩加突跳控制启动。目前的软启动器多为限电流和斜波电压启动。如“ABB”软启动器;“雷诺尔”软启动器为电压控制、转矩控制及转矩加突跳控制启动;“AB”、“施耐德”、“西门子”等公司生产的软启动器为限流启动和转矩加突变控制启动。ﻭ 2.4、三类软启动器性能比较  本文从软启动时间、启动谐波影响、启动重复性、可控方式多样性、启动装置在启动过程中的噪声、是否节能、体积、适用范围等几个方面对三类软启动器作一比较,性能综合比较见表1所示:ﻭ  表1三类软启动器性能比较  类别启动时间谐波启动可重复性 噪声体积 可控方式多样性节能效果 使用范围ﻭ 晶闸管软启动器可调、快存在好无小好好 小、中型电动机和大型电动机(价格不占优势)ﻭ  磁控软启动器可调、较快存在较好有 大较好差 中、大型电动机ﻭ    液阻软启动器慢没有 差无大差差中、大型电动机ﻭ  由此可见,晶闸管软启动器综合性能最优,代表着软启动器发展的方向。特别是在电动机节能运行控制方面起着举足轻重的角色。ﻭ  3、节能方式  电动机在运行期间,有很大的节能空间存在,特别是轻载和一些变载负荷拖动中(如钢板冷轧机、抽油磕头机),如果实施节能控制,节电率可达5%—38%。ﻭ  目前国内电机节能器的研究非常活跃,但在产业化方面远远落后于国外公司。因此,为加快国内节能器的发展,在国家十五中,惦记系统节能方面的投入高达500亿元左右。ﻭ电动机节能措施很多,比如①选用高效电机,我国生产的YX系列电机平均效率较Y系列电机高3.0%,比JO2系列电机平均效率高3.4%。且优选高压高速鼠笼型电机。②减少所选电机的浮装容量,杜绝“大马拉小车”现象,使电机负载率始终保持在80%以上。③采用串级调速节能、变极节能、变频调速节能、变压节能等等。   目前,在上述诸多节能措施中,晶闸管软启动器应用日益广泛,在轻载和变载拖动系统中节能效果十分明显,归纳节能控制方法有如下几种:   3.1、恒功率因数控制  电动机在满压轻载运行时,由于负载率很低,电机铜损、铁损比例增加,功率因数下降,电机有效用电率下降(电机效率下降)。在轻载时如果降低输入电压,减少电机主磁通,电机的铁心损耗及磁化电流将减少,从而电机的效率、功率因数将得到提高。为此组成功率因数闭环控制系统可以有效地进行节能控制。ﻭ  (1)通过比较器,求еi=-0,△еi=еi-еi-1。其中0为给定功率因数角,为负荷功率因数角,еi为被控功率因数角实时偏差,△еi为被控功率因数角实时变化率。ﻭ   (2)设调节静差为bp  (3)调节步距h=0.02秒,步距移相角为αγﻭ (4)在еi<-bp条件下,按α(k)=α(k-1)-αγ调节,并对α(k)限幅,取αxmin=αmin。ﻭ  (5)在еI>+bp条件下,按α(k)=α(k-1)+αγ调节,并对αx限幅,取αxmax=αmax,ﻭ  αx=f(еi)调节曲线如图3所示。ﻭ      这种控制算法的优点:①调节平缓,无阶跃冲量;②αx最小限幅在给定负荷功率因数角Φ,即永远使αx≥αmin,避免了感性负荷条件下的“半波整流现象”发生。③αx最大限幅在αmax,既起到了轻载时的节能控制,又避免了“停车现象”的发生。④没有调节参数的现场整定问题。   3.2、间歇控制机制  有些场合。如油田活塞式抽油机,当油泵“再装率”很低时,为减少抽油机无效行程,提高电机工作效率,软启动器可采用间歇控制机制。即当检测到抽油机特轻载时,发停车令,间歇一定时间后再重新软启动。ﻭ   3.3、非线性调压控制ﻭ 对于钢板冷轧机,负载转矩在满载和空载间转换,如果电动机始终满压工作肯定费电,如果降压工作,在突加负荷时极有可能造成无故障停车,或过载能力低造成铜损耗增加过载保护动作。所以,针对这类负荷应采用非线性调压控制。ﻭ  定义ﻭ   定义非线性数据表kp=tabel()   根据负载变化率 ,按下式控制移相调压角 ;当0    ;当 ;当ﻭ   3.4、回馈制动控制ﻭ  磕头机(油田抽油机)有两个工作状态:一个是电动机驱动机械设备运动,磕头机从电网吸收电能(电表正转),另一个是释放能量(机械势能,井下负压),由机械设备带动电动机运动,是一个发电的过程(电表反转)。就是说,磕头机在相当一段时间内,要把势能变为电能回馈电网。异步机在电动工作状态,定子电流滞后电源电压U1功率因数900,从电网吸收有功功率 和吸收无功功率,异步电机工作在回馈发电状态时,定子电流滞后电源电压U1功率因数>900,向电网回馈有功功率 ,同时从电网吸收无功功率。所以当电机工作在回馈制动状态时,定子绕组必须接在电网上,由电网担负这部分滞后性的无功电流或无功功率。如果异步电机定子绕组不接在电网上,由于得不到必需的无功功率,当然也就发不出有功功率。即当检测到功率因数角>900时,对异步电机进行全压控制,使电机从电网充分吸收无功功率,同时向电网充分回馈有功功率。利用负荷特点通过回馈制动控制策略达到节能目的。ﻭ 顺便,就应用节能变频器、节能软启动器在磕头机中“不节能”的网上争论在此谈一下作者的观点:①节能变频器和节能软启动器,节能是毋庸置疑的;②普通节能变频器、普通软启动器非通用型,对轻载负荷均有明显的节能效果;③节能变频器、节能软启动器在磕头机应用中不节能,甚至比不用节能器还费电,这种现象确实存在。但这是用户在节能器的选型上有问题,是电机工作在发电状态,节能器没能提供电机向电网吸收无功功率和回馈有功功率通道所致。施耐德ATS46软启动器在泵站的应用在鼠笼型三相异步电动机降压启动方式中,新型电子式软启动器逐渐取代了传统的降压启动方式,软启动器中,转矩控制技术最为先进。ﻭ    施耐德Altistart46软启动器是一种新型的力矩控制软启动装置,它在保护加速力矩的同时,实时计算定子和转子的功率。通过检测电压和电流来计算定子和转子的功率。通过检测电压和电流来计算功率因数,并在扣除定子损耗后,得到实际的转子功率和电机力矩。    ATS力矩控制的优点有:(1)线性速度斜坡与电机负载无关;(2)控制功率因数,减少电流冲击;(3)标准力矩斜坡,适用于变负载力矩控制,如风机水泵等;(4)恒力矩加速曲线;(5)通过键盘读取电动机的力矩值,应用方便;(6)可在力矩负载点施加减速斜坡,获得最大的线性减速斜坡;(7)不需要反馈装置,实现最佳控制。    莱钢特殊钢厂1#连铸机泵站有2台220kW净环泵及2台110kW浊环泵,设计采用1台软启动器带2台水泵,可依次启动2台水泵。软启动结束后,用旁路接触器断开软启动器,避免功率元件长时间工作发热,当1台水泵故障时,可自动开启备用水泵,保证正常供水。由于ATS46系列软启动器提供了过流保护、过压保护、单项接地保护、上下口断相保护、三相不平衡保护、相位颠倒保护等措施并具有故障自诊断功能,通过操作面板上的液晶显示屏可显示功率因数、电动机温度、负载状态、电机电流等参数,还可以显示运行故障代码,为故障的排除提供了极大的方便.为实现集中/机旁控制及配合电动阀门的开闭,控制上采用了Momentumn系列PLC,避免了控制回路繁杂的接线,提高了设备运行的可靠性。自投入使用至今,ATS46软启动器运行良好。   市面上出售的软启动器主要有三种不同的类型,他们分别是:有旁路型、无旁路型、节能型。有旁路型:就是电动机达到电机的额定转速时,由旁接触器代替已经完成了的软启动器,这样可以降低晶闸管的热损耗,提高软启动器的使用寿命,提高工作的效率、避免电网的谐波污染。也可以用一台软启动器去启动多台电机。无旁路型:电动机达到电机的额定转速时,由没有旁接触器代替已经完成了的软启动器,适用于频繁启动和停止的电动机。节能型:根据电机的负荷,自动调节供给电机定子上的电压,减少电动机励磁电流的分量,提高电动机的功率因素。在选择软启动时,首先要分析软启动器的使用场合,来选择软启动器的类型,是用有旁路型,还是无旁路型,或者节能型。再次就是在选择软启动器时,要根据标称功率和电流负载特性来选者,软启动器的电流容量要稍大于电动机的工作电流,另外还要看软启动器的保护功能是不是很齐全。如:缺相保护、短路保护、逆相保护、过压保护、欠压保护、过载保护等。再探电机软启动器作者:佚名来源:本站整理 发布时间:2006-10-24 22:02:47发布人:电气在线减小字体增大字体摘要:本人通过多年来对软启动器的应用论述了对于电动机软启动器几种运行和起动方式及其优缺点,同时给出通过调研的结果和本人在应用中的切身体会。关键词:智能控制、电动机、降压起动器、软起动器、在线运行、旁路运行、内置旁路。一、前言 本人在2000年曾经发表过“软启动器的应用探讨”之文章,着重推广软启动技术的应用。随着国民经济的飞速发展和技术进步,电动机软启动器得到了普遍的应用。非直接启动场所的电动机的启动,采用软启动器的比例在上个世纪末还不到5%,而今天大约占到了90%以上,只有农村和经济极其落后的地区还在新建项目中使用降压启动器,所以软启动器已经形成了一个较大的市场,软启动器对于电动机启动给电网的冲击以及传动机械的冲击都起到了良好的改善,使传动机械的寿命得到了提高,为国民经济发展作着应有的贡献,软启动技术本身更是日新月异百花齐放。本文着重介绍各种软启动器的优缺点和正确的应用方法以及常见的故障分析。二、软启动器的分类:  1、在线运行软启动器: 在上个世纪,软启动器产品主要是国外的品牌,在中国市场上销售,如:A-B;ABB、施奈德、西门子等,但他们都是在线运行方式。在应用过程当中,人们发现在线运行有以下缺点:1、可控硅长期在线运行功耗太大造成能源浪费。2、可控硅的散热量太大需要机械风冷,给成套带来很大困难。3、可控硅长期在线运行给电网带来高次谐波污染。4、可控硅作为主开关元件长期工作其可靠性远低于机械开关。5、造价昂贵用户难以接受。6、由于可控硅选型较大和考虑散热所以体积较大。它的优点:1、是对电动机的启动与保护及其控制集于一体,强大的智能控制器全部发挥作用。2、是由于采用了机械风冷能够适用频繁启动场所。3、是电路简单便于维护和检修。(见图1) 2、旁路运行软启动器:到了上世纪末和本世纪开始,考虑在线运行的缺点和技术难度性,国内厂家就直接开发了旁路型软启动器,即电动机起动完成后旁路到接触器上运行。它的优点是回避了可控硅在线运行的缺点,尤其不需要机械风冷。但是,它同时带来缺点:1、电路复杂化,系统可靠性降低,2、强大的智能控制器不能充分利用,有的不能对电动机保护。3、增加成套装置的体积和成本。4、增加维护与检修的难度。综合比较后市场上还是多数采用了旁路运行方式,即便是选用了在线运行方式的软启动器,设计人员还是加装一套旁路运行接触器,使软启动器旁路运行。回避了可控硅在线运行的缺陷。(见图2)3、内置可控硅旁路型在线运行软启动器: 在2003年汉森堡国际电工产品技术博览会上,德国的默勒公司和ABB公司(仅限于200KW以上)推出了内置可控硅旁路型在线运行软启动器,2004年天津诺尔哈顿电器制造有限公司(中美合资)开发出了15~400KW的内置可控硅旁路型在线运行软启动器。现在国内外许多电器公司都在开发内置可控硅旁路型在线运行软启动器。内置可控硅旁路型在线运行软启动器(简称内置旁路型软启动器),是在在线运行软启动器内部设置了一套机械触头与可控硅并联,在电机软启动过程和软停车过程中由可控硅运行,机械触头断开,当电动机正常运行时可控硅关闭,机械触头闭合。这套动作过程是通过内部控制器自动完成的,对外部接线来讲是一个装置,所以称做在线运行。它又可称作旁路型的软启动器将外边的接触器移到了软启动器里边集成为一体并能保证体积不增加。它的优点是具备上述两种类型的所有优点同时回避了它们各自的缺点:1、电路简单。2、自然风冷。3、可控硅只管启动和停车,回避可控硅在线运行所带来的功耗与散热。4、体积小(和旁路型的一般大小)。5、强大智能控制器得以全面发挥,能对电动机起到起停与保护及其控制。6、节省成套空间。7、由于可控硅和机械触头组合一体的设计,通过智能控制器实现了机械触头无电弧,使的机械触头的电寿命等于机械寿命,解决了接触器长期以来难以解决的问题,与旁路型相比大大提高了系统可靠性。8、节能,此节能是指软启动器本身,与可控硅在线型相比可忽略不计。与旁路型相比减少60%,其原因是由于内置旁路型的机械触头采用了无电弧控制,其银点的硬度大大降低,触点的接触电阻大大降低,使得机械触头的闭合压力大大降低,机械触头的吸合磁力机构减小一半,降低一半能耗,机械触头的触点能耗也降低了一半,综合起来机械触头与磁力机构的能耗与旁路接触相比降低一半,再加上节省热继电器的能耗所以与之旁路型相比综合起来能节省60%。(见图3)一、  软启动器的选型由上述对于软启动器原理及其优缺点分析,应该是内置旁路型的适用性最强,优点最多,缺点最少。在实际工作当中还要考虑具体产品品牌的功能和技术参数以及产品的可考性,根据实际使用情况进行选择。在此有必要区分的是频繁启动和不频繁启动,对于软启动器来讲,一般情况下如果启动间隔时间不超过2分钟每小时不超过30次,即可定为不频繁启动。小于此数应按频繁启动考虑。风机泵类负荷一般都属于不频繁启动。机械传动有频繁启动的也有不频繁启动的,象皮带机、球磨机等可按不频繁启动考虑,如果是起动机或大型机械设备所配的电动机需要可逆功能的多属于频繁启动。在频繁工作的场所选取软启动器要按电动机的起动电流选取,因为软启动器生产厂家一般选取的可控硅电流是电动机额电流的2.5倍。限制最大电动机启动电流是额定电流的4.5倍,在不频繁操作下充分利用可控硅短时过载能力,所以在频繁启动的条件下,应加大选取软启动器的容量,根据频繁度的不同取在1.2~1.5倍即可。同时由于可控硅频繁工作,为了排除可控硅散发的大量的热量,软启动器必需带有机械风冷。对于机械风冷的软启动装置,一台开关柜最好放一台软启动装置,而且开关柜也要设置机械通风。四、软启动回路的主接线:1、在线型:所有软启动器的控制器都有电动机过载保护,当软启动器在线运行时软启动器的控制器能对电机进行过载保护,不要加装热过载继电器。由于经过可控硅后的电流谐波电流非常大,所以不能加装电子式热过载继电器,否则热继的误动作使系统不能正常工作。由于可控硅比较昂贵而且更换困难,为了保护可控硅要用快速熔断器防止软启动器下口发生短路烧毁可控硅,图4A是指在经常使用的场所,软起动器的上口不加接触器,图4B是指不经常使用的场所,在停车后将软启动器的电源断开。(见图4A和图4B)2、旁路型 旁路运行软启动器,离开旁路接触器是无法运行的,所以在两种主接线方案里都有。对于软启动器上口的接触器的作用和在线运行方式下作用相同在此不再重复。着重说明的是热继电器,把它安方在旁路接触器的下口,不通过起动电流最好,尤其是电子热继电器,由于经过软启动器后电流谐波很大能干扰电子热继电器误动作而使电机停车。另外因为可控硅的短时工作没必要安装快速熔断器,所以在主结线方案里没有加装快速熔断器。(见图5A和图5B3、内置旁路型 它的主接线和在线型的大致相同,唯一的优点是因为可控硅的短时工作没必要安装快速熔断器。电动机的过载保护是有软启动器的控制器实现的,它不仅在功能和性能上超过电子热继电器,而且不会因主回路的谐波电流及外界的干扰而误动作。(见图6A和图6B)五、软启动器的起动特性在应用电子软起动器时应考虑哪些问题呢?作为软起动器首先要看它的起动性能和停车性能,目前的软起动器有以下三种起动方式: 限流启动顾名思义是限制电动机的启动电流,它主要是用在轻载起动的负载降低起动电流带来的线路压降,并能直观地看到启动电流,缺点是在起动时难以知道起动压降,不能充分利用压降空间,损失起动力矩,对电动机不利。斜坡电压起动顾名思义是电压由小到大斜坡线性上升(又称转矩控制),它是将传统的降压起动从有级变成了无级,主要用在重载起动,优点是起动转矩特性抛物线型上升对拖动系统有利,起动平滑,柔性好,对拖动系统有更好的保护,延长拖动系统的使用寿命。它的缺点是起动电流较大(有的厂家在电压启动的同时又限制了起动电流,诺尔哈顿软启动器在电压斜坡启动方式下对电流的限制值是额定电流的4.5倍)。突跳加电压斜坡(又称转矩加突跳控制)启动是在电压斜坡控制起动的基础上加一个电压突跳(又称转矩突跳),它是用在静贯量较大用电压斜坡启动比较困难的场所,如风机负载。在起动的瞬间用突跳转矩克服电机静转矩,然后转矩抛物线上升,缩短起动时间。但是,突跳会给电网发送100ms的浪涌电流,应用时要注意。 停车方式有两种:一是自由停车,二是软停车。电子软起动带来最大的停车好处就是软停车。软停车消除了由于自由停车带来的拖动系统反惯性冲击。目前国内还没有带制动功能的软启动器,虽然有的厂家标有制动功能,但实际没有。软启动器的制动功能只能采用直流制动,目前国内用软启动器还做不到对交流电机采用直流制动。六、软启动器控制接线注意事项1、控制电缆的影响对于软启动器的二次接线设计人员容易忽视的是线路敷设对软启动器带来的影响,软启动器的控制输入接点都是采用的直流24V(国产的多是12VDC),如果有交流220V或380V控制线路和软启动器的控制输入线路用一根电缆敷设,很容易出问题。一定要用中间继电器将软启动器的控制输入线隔离开来,将外接线路变成同电压线路,这样就可以用一根电缆敷设。否则,强电会干扰软启的正常工作或烧毁软启动器的控制器。2、 控制距离。如果控制电缆过长,由于软启动器的控制电压太低,线路损耗过大时软启动器动作不可靠,一般情况下当控制距离超过200米时应采用中间继电器将控制电压提高后再远距离控制。七、 软启动器的常见故障目前国内的软起动器生产厂家很多,大都是旁路型的,产品的可靠性与世界知名品牌相比差距越来越小,市场份额已经超过国外品牌。本人多年来从事软启动的应用和研究,在大量的实践中得到了一些体会,在此与大家分享。软启动器的故障大体分如下几种:1、电动机起不来:电动机起不来的原因大致分两种情况:一是六只可控硅的其中一只触发不可靠或是不导通,此时一相电路通过的是半波直流,电动机的两相绕组通过的直流对电动机起到了制动作用,不仅电机起不来,严重的还会烧毁电机和可控硅。二是启动参数或启动曲线不合适造成电机起不来,这是常见故障。前者在使用过程当中会发生,但几率低于接触器的故障率。后者多发生在第一次投运调试,调试好以后就不会出现。多数的厂家不会出现此现象,启动程序性能好,出厂值设定的适用性强。只有很少厂家的产品需要厂家自己去调试。 2、可控硅烧毁:可控硅击穿或爆炸,此类故障不分国内外品牌,因厂家而易,但都比接触器的故障率低,而且主要问题出现在饼式可控硅的安装工艺上。3、控制器烧损:相对于软启动器来讲,控制器烧毁故障是最严重的。有的厂家此类故障造成的返修率已超过30%。进口的或合资的厂家此类问题不多见。主要是控制器的电源和触发电路以及输入电路三部分容易烧毁。4、软启动器误动作:电动机在运行的装态下因软起动器受干扰而停机在停止状态下因软起动器受干扰而起动是时有发生,前者较普遍,后者只有两个品牌发生过。究其原因,一是产品质量问题,二是和线路布局有关。但是凡是进口或合资的软启都没有上述现象,国产品牌中此问题比较多。5、软启动器内部插接件接触不良软启动器内部插接件选用本来不是问题,这是国内厂家容易忽略的问题,经常出现故障。进口或合资厂家都不犯此类的错误。至于哪家的软启动器质量都存在什么问题,在此本人不便说明,希望设计人员到用户去调查一下做到心中有数,到厂家看不出多大问题,因为质量关键在于产品的设计与原器件的质量,国内一个很知名的厂家已被很多用户明确禁止使用。八、结束语通过论述,电动机的降压起动方式经过了“Y-Δ” 起动器和自藕降压起动器到磁控式软起动器,现今发展到电子软起动器。而软启动器由于可控硅结压降功耗带来的问题,又从在线运行过度到旁路运行方式,现在又发展到在线运行内置旁路。总体而言软启动器的可靠性有的比接触器高有的比接触器低。科学在发展技术在进步,由于内置可控硅旁路在线运行软启动器采用了无电弧技术,为超智能无电弧高可靠性接触器的诞生奠定了基础。
/
本文档为【电力电子技术名词解释】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索